

<section-header>ATLAS HH → YYBB EXPERIMENTAL SUMMARY. Elizabeth Brost on behalf of the ATLAS Collaboration

Northern Illinois University

DI-HIGGS PRODUCTION

- Standard Model: small! $\sigma(HH) = 33.41$ fb @ 13 TeV
 - destructive interference between processes involving
 Higgs self-coupling and box-diagram with two ttH vertices

Beyond the Standard Model: possible enhancements?

enhanced self-coupling? resonant production via a heavy scalar? addition of a ttHH vertex?

WHY SEARCH FOR HH \rightarrow YYBB?

- ► large BR $H \rightarrow bb$ (0.57)
- great diphoton mass resolution
- excellent photon trigger and identification efficiency

BR(HH → ??+??)

HOW DO WE SEARCH FOR $HH \rightarrow YYBB$?

We're looking for **enhanced** HH \rightarrow $\gamma\gamma$ bb production:

- non-resonant production $pp \rightarrow HH$
 - can be enhanced due to new particles in loops
 - can be enhanced if non-SM couplings exist (varied κ_{λ})
 - S+B fit to m_{YY} spectrum for events with $m_{bb} \approx m_H$
- resonant production $pp \rightarrow X \rightarrow HH$
 - can be enhanced if there exists a new heavy scalar, X
 - S+B fit to $m_{\gamma\gamma jj}$ spectrum for events with $m_{\gamma\gamma} \approx m_H$ and $m_{bb} \approx m_H$ in the range 260 < $m_{\gamma\gamma jj}$ < 1000 GeV

DATA AND MC SAMPLES

Northern Illinois

U**niversitv**

36.1/FB data collected by the atlas in 2015 + 2016

- analyze events selected by diphoton triggers
- ▶ 36.1/fb of data with <µ> = 23.7

SIGNAL MONTE CARLO SAMPLES

- non-resonant signal
 - pp → HH → γγbb: ≈ NLO
 Madgraph+Herwig,
 reweighted to full NLO
 - ► pp → HH → γγbb (varied κ_{λ}): LO Madgraph+Pythia
- resonant signal
 - pp → X → HH → γγbb: ≈NLO
 Madgraph+Herwig
 - m_X = 260, 275, 300, 325, 350, 400, 450, 500, 750, 1000 GeV

Northern Illinois University

BACKGROUND MONTE CARLO SAMPLES

- single-Higgs background: take prediction entirely from MC
 - consider ggF, VBF, WH, ZH, ttH, bbH, tH processes
- reweight Sherpa yy+jets MC to data in 0-tag control region
 used to choose background fit function only

OBJECTAND EVENT SELECTION

OBJECT PRE-SELECTION

- require two tight, isolated photons
- require two b-tagged jets, with $|\eta| < 2.5$, $p_T > 25$ GeV:
 - if: two jets pass 70% WP: 2 b-tag category
 - else if: one jet passes 60% WP: 1 b-tag category (use BDT to choose 2nd jet)
 - else: 0 b-tag control region

Northern Illinois University

1 B-TAG BDT

- Train BDT on correct and incorrect second jet selections, in signal and background MC (background has no correct choice!)
- Variables considered: jet p_T, di-jet p_T, di-jet mass, jet η, di-jet η, di-jet Δη, passes 77%/85% WP, ranking from best to worst in: p_T, best match to m_H, di-jet p_T

- define two non-orthogonal selections:
 - "loose" jet selection for 260 < m_X < 500 GeV, and setting limit on self-coupling
 - "tight" jet selection for 500 < m_X < 1000 GeV, and non-resonant search

SIGNAL AND BACKGROUND MODELING

NON-RESONANT MODELING

- background modeling: exponential + DSCB for single-Higgs components (fit the data directly)
- signal modeling: Double-sided Crystal Ball (DSCB)

RESONANT BACKGROUND MODELING

Novosibirsk function

- "loose" selection (260-500 GeV): m_{YYjj} is modeled with a Novosibirsk function
- "tight" selection (500-1000 GeV): m_{YYjj} is modeled with an exponential function

exponential function

RESONANT SIGNAL MODELING

- resonant signal is modeled with a Gaussian with exponential tails - simultaneous fit to all mass points
- constrain m_{jj} = m_H in the resonant search, to improve fourbody mass resolution

EVALUATING SYSTEMATIC UNCERTAINTIES

SEARCH IS STATS-LIMITED, BUT...

