Reconstruction of m_{нн} in HH→ττττ Events with SVFit

Christian Veelken

HH Workshop Fermilab, September 7th 2018

What is SVFit ?

Likelihood-based algorithm for reconstruction of the Higgs boson mass in $H \rightarrow \tau \tau$ events

Improves separation of $H \rightarrow \tau \tau$ signal from dominant irreducible $Z \rightarrow \tau \tau$ background

Algorithm improved sensitivity of CMS SM $H \rightarrow \tau \tau$ analysis by 40% (equivalent to doubling luminosity)

ATLAS has developed similar algorithm ("Missing Mass Calculator") Nucl. Instrum. Meth. A 654 (2011) 481

Christian Veelken

Reconstruction of m_{HH} in $HH\!\rightarrow\!\!\pi$ Events

Motivation

H→ττ signal buried underneath very large backgrounds!

Two ingredients needed to find $H \rightarrow \tau \tau$ signal:

- Powerful τ identification needed to suppress reducible multijet and W+jets backgrounds
- Good resolution on mass of ττ pair (m_H) needed to separate H→ττ signal from dominant irreducible Z→ττ background

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/crosssections2012_v5.pdf

Christian Veelken

The Task and its Solution

An H →ττ event

Reconstruction of m_H requires reconstruction of neutrinos produced in τ decays

Sum of neutrino momenta constrained by components E_x^{miss} and E_y^{miss} of reconstructed "missing transverse momentum"

SVFit algorithm based on likelihood approach, incorporates our knowledge on:

- τ decay kinematics
- Experimental resolution on E_x^{miss} and E_y^{miss}

Today's Presentation

Brief recap of τ decay properties

SVFit algorithm in CMS $H \rightarrow \tau \tau$ analysis

- Parametrization of τ decay kinematics in SVfit
- The likelihood approach
 - Treatment of leptonic τ decays
 - Treatment of hadronic τ decays
 - Treatment of E_T^{miss}
- Resolution on m_{H} achieved in CMS SM $H \rightarrow \tau \tau$ analysis

Extension of SVFit algorithm to $HH \rightarrow \tau \tau \tau \tau$ events

- Modifications to SVFit algorithm specific to $HH \rightarrow \tau \tau \tau \tau$
 - Higgs mass constraint
 - Choice of $\tau^+\tau^-$ pairs for Higgs mass constraint
- Expected resolution on m_{HH}

Brief Recap of τ Decay Properties

Tau Decays

Electrons (muons) from $\tau \rightarrow evv$ ($\tau \rightarrow \mu vv$) decays reconstructed by standard CMS electron (muon) reconstruction

Identification of hadronic τ decays in CMS \cong reconstruction of π^{\pm} , ρ^{\pm} , a_1^{\pm} signatures

For the purpose of this talk: hadronic τ decays treated as 2-body decay into a hadronic system τ_h and a τ -neutrino

Christian Veelken

Reconstruction of m_{HH} in $HH \rightarrow \pi \tau$ Events

SVFit Algorithm in CMS SM H→ττ Analysis

Kinematics of τ Decays

Hadronic (leptonic) τ decays parametrized by 2 (3) variables:

- θ_{inv} Φ_{inv} Decay angles in τ restframe
- $m_{\nu\nu}$ (leptonic τ decays only)

N.B.: Momenta of neutrinos in laboratory frame are fully constrained by these variables

 \rightarrow 4 unknown variables in $\tau\tau \rightarrow \tau_{h}\tau_{h}$, 5 in $\tau\tau \rightarrow \ell\tau_{\rm h}$, 6 in $\tau \tau \rightarrow \ell \ell$ events

Unknown variables constrained by 2 observables:

• $\Sigma p_x^{\nu} = E_x^{miss}$ Reconstructed in laboratory frame • $\Sigma p_v^{\nu} = E_v^{miss}$ with experimental resolution of O(10) GeV at the LHC

