HH→bbττ ATLAS and CMS overview: comparison of reconstruction and background estimation methods

Francesco Brivio

on behalf of the CMS and ATLAS Collaborations

Double Higgs Production at Colliders Workshop

4-9th September 2018 Fermilab, USA

6 September 2018 - HH2018

Outline

Introduction

<u>HH \rightarrow bb $\tau\tau$ is a very complex decay process</u>

- 4 objects in final state
- Two jets + hadronically decaying taus
- b-tagging needed
- All families of leptons (e, μ , τ)
- MET

Need to control the backgrounds

- Many processes giving the same final state
- Main backgrounds: tt

 , DY+jets, QCD
- $au_{\rm h}$ fakes

Object Reconstruction

CMS strategy

Electrons

- Standard ParticleFlow algorithm: MVA technique (tracker + ECAL information)
- Only isolated leptons considered
- Efficiency: 80% (tight WP)

Muons

- Standard ParticleFlow algorithm
- Only isolated leptons considered
- Efficiency: ~90%

Hadronic Taus

- Hadron Plus Strips algorithm seeded by jets (1 or 3 tracks + calo deposits)
- MVA discriminant for ID and ISO Medium WP: efficiency 60% and misidentification rate 0.1-1%

ATLAS strategy

Electrons

- Likelihood technique + track-hit requirements
- Only isolated leptons considered
- Eff/mis-ID rate: 87-95% / 0.15-0.5%

Muons

- Tracker+Muon systems information
- Only isolated leptons considered
- Eff/mis-ID rate: 96.1% / 0.17%

Hadronic Taus

- Seeded by jets
 (1 or 3 tracks associated)
- Tau Vertex association algorithm
- BDT against *quark/gluon-* jets Medium WP: 60/55% (ID only) misidentification rate 1%

6 September 2018 - HH2018

CMS strategy

AK4 Jets

- Anti- k_T algorithm with distance parameter of 0.4

AK8 Jets

- Anti- k_T algorithm with distance parameter of 0.8

b-tagging

- Standard CMS b-tagging

- Combined Secondary Vertex (CSV) algorithm to discriminate from *light quarks/gluon*-jets

- WP: efficiency 60% and misidentification rate 1%

ATLAS strategy

AK4 Jets

- Anti- k_T algorithm with distance parameter of 0.4

AK8 Jets

- Not used -

b-tagging

- Standard ATLAS b-tagging

- MV2c10 algorithm to discriminate from *light quarks* jets (trained also against *c*-hadrons)

- WP: efficiency 70% and rejection factors 12/381/55 for c-jets/light-jets/taus

*More on b-tagging in Luca Mastrolorenzo's talk

High Level Objects - $\tau\tau$ **Invariant Mass**

<u>SVfit (2014 J. Phys.: Conf. Ser. 513 022035)</u> <u>MMC (Nucl. Instrum. Meth. A 654 (2011) 481)</u>

CMS strategy

SVfit

- Dynamic likelihood technique
- Visible taus + MET

Elliptic cut on the invariant masses

$$\frac{(m_{\tau\tau} - 116 \,\text{GeV})^2}{(35 \,\text{GeV})^2} + \frac{(m_{bb} - 111 \,\text{GeV})^2}{(45 \,\text{GeV})^2} < 1$$

ATLAS strategy

Missing Mass Calculator (MMC)

- Dynamic likelihood technique
- Visible taus + MET

Cut on the invariant mass

 $m^{MMC} > 60 \text{ GeV}$

6 September 2018 - HH2018

High Level Objects - $\tau\tau$ **Invariant Mass**

Similar starting point:

- Tau decay kinematics under-constrained from the observables
 - Event-by-Event Likelihood approach
 - Include information on the tau decay to find the bes estimate

Francesco Brivio

$$P(M_{ au au}) = \int \delta\left(M_{ au au} - M_{ au au}(ec{y}, ec{a})
ight) \, p(ec{x}|ec{y}, ec{a}) \, dec{a}.$$

CMS

- Where: $\vec{x} = obs. MET$ $\vec{y} = obs. \tau_{vis}$ $\vec{a} = unknown \ \tau \ kinem.$
- Scan in steps of δmττ for all possible configurations compatible with measured observables
- Best estimate from the maximization of the likelihood

$$\mathcal{L} = -\log\left(\mathcal{P}(\Delta R_1, p_{\tau 1}) \times \mathcal{P}(\Delta R_2, p_{\tau 2}) \times \mathcal{P}(\Delta \not\!\!\!E_{\Gamma_x}) \times \mathcal{P}(\Delta \not\!\!\!E_{\Gamma_y})\right),$$

- Where: $\mathcal{P}(\Delta E_T) = MET \ resolution \ pdf$ $\mathcal{P}(\Delta R, p_T) = \tau \ decay \ kinem. \ pdf$
- Scan all points of the 3D hyper-plane (φ_{mis1}, φ_{mis2}, m_{mis}) to build a mττ distributions
- Most probable value of the distribution used as best estimate