 largest systematic uncertainties from: photon ID, JES/JER, flavor-tagging

Source of systematic uncertainty		% effect relative to nominal Non-resonant analysis				in the 2-tag (1-tag) category Resonant analysis: BSM HH			
		SM HH signal		Single- H bkg		Loose selection		Tight selection	
Luminosity Trigger Pile-up modelling		$\pm 2.1 \\ \pm 0.4 \\ \pm 3.2$	(± 2.1) (± 0.4) (± 1.3)	$\pm 2.1 \\ \pm 0.4 \\ \pm 2.0$	$(\pm 2.1) \\ (\pm 0.4) \\ (\pm 0.8)$	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 4.2)	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 3.8)
Photon	identification isolation energy resolution energy scale	$\pm 2.5 \\ \pm 0.8$	(±2.4) (±0.8) -	$\begin{array}{c} \pm 1.7 \\ \pm 0.8 \end{array}$	(± 1.8) (± 0.8) -	$\pm 2.6 \\ \pm 0.8 \\ \pm 1.0 \\ \pm 0.9$	(± 2.6) (± 0.8) (± 1.3) (± 3.0)	$\pm 2.5 \\ \pm 0.9 \\ \pm 1.8 \\ \pm 0.9$	(± 2.5) (± 0.9) (± 1.2) (± 2.4)
Jet	energy resolution energy scale	$\pm 1.5 \\ \pm 2.9$	(± 2.2) (± 2.7)	$\pm 2.9 \\ \pm 7.8$	$(\pm \ 6.4)$ $(\pm \ 5.6)$	$\pm 7.5 \\ \pm 3.0$	(± 8.5) (± 3.3)	$\pm 6.4 \\ \pm 2.3$	(± 6.4) (± 3.4)
Flavour tagging	<i>b</i> -jets <i>c</i> -jets light-jets	$ \pm 2.4 \\ \pm 0.1 \\ < 0.1 $	(± 2.5) (± 1.0) (± 5.0)	$\pm 2.3 \\ \pm 1.8 \\ \pm 1.6$	(± 1.4) (± 11.6) (± 2.2)	± 3.4	(±2.6) - -	± 2.5	(±2.6) - -
Theory	$PDF+\alpha_{S}$ Scale EFT	$\pm 2.3 \\ +4.3 \\ -6.0 \\ \pm 5.0$	$(\pm 2.3) \\ (+4.3) \\ (-6.0) \\ (\pm 5.0)$	$\pm 3.1 + 4.9 + 7.0$	$\begin{array}{c} (\pm \ 3.3) \\ (+ \ 5.3) \\ (+ \ 8.0) \\ n/a \end{array}$		n/a n/a n/a n/a	1 1 1 1	n/a n/a n/a n/a

Northern Illinois University

RESULTS

COMPARISON OF DATA TO BACKGROUND-ONLY FIT

 fit 1- and 2-tag categories simultaneously
 best fit signal: 0.04 pb (-0.21 pb) for loose (tight) selection
 no significant

excess observed

Northern Illinois University

NON-RESONANT LIMITS: HH CROSS SECTION

$\sigma_{gg \to HH}$ [pb]	0.73	0.93	0.66	1.4
As a multiple of $\sigma_{\rm SM}$	22	28	20	40

NON-RESONANT LIMITS: HIGGS SELF-COUPLING

• Parameterize the acceptance*efficiency as a function of κ_{λ}

- Theory cross section shown for illustration
- Set limits on the Higgs self-coupling: -8.2 < κ_λ < 13.2

Northern Illinois University

RESULTS

- Blue line separates loose and tight selections
- Largest deviation from background-only hypothesis is at 480 GeV (local significance of 1.2σ) → No significant excess observed
- Maximum observed (expected) limit : 1.1 pb (0.9 pb) at 260 GeV
- Minimum observed (expected) limit: 0.12 pb (0.15 pb) at 1000 GeV

Northern Illinois University

SEARCH FOR NON-RESONANT AND RESONANT HH \rightarrow YYBB

- Searched for di-Higgs production in the di-photon plus di-b-jet channel in 36.1/fb of data from the ATLAS experiment
- No significant excess observed in the non-resonant or resonant searches
- Set a limit on $\sigma(HH)$ of $22*\sigma_{SM}$
- > Set limits on the Higgs self-coupling: -8.2 < κ_λ < 13.2
- > Set limits on resonant di-Higgs production from 1.1 pb to 0.12 pb for 260 < $m_{\rm X}$ < 1000 GeV