Problem of reconstructing m_{H} is underconstrained \rightarrow

The Likelihood Approach

m_H reconstructed by finding maximum of:

$$\frac{dL(M_{\tau\tau})}{dM_{\tau\tau}} = \int_{\Omega} \frac{df(\mathbf{x}_u | \mathbf{x}_m)}{d\mathbf{x}_u} \delta(M_{\tau\tau} - M_{\tau\tau}(\mathbf{x}_u, \mathbf{x}_m)) d\mathbf{x}_u$$

for a series of test mass hypotheses $M^{}_{\tau\tau}$

- x_u : unknown variables θ_{inv} , ϕ_{inv} , m_{vv}
- x_m : measured observables E_x^{miss} and E_v^{miss} , momenta of visible τ decay products

Integral over likelihood function corresponds to taking an "average" over all possible kinematic confugurations x_u , weighted by their consistency with the observables x_m measured in the detector

Integral is computed numerically.

2 methods implemented in SVFit:

- Adaptive integration (VEGAS, part of GNU scientific library)
- Markov chain (custom implementation in SVfit)

Treatment of leptonic τ Decays

Matrix element for $\tau \rightarrow \ell vv$:

$$\frac{d\Gamma}{dx \ dm_{\nu\nu}} \sim \frac{m_{\nu\nu}}{4m_{\tau}^2} [(m_{\tau}^2 + 2m_{\nu\nu}^2)(m_{\tau}^2 - m_{\nu\nu}^2)]$$
(with assumption that τ is unpolarized

Physical region: $0 \le x \le 1$, $0 \le m_{vv} \le \sqrt{1-x}$

Implementation of likelihood for $\tau \rightarrow \ell vv$ decays validated by implementing ME in toy MC and comparing to τ decay library TAUOLA:

→ toy MC agrees well with TAUOLA

Nucl. Instrum. Meth. A 862 (2017) 54

NB.: Charged leptons produced in $\tau \rightarrow lvv$ decays tend to have low p_{τ}

Reconstruction of m_{HH} in HH $\rightarrow \tau \tau$ Events

Treatment of hadronic τ Decays

Phase-space for 2-body decay:

$$\frac{d\Gamma}{dx} = \frac{1}{1 - \frac{m_{vis}^2}{m_{\tau}^2}}$$

Physical region: $\frac{m_{vis}}{m_{\tau}} \le x \le 1$

Implemented 2-body phase-space model for $\tau \rightarrow \tau_h v$ decays in toy MC and compared to TAUOLA

 Simple 2-body phase-space model represents good approximation to sum of all hadronic τ decay modes

NB.: Hadronic system produced in $\tau \rightarrow \tau_h v$ decays tend to have high p_{τ}

Treatment of E_T^{miss}

Momentum sum of neutrinos produced in τ decays required to be equal to components E_x^{miss} and E_v^{miss} of reconstructed "missing transverse momentum"

Experimental resolution on E_x^{miss} and E_y^{miss} modelled by two-dimensional normal distribution

$$L(\vec{E}_T^{miss}|\sum_{i} \vec{p}_T^{\nu i}) = \frac{1}{\sqrt{2\pi|\mathbf{V}|}} e^{\frac{1}{2}(\vec{E}_T^{miss} - \sum_{i} \vec{p}_T^{\nu i})^T \mathbf{V}^{-1}(\vec{E}_T^{miss} - \sum_{i} \vec{p}_T^{\nu i})}$$

$$\tau\text{-neutrino momentum } \mathbf{p}_{\mathsf{T}}^{\nu} = \mathbf{p}_{\mathsf{T}}^{\nu}(\theta, \phi, \mathsf{m}_{vv})$$

Covariance matrix V represents E_T^{miss} resolution expected for a given event. It is computed event-by-event by summing resolutions, obtained by MC simulation, for individual particles (e, γ , μ , τ_h , and jets) reconstructed in the event by the CMS particle-flow algorithm.