SVfit (2014 J. Phys.: Conf. Ser. 513 022035)

MMC (Nucl. Instrum. Meth. A 654 (2011) 481)

MMC (Nucl. Instrum. Meth. A 654 (2011) 481)

Expected performances from the original MMC and SVfit papers

- More symmetrical shape for the Higgs distribution
- Wider distribution with tails on both sides

- Very asymmetrical shape for the Higgs distribution
- Longer tail on the left side which is cut out by requiring m^{MMC}>60 GeV

The only way to fully appreciate the differences is to compare the performances directly on the same set of events

6 September 2018 - HH2018

High Level Objects - Discriminating Variables

ATLAS strategy

BDT Score

*More in Arnaud's talk

6 September 2018 - HH2018

Objects Reconstruction Conclusion

Overall very similar reconstruction methods

- For all objects involved (leptons, jets...)
- With obvious differences due to different detectors
- Slight differences in the working points chosen (efficiencies and mistag rate of tau identification and b-tagging)
- Main difference in the reconstruction of the $\tau\tau$ pair mass
 - SVfit vs Missing Mass Calculator
 - Would be nice to directly compare the performances of the 2 algorithms
 - with respect to one another
 - with respect to the visible $\tau\tau$ mass

Background Estimation

Backgrounds estimated using MC simulation only

CMS			ATLAS		
Background	Generator	XS precision	Background	Generator	XS precision
tī	POWHEG 2.0	NNLO	ītt*	POWHEG-BOX	NNLO+NNLL
Single Top	POWHEG 2.0	NNLO	Single Top	POWHEG-BOX	NLO
Single Higgs	MADGRAPH5	NNLO	ttH ZH	MADGRAPH POWHEG	NLO NLO+NLL
W + jets	MADGRAPH5	NNLO	W + jets	SHERPA	NNLO
Di-boson	MADGRAPH5	NLO	Di-boson	SHERPA	NLO
DY+jets*	MADGRAPH5	NNLO	DY+jets*	SHERPA	NNLO

* corrected with data-driven methods

Background Estimation - DY background

 Drell-Yan is one of the most prominent backgrounds, especially when associated with the production of 2 jets

CMS strategy

From MC simulation

Corrected with SF from control regions

Control regions

- $Z \rightarrow \mu \mu + 2$ jets
- events with selection similar to SR (mass and isolation)
- binned in number of b-jets (0,1,2)

SF extraction

- Simultaneous fit on the 3 regions
- Fit on m**µµ**
- m $\mu\mu$ between 60 and 120 GeV

	Z + light jets	Z + one b jet	Z + two b jets
Scale factors	1.1412 ± 0.0017	1.187 ± 0.015	1.170 ± 0.029

ATLAS strategy

• From MC simulation

Corrected with SF from control regions

Normalization

From $Z \rightarrow \mu \mu$ + heavy-flavor CR

- events with selection similar to SR
- m $\mu\mu$ between 81 and 101 GeV
- m_{bb} below 80 GeV or above 140 GeV to remove SM ZH

Normalization extraction

Including this CR yield in the final fit

Normalization factor 1.34 ± 0.16

6 September 2018 - HH2018

Background Estimation - DY background

Validation/Control Regions for the DY+ jets estimation

- $Z \rightarrow \mu \mu + 2$ jets, 0 b-tag control region
- After the application of the SF

Z+HeavyFlavor validation region

Background Estimation - Multijet background

35.9 fb⁻¹ (13 TeV) Events 0b 2j τ_hτ_h channel **CMS** strategy Data 400 tī QCD 350 Drell-Yan Other bkg ABCD method 300 SM Higgs boson Bkg. uncertainty - Both yield and shape from jet 250 200 0 b-tag region enriched regions in data 150 QCD dominated - Other background contributions used for validation 100 subtracted from MC simulation 50 - No parametrization in pT, eta, #tracks 1.4 Data/MC 1.2 OS SS 0.6 Leading $\tau_{\rm h}^{120}$ p₁⁴⁰ [GeV] 100 tight Tiso Signal SS, iso region **Shape** From a SS relaxed 10058 LISO τ lepton isolation region shape: B' OS, non-iso SS, non-iso (due to statistics reasons) yield: **B*** C/D С D **Yield** From SS region corrected by ratio OS/SS in Isolation inverted only on jet enriched region the sub-leading τ lepton

6 September 2018 - HH2018

Background Estimation - Fake taus

ATLAS strategy

- Fake taus estimated using FakeRates and FakeFactor methods
 - From fake *taus* enriched sample as similar as possible to the SR:
 - tau identification < "medium" WP
 - "very loose" requirement on the BDT score
 - **Templates** from this enriched region after subtraction of real *taus* (from MC simulation)
 - FakeFactors to scale the templates
 - Extracted from Control Regions
 - Binned in p_{T} and number of associated tracks

6 September 2018 - HH2018

Background Estimation - Fake taus

ATLAS strategy

Semileptonic case

- Full estimation using FF derived for multijet, tt and W+jets
- FF combined to account for different quark/gluon fractions