<u>HTTPS://ATLAS.WEB.CERN.CH/ATLAS/GROUPS/PHYSICS/PAPERS/HIGG-2016-15/</u>

BACKUP SLIDES

DETAILS ON MONTE CARLO SAMPLES

generators, PDF sets, cross sections for signal and background MC:

Process	Generator	Showering	PDF set	σ [fb]	Order of calculation of σ	Simulation
Non-resonant SM <i>HH</i> Non-resonant BSM <i>HH</i> Resonant BSM <i>HH</i>	MadGraph5_aMC@NLO MadGraph5_aMC@NLO MadGraph5_aMC@NLO	Herwig++ Pythia 8 Herwig++	CT10 NLO NNPDF 2.3 LO CT10 NLO	33.41 - -	NNLO+NNLL LO NLO	Fast Fast Fast
$\gamma\gamma$ plus jets	Sherpa	Sherpa	CT10 NLO	-	LO	Fast
ggH VBF WH $q\bar{q} \rightarrow ZH$ $t\bar{t}H$ $gg \rightarrow ZH$ $b\bar{b}H$ t-channel tH	Powheg-Box NNLOPS (r3080) [60] Powheg-Box (r3052) [61] Powheg-Box (r3133) [62] Powheg-Box (r3133) [62] MADGRAPH5_aMC@NLO Powheg-Box (r3133) MADGRAPH5_aMC@NLO	Pythia 8 Pythia Pythia Pythia 8 Pythia 8 Pythia 8 Pythia 8 Pythia 8	PDF4LHC15 PDF4LHC15 PDF4LHC15 PDF4LHC15 NNPDF3.0 PDF4LHC15 CT10 NLO CT10 NLO	$\begin{array}{c} 48520\\ 3780\\ 1370\\ 760\\ 510\\ 120\\ 490\\ 70\\ 220\\ \end{array}$	$N^{3}LO(QCD)+NLO(EW)$ NNLO(QCD)+NLO(EW) NNLO(QCD)+NLO(EW) NLO(QCD)+NLO(EW) NLO(QCD)+NLO(EW) NLO+NLL(QCD) NNLO(5FS)+NLO(4FS) LO(4FS)	Full Full Full Full Full Full Full
W-associated tH	MADGRAPH5_aMC@NLO	Herwig++	CT10 NLO	$\frac{10}{20}$	NLO(5FS)	Full

EVENT SELECTION SUMMARY

		Non-resona	nt		Resonant				
	$1\text{-}\mathrm{tag}$		2-tag		1-t	ag	$2 ext{-} ext{tag}$		
	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Tight	
$m_{\gamma\gamma}$ range [GeV]	105 - 160	105 - 160	105 - 160	105 - 160	120.39 - 129.79	120.79 - 129.39	120.39 - 129.79	120.79 - 129.39	
Jet b -tagging WPs used	60% + BDT	60% + BDT	70%	70%	60% + BDT	60% + BDT	70%	70%	
Leading jet $p_{\rm T}$ [GeV]	>40	>100	>40	>100	>40	>100	>40	>100	
Subleading jet $p_{\rm T}$ [GeV]	$>\!25$	> 105	> 25	>30	> 25	>30	> 25	>30	
m_{jj} range [GeV]	80 - 140	90 - 140	80-140	90–140	80 - 140	90 - 140	80 - 140	90-140	

CONTINUUM BACKGROUND MODELING, NON-RESONANT SEARCH

CONTINUUM BACKGROUND MODELING, NON-RESONANT SEARCH

CONTINUUM BACKGROUND MODELING, RESONANT SEARCH

CONTINUUM BACKGROUND MODELING, RESONANT SEARCH

RESULTS

FINAL EVENT YIELDS

	1-t	ag	2-tag		
	Loose selection	Tight selection	Loose selection	Tight selection	
Continuum background SM single-Higgs-boson background	$\begin{array}{rrr} 117.5 & \pm 4.7 \\ & 5.51 & \pm 0.10 \end{array}$	$\begin{array}{rrr} 15.7 & \pm \ 1.6 \\ 2.20 & \pm \ 0.05 \end{array}$	$\begin{array}{rrr} 21.0 & \pm \ 2.0 \\ 1.63 & \pm \ 0.04 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Total background	123.0 ± 4.7	17.9 ± 1.6	22.6 ± 2.0	$4.30~\pm~0.79$	
SM Higgs boson pair signal	$0.219 {\pm} 0.006$	0.120 ± 0.004	0.305 ± 0.007	0.175 ± 0.005	
Data	125	19	21	3	