CMS SM H→ττ Analysis (Run 1)

 $\mu \tau_{\rm h}$

eμ

μμ

ee

Reconstruction of m_{HH} in HH $\rightarrow \pi$ Events

Performance in CMS SM H→ττ Analysis

All decay channel added, events in different decay channels and categories weighted by S/(S+B)

Reconstruction of m_{HH} in HH ${\rightarrow}\pi$ Events

Extension of SVfit Algorithm to H→ττττ Events

Modified SVFit Algorithm for HH→ττττ

$$\frac{dL(M_{\tau\tau})}{dM_{\tau\tau}} = \int_{\Omega} \frac{df(\mathbf{x}_u | \mathbf{x}_m)}{d\mathbf{x}_u} \delta(M_{\tau\tau} - M_{\tau\tau}(\mathbf{x}_u, \mathbf{x}_m)) d\mathbf{x}_u$$

- 1) Integration over x_u extended by integration over unknown variables θ_{inv} , ϕ_{inv} , m_{vv} for 3rd and 4th τ lepton
- 2) Mass constraints added (by adding suitable δ -functions to integrand), which enforce that mass of each $\tau^+\tau^-$ pair is equal to m_H=125 GeV
 - → Used to search for unknown resonances X decaying to pairs of SM Higgs bosons, each subsequently decaying to $\tau^+\tau^-$

NB.: Charge of τ lepton equals charge of its visible decay products (e, μ , or τ_h)

3) Two-fold ambiguity for building $\tau^+\tau^-$ pairs in HH $\rightarrow \tau\tau\tau\tau$ events resolved by choosing pair that yields maximal $\frac{dL(M_{\tau\tau})}{dM_{\tau\tau}}$ (for any M_{$\tau\tau$})

Christian Veelken

Expected Resolution on m_{HH} Private work

Mass resolution studied on generator level, using simulated $X \rightarrow HH \rightarrow \tau \tau \tau \tau$ events with resonances X of different mass m_x = 300, 500, and 800 GeV.

Experimental resolution on energy of τ_h taken from Nucl. Instrum. Meth. A 862 (2017) 54 Resolution on E_x^{miss} and E_v^{miss} assumed to be 10 GeV

Algorithm achieves resolution of 4% if correct pairing is chosen. Unfortunately, algorithm chooses wrong pairing for 13% of signal events, which degrades resolution to 22%

Christian Veelken

Reconstruction of m_{HH} in HH $\rightarrow \tau \tau$ Events

Expected Resolution on m_{HH} Private work

Reconstruction of m_{HH} in $HH \rightarrow \tau\tau$ Events

Summary

- SVFit algorithm used for reconstructing m_H in H→ττ events has been extended to reconstruct m_{HH} in HH→ττττ events
- Algorithm achieves resolution on $m_{\rm HH}$ of 7-22% relative to true mass of H boson pair
- Resolution for H boson pairs of low mass limited by fact that algorithm chooses wrong pairing of τ leptons in 13% of signal events
 - ➔ Room for improvement: In case correct pairing is chosen for all events, resolution improves to 4-8%
- I expect that this algorithm will be useful for improving sensitivity of HH→ττττ channel at the LHC

Performance in CMS SM $H \rightarrow \tau \tau$ Analysis

CMS, 19.7 fb⁻¹ at 8 TeV

 $\mu \tau_h$ decay channel:

Christian Veelken

Reconstruction of m_{HH} in $HH \rightarrow \pi$ Events

Performance in CMS SM $H \rightarrow \tau \tau$ Analysis

 $e\tau_h$ decay channel:

Christian Veelken

Reconstruction of m_{HH} in HH $\rightarrow \tau \tau$ Events

Performance in CMS SM H→ττ Analysis

Phys. Lett. B 779 (2018) 283

eµ decay channel:

Reconstruction of m_{HH} in $HH \rightarrow \pi$ Events

Performance in CMS SM $H \rightarrow \tau \tau$ Analysis

Phys. Lett. B 779 (2018) 283

$\tau_h \tau_h$ decay channel:

