Double Higgs Production at Colliders Workshop

HH→WW*WW* Analysis with the ATLAS Detector

Liang Li Shanghai Jiao Tong University On Behalf of ATLAS Collaborations

Outline

Standard Model

- Motivation
- Common Strategy
- Individual Analyses
- Systematics
- Results
- Summary & Outlook

New Interaction

New Resonance

Motivation

Pioneer additional decay channels in search of HH Explore BSM Higgs-like model searches

- First di-higgs search with WW*WW* channel
 - Non-resonant and resonant di-higgs production search
 - m_x scan: 260-500 GeV
- First search for X→SS model, S decays only to SM particles
 - m_x scan: 280-340 GeV (270 GeV < m_x < 2m_t, 4W dominates)
 - m_s scan: 135-165 GeV (135 GeV < m_s < m_x/2, on-shell decay)

Common Analysis Strategy

Relatively high decay branching ratio, however dominated by QCD backgrounds, use leptons to get cleaner signature

- 2015+2016 full data: 36 fb⁻¹
- Cut and count analysis
- Separated by three analysis channels defined by number of leptons
 - Two (same sign) leptons
 - ee, eμ, μμ, missing energy, at least two jets, b-jet veto
 - Three leptons
 - Total charge ±1, missing energy, at least two jets, b-jet veto
 - Four leptons
 - Total charge 0, b-jet veto
- Optimized selections based on S/ \sqrt{B} for each mass point
- b-jet veto to reject top quark backgrounds and stay orthogonal to most other decay channels
- Combined analysis with three individual channels

Two (Same Sign) Lepton Channel

Selection

- Two same sign leptons
 - Tight criteria, $p_{T1} > 30 \text{GeV}$, $p_{T2} > 20 \text{GeV}$
 - E_T^{miss} > 10 GeV
- Z mass veto, b-jet veto
- Three flavour channels
 - ee, eµ, µµ
- Two N_{jet} regions to improve sensitivity
 - N_{jet} >= 2 for m_X < 300 GeV
 - $N_{jet} \ge 3$ for $m_{\chi} \ge 300$ GeV and non-resonant HH search
- Rank and select four variables for further optimization
 - Invariant masses of leptons, leptons and two nearest jets, all objects
 - Angular distance between lepton and nearest jet
 - Optimize S/√B for each mass point and category by scanning selected variables with various cuts (TMVA CutsSA option):
 - ~ 1:60 (non resonant search)

Two (Same Sign) Lepton Channel

- Backgrounds dominated by prompt lepton backgrounds and fake lepton backgrounds
 - Prompt lepton backgrounds: WZ, ZZ, tV, ttV/H and VVV
 - Fake lepton backgrounds: W+jets, tt, Vγ
- Background modeling
 - Prompt lepton and Vγ backgrounds modelled by MC
 - Fake lepton and charge mis-charge ID backgrounds modelled by data driven fake factor method

Three Lepton Channel

Selection

- Three leptons
 - Tight criteria, total charge ± 1 , $p_{T1} > 10GeV$, $p_{T2,3} > 20GeV$
 - Lepton 1 has opposite sign (OS), lepton 2 and 3 have same sign
 - E_T^{miss} > 30 GeV
- Z mass veto, b-jet veto
- Six flavour channels split into two categories
 - 0SFOS (same flavor opposite sign pair): e eµ, μ eµ
 - 1/2SFOS: eee, μμμ, e μμ, μ ee
- Rank and select four variables for further optimization
 - Invariant masses of three leptons, lepton and two nearest jets, all leptons and two leading jets
 - Angular distance between two leptons
 - Optimize S/√B for each mass point and category by scanning selected variables with various cuts (TMVA CutsSA option): ~1:50 (non resonant search)

Three Lepton Channel

- Backgrounds dominated by prompt lepton backgrounds and fake lepton backgrounds
 - Prompt lepton backgrounds: WZ, ZZ, tV, ttV/H and VVV
 - Fake lepton backgrounds: Z+jets, tt, Vγ
- Background modeling
 - Prompt lepton and Vγ backgrounds modelled by MC
 - Fake lepton backgrounds modelled by data driven fake factor method

Four Lepton Channel

Selection

- Four leptons
 - Medium criteria, total charge 0, p_T > 10GeV
- b-jet veto
- Minimum dilepton mass to reject fakes
- Six flavour channels split into two categories
 - 0/1SFOS: eµ eµ, ee eµ, µµ eµ
 - 2SFOS: ee ee, µµ µµ, ee µµ
 - Best S/√B for 0/1SFOS channel: 1:150 (non resonant search)
 - 2SFOS dominated by ZZ backgrounds
- Two M₄₁ regions to improve sensitivity
 - M_{4I} < 180 GeV
 - M_{4I} > 180 GeV
 - Z mass veto, lepton pair angular separation veto

Four Lepton Channel

- Backgrounds dominated by qq/gg→ZZ backgrounds and fake lepton backgrounds
 - Fake lepton backgrounds: WZ, Z+jets, tV, tt, ttW
 - More sensitive in low mass searches
- Background modeling
 - ZZ, ttZ, VVV backgrounds modelled by MC
 - All other backgrounds modelled by data driven fake factor method

Systematics

Systematical uncertainties

- Dominating effects come from JER/JES and fake lepton background estimation
 - Background uncertainty includes prompt lepton, fake lepton, mischarge ID backgrounds estimation
- Theoretical uncertainty includes signal/backgrounds cross sections, PDF, QCD scale and parton shower modelling
- Other small uncertainties include lepton measurements, pile-up modelling, b-tagging, E_T^{miss} modelling
- Luminosity uncertainty
- Statistical uncertainty and systematical uncertainty have similar overall impacts
- Room for improvement, e.g. fake estimation

Results for non-resonant HH searches

No significant excess is observed above the SM background expectation

- Analysis separated into 3 channels and further split into 9 categories
- Cut and count analysis for each category and calculate upper limit at 95% confidence level
- Combined observed (expected) limits on non-resonant HH cross section is 5.3 (3.7 ^{+1.6}_{-1.0}) pb, ~ 160 (110 ⁺⁵⁰₋₃₁) X SM cross section.

Results for Resonant HH searches

- Set upper limits on resonant HH production cross section times branching ratio of 4W final state
 - Observed (expected) limits range from 8.5 (9.5) pb to 2.6 (2.5) pb
 - Best limit set for m_x = 500 GeV

Results for X→ SS searches

- Set upper limits on X→ SS production cross section times branching ratio of 4W final state
 - Observed (expected) limits range from 2.4 (2.4) pb to 0.16 (0.17) pb
 - Best limit set for m_x = 340 GeV and m_s = 165 GeV

Summary and Outlook

First di-higgs production search done in WW*WW* channel

- No significant excess is observed above the backgrounds
- SM non-resonant HH and BSM resonant HH searches performed
 - Non-resonant HH: ~160 (110 ⁺⁵⁰₋₃₁) X SM cross section
 - Resonant HH: 8.5 (9.5) pb to 2.6 (2.5) pb
- Also first X→SS model search: 2.4 (2.4) pb to 0.16 (0.17) pb
- Set upper limits on non-resonant HH cross section, and also production cross section times branching ratio of 4W final state for resonant HH and X→SS searches

2015+2016 full data with 36 fb⁻¹ analyzed

Expect to include full Run2 data in the future

Possible improvements

- (Boosted) one lepton channel interesting: manpower needed
- Re-optimize analysis using MVA method, add more variables/selections to suppress/discriminate backgrounds
- Consider low mass region $m_{\chi} < 280$ and $m_{s} > m_{\chi}/2$ (off shell decays)