

Triggers for HH->bbττ

1824

Agni Bethani, University of Manchester On behalf of the ATLAS and CMS collaborations

Double Higgs production at colliders workshop 4-9 September 2018

for this final state.

In this talk emphasis on the τ_{had}

Lower efficiency than lepton and τ_{had} triggers

Triggers based on the tau decay final state

- single τ_{had}
- double τ_{had}
- single e/μ
- $e/\mu + \tau_{had}$
- double e or μ
- e+μ

Trigger system ATLAS

- Two-level trigger architecture.
- Level 1 trigger (L1)
 - 40 MHz → 100 kHz rate reduction
 - Fast electronics find regions of interest using calorimeter and muon data
 - L1Topo: Allows for topological selections between L1 trigger objects (e.g. ΔR) to keep L1 thresholds low
- High level trigger (HLT)
 - Fast offline-like algorithms
 - ~1 kHz output rate achieved

Agni Bethani, Triggers for bbtt

τ_{had} triggers ATLAS

- The τ-jet triggers identify and select events with hadronic decays of the τ leptons
- L1 uses the information about the energy deposits in the electromagnetic and hadronic calorimeter to identify L1 τ_{had}
- The L1 τ_{had} candidate is passed on to the next trigger level
- The HLT uses reconstructed tracks from the the inner detector to distinguish between QCD jets and a τ_{had}

Trigger system CMS

- Level 1 Trigger (L1) firmware based
 - 40 MHz ->100 kHz
 - L1 receives the information coming from the calorimeters and the muon chambers.
 - A decision is taken based on the presence of energy deposits compatible with physics objects such as photons, electrons, muons, jets or hadronically decaying tau leptons (shown on the right)
- software-based High Level Trigger (HLT)
 - reduces the rate to 1kHz
 - a streamlined version of the CMS offline reconstruction software

- L1 trigger objects use calorimeter information
- Next step consists of a track-based isolation applied on the τ_{had} candidates.
 - Pixel tracks are reconstructed and those coming from the same primary vertex as the τ_{had} candidate are selected.
- Last step uses the particleflow algorithm to build τ_{had} candidates
 - information from all major subdetectors.

τ_{had} triggers challenges

- Rate driven by L1 due to misidentification of jets (which have a very high rate)
- Only calorimeter information available at L1 identification (jet isolation and shape)
- ATLAS makes requirements on additional jets at L1 to reduce rate further.
- ATLAS uses tracking information provided in the HLT that allow for offline-like reconstruction and identification.
- CMS rely on track-based isolation to reduce the rate
- CMS applies Particle Flow reconstruction

$\tau_{had}\tau_{had}\,ATLAS$

- Single τ_{had} trigger : p_T>80 to
 p_T>160 GeV
 - lowest unprescaled single τ_{had} trigger
 - additional ID criteria
 - threshold depends on run
- Two τ_{had} trigger : p_T>25 GeV and p_T>35 GeV respectively
 - In 2016 instantaneous luminosity increased
 - additional requirement of a L1 jet p_T>25 GeV (L1_J25)
- In both cases τ_{had} candidates satisfy reconstruction criteria
- Only events that don't pass the single τ_{had} trigger are considered for the two τ_{had} trigger
- Leading jet p_T > 80 GeV for triggers requiring L1_J25 in order to stay on plateau

Offline cuts on τ_{had} :

for single τ_{had} trigger +20 GeV on online p_T cut. for two τ_{had} trigger +5GeV on online cut

$\tau_{had}\tau_{had}\,ATLAS$

2018 thresholds

- Single τ_{had} p_T>160 GeV
 - lowest unprescaled single τ_{had} trigger already since 2016
- Di-τ_{had} triggers: Previous thresholds can sustain the rate
- Studying several options
 - p_T>80 + p_T>60 GeV
 - p_T> 40 + p_T>35 GeV + L1J25 (requires p_T>80 GeV cut offline on lead jet pT)
 - p_T> 35 + p_T> 25 GeV + 2L1J12 (requires p_T>40-45 GeV cut offline on leading and subleading jet pT)

Agni Bethani, Triggers for bbtt

- Di-τ_{had} triggers only used in analysis
- $p_T > 35$ GeV for both τ_{had}
- Apply p_T> 45 GeV offline
- Efficiency of one "leg" of the τ_{had} shown

$\tau_{had}\tau_{had}\,CMS$

- 2018 thresholds
 - p_T>35 GeV+ isolation for both τ_{had}
 - $p_T > 40$ GeV+looser isolation for both τ_{had}
- Hadron Plus Strips (HPS) τ_{had} reconstruction algorithm
 - used for offline analysis
 - June 2018 τ_{had} trigger paths switched HPS reconstruction
 - The cone-based τ_{had} algorithm uses a signal cone ranging from $\Delta R = 0.08$ to 0.12 which contains all τ decay products

with the HPS the isolation can be even looser

 $\tau_{had}\tau_{had}$ CMS

- The HPS τ_{had}:
- Charged hadrons and photons within the signal cone combined
- Combinations ranked based on their consistency with a τ_{had} decay.
- The highest ranked combination is selected as the reconstructed τ_{had} candidate.