 $FF(comb) = FF(QCD) \times r_{QCD} + FF(t\bar{t}/W + jets) \times (1 - r_{QCD})$

- Validated in Same Sign region

Fully hadronic case

- Multijet background: same as semileptonic case
 - templates from 1 b-tag SS control region
 - FF from 2 b-tag SS control region
- tt Background (\geq 1 fake tau from W decay):
 - from MC simulation
 - corrected by FR measured in semileptonic control region region
 (parametrized as function of *eta* number of *prongs*)

Semilep. VR

Hadronic VR

6 September 2018 - HH2018

Backgrounds from MC simulation only

- Same backgrounds for CMS and ATLAS
- Same generator for the "top-quark backgrounds" (POWHEG)
- Mixture of generators for the others (MADGRAPH, SHERPA)
- Similar precision on the cross sections

Similar approach for the DY+jets background

• Simulation corrected with scale factors from $Z \rightarrow \mu \mu$ events

• Main difference in the estimation of multijet/fake- τ_h backgrounds

- CMS: ABCD for multijet background only
- ATLAS: FakeFactor for treatment of fake- τ_h from multijet and $t\bar{t}$
- A comparison between the two methods is not as easy in this case...
 - Different approach but good data/MC agreement for both experiments

Systematic Uncertainties

- Similar systematic uncertainty sources considered in both experiments
- Shown here:
 - CMS: systematic uncertainties affecting the normalization of different processes.
 - ATLAS: impact on the simulated non-resonant signal strength, *i.e.* the expected yield assuming $\sigma x BR$ equal to the expected exclusion limit (14.8 times SM prediction)

CMS PLB paper link

ATLAS arXiv link

Systematic uncertainty	Value Experimental Uncertainties		
5 5		Luminosity	± 2.4
Luminosity	2.5%	Pileup reweighting	± 1.7
Lepton trigger and reconstruction	2-6%	$ au_{\rm had}$	± 16
au energy scale	3–10%	Fake- τ estimation	± 8.4
Jet energy scale	2–4%	2–4% <i>b</i> -tagging	
b tag efficiency	2-6%	Jets and $E_{\rm T}^{\rm miss}$	± 3.3
Background cross section	1-10%	Electron and muon	± 0.5
$Z/\gamma^* \rightarrow \ell \ell$ SF uncertainty	0.1-2.5%	Theoretical and Modeling Uncertainties	
Multijet normalization	5-30%	Тор	± 17
		Signal	± 9.3
Scale unc.	+4.3%/-6.0%	$Z \rightarrow \tau \tau$	± 6.8
Theory unc.	5.9%	SM Higgs	± 2.9
		Other backgrounds	± 0.3

6 September 2018 - HH2018

Summary and Conclusions

- Overall similar strategies about:
 - Objects reconstructions
 - Background estimation
- Two main exceptions:
 - 1. Reconstructions of the $\tau\tau$ pair mass:

two different algorithm (**SVfit** & **MMC**), but with the same "*philosophy*": combine visible *taus* and MET with information about the tau decay kinematics

2. Estimation of the multijet/fake- τ_h background:

Different "*philosophy*" behind the estimation methods Different treatment of the fake- τ_h contribution

Suggested improvements:

- ATLAS & CMS: Explicitly compare SVfit and MMC
- **CMS:** Explore the effect of jet—>fake- τ_h as function of (p_T, eta...) and from different background sources (*e.g.* tt)

Backup

CMS documentation

- 1. PLB paper link
- 2. <u>Auxiliary material</u>

ATLAS documentation

- 1. arXiv link
- 2. Auxiliary material

Systematic Uncertainties Comparison

CMS Systematic uncertainty Value Processes all but multijet, $Z/\gamma^* \rightarrow \ell \ell$ 2.5% Luminosity Lepton trigger and reconstruction all but multijet 2-6% τ energy scale all but multijet 3-10% let energy scale 2-4% all but multijet all but multijet b tag efficiency 2-6% Background cross section all but multijet, $Z/\gamma^* \rightarrow \ell \ell$ 1-10% $Z/\gamma^* \rightarrow \ell\ell$ SF uncertainty 0.1-2.5% $Z/\gamma^* \to \ell\ell$ Multijet normalization 5-30% multijet -Scale unc. +4.3%/-6.0%signals Theory unc. 5.9% signals

ATLAS

Source	Uncertainty (%)			
Total	± 54			
Data statistics	± 44			
Simulation statistics	± 16			
Experimental Uncertainties				
Luminosity	± 2.4			
Pileup reweighting	± 1.7			
$ au_{ m had}$	± 16			
Fake- τ estimation	± 8.4			
<i>b</i> -tagging	± 8.3			
Jets and $E_{\rm T}^{\rm miss}$	± 3.3			
Electron and muon	± 0.5			
Theoretical and Modeling Uncertainties				
Тор	± 17			
Signal	± 9.3			
$Z \to \tau \tau$	± 6.8			
SM Higgs	± 2.9			
Other backgrounds	± 0.3			