τ_{had} trigger rates

- L1 CMS: ~3 kHz
- HLT two τ_{had} trigger CMS: 2 x τ_{had} p_T>35 GeV rate:50 Hz (59Hz in 2018)
- L1 ATLAS: ~5 kHz
- HLT two τ_{had} trigger ATLAS: τ_{had} p_T>35 GeV and τ_{had} p_T>35 GeV rate: ~ 25 Hz

τ_{had} trigger rates

- L1 CMS: ~3 kHz
- HLT two τ_{had} trigger CMS: 2 x τ_{had} p_T>35 GeV rate:50 Hz (59Hz in 2018)
- L1 ATLAS: ~5 kHz
- HLT two τ_{had} trigger ATLAS: τ_{had} p_T>35 GeV and τ_{had} p_T>25 GeV rate: ~ 25 Hz

$\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{had}$ ATLAS

- Single lepton trigger: p_T>24-26 GeV
 - lowest unprescaled single lepton trigger
 - additional reconstruction requirements and isolation requirements
- Lepton+ τ_{had} trigger:
 - mu p_T>14 GeV
 - e p_T>17 GeV
 - τ_{had} p_T>25 GeV
 - additional L1_J25 from 2016 onwards
- The single lepton trigger and and the lepton + τ_{had} trigger are used in mutually exclusive regions, defined by offline p_T selection
- Leading jet p_T > 80 GeV when requiring L1_J25 in order to stay on plateau

Offline cuts on p_T :

for e and μ +1GeV over the online threshold

for τ_{had} +5 GeV over online threshold (30 GeV)

$\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{had}$ ATLAS

- 2018 thresholds single lepton trigger e and μ p_T>26GeV
 - lowest unprescaled single lepton triggers since 2016
- 2018 thresholds LTT unchanged
 - mu p_T>14 GeV
 - e p_T>17 GeV
 - τ_{had} p_T>25 GeV
- Lepton+ τ_{had} trigger: L1J25 requirement will (?) replaced with 2J12

$\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{had}$ CMS

- Single lepton trigger
- p_T >21 GeV for μ
- p_T >27 GeV for e
- additional isolation requirements

Offline cuts on $\mu p_T > 23 \text{ GeV}$ and e $p_T > 27 \text{GeV}$

$\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{had}$ CMS

- Single muon trigger 2018
 p_T>24 GeV +Isolation and
 p_T>50 GeV no Isolation
- in May 2018, the muon reconstruction at HLT was updated
 - more seeds for the muon track building ->efficiency
 - more iterative tracking is added to the muon tracking algorithm
 - simple ID on HLT muons
 - improvement in efficiency shown
- HPS for lepton+ τ_{had} triggers
- $\mu p_T > 20$ GeV and $\tau p_T > 27$ GeV
- Might replace single lepton triggers

$\tau_{\mu}\tau_{e}\text{,}\,\tau_{\mu}\tau_{\mu}$ and $\tau_{e}\tau_{e}$ ATLAS

- Plan to include this channel for end of run2
- single and di-lepton triggers
- Only events that fail single lepton trigger are considered for the di-lepton triggers (Similarly to τ_{had}τ_{had} channel)
- Dilepton triggers
 - 2 x e pt>17GeV
 - e p_T>17 GeV and μ p_T >14 GeV
 - 2 x μ p_T >14 GeV

$\tau_{\mu}\tau_{e}\text{,}\,\tau_{\mu}\tau_{\mu}$ and $\tau_{e}\tau_{e}$ CMS

- No plans for this search in CMS (that I know of ^(C))
- However other searches with similar final state
 A HH > W(W/bb
 - e.g. HH->WWbb
- Overlaps with bbττ?

- Example triggers:
 - e p_T>23 GeV and e p_T>12 GeV isolation requirements
 - 2 x e p_T>33 GeV and e p_T>12 GeV No isolation requirements

Summary

- Trigger systems and performance very similar in both experiments
- Improvements for 2018 in both channels
 - ATLAS: might not require J25 in tau triggers->80 GeV offline for leading jet
 - CMS: HPS algorithm for τ_{had} and improved muon ID
- Trigger thresholds similar
 - both experiments apply additional criteria in isolation and reconstruction
- HLT rate higher for CMS
- In HH->bbτ_{had}τ_{had}
 - ATLAS is using single τ_{had} and di- τ_{had} triggers
 - CMS using di- τ_{had}
- In HH->bbτ_{lep}τ_{had}
 - ATLAS is using single lepton and lepton plus τ_{had} triggers
 - CMS using single lepton triggers
- ATLAS to add HH-> $bb\tau_{lep}\tau_{lep}$ channel
 - single and di-lepton triggers
 - di-lepton triggers thresholds 14-17 GeV