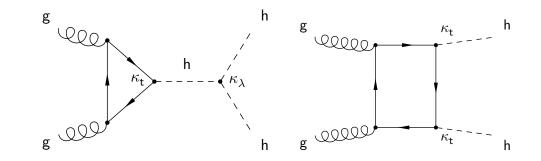


Search For Double Higgs Production in $bb\ell v\ell v$ Final State

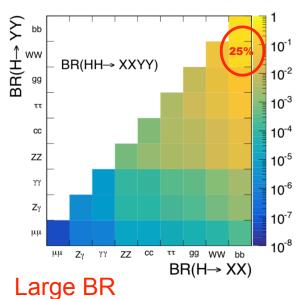
Tao Huang, on behalf of CMS Collaboration


Texas A&M University

September 6th, 2018 @ LHC Double Higgs Workshop, Fermilab

Di-Higgs Production at LHC

SM Production (non-resonant)


- Standard Model(SM) context: two main diagrams
 - → Higgs self coupling $\kappa_{\lambda} = \lambda / \lambda_{SM}$
 - Top Yukawa $\kappa_t = y_t / y_{SM}$
- Constraints on SM Higgs self-coupling
- Destructive interface: ~34fb@13TeV

g

Х

H -> bl

But huge ttbar background

T. Huang

Resonant Production

- Beyond SM models:
 - Radion(spin=0), Graviton(spin=2) for warped extra dimensions
 - ➡Heavy Higgs in singlet extended SM
 - ➡2HDM…
- Focus on Radion and Graviton model with narrow width

Covered papers: <u>JHEP01(2018)054</u>, <u>FTR-15-002-pas</u>, <u>FTR-16-002-pas</u>, <u>Phys. Rev. D 96, 035007</u>

Analysis Strategy

- Dataset: CMS 2016 data, 35.9 fb⁻¹, dilepton trigger
- Signal signatures: $HH \rightarrow b\bar{b}WW^* \rightarrow b\bar{b}lvlvl$
- SM Backgrounds
 - Leading irreducible: ttbar
 - Subheading: Drell-Yan
 - ➡ Others: single top ..
- Baseline selections
 - 2 opposite sign isolated leptons
 - 2 jets passing medium working point of MVA based b-tagging
 - → Zmass $M_{\ell\ell}$ > 15 GeV to remove Z resonance and tail
- \bigcirc Data-driven method estimation for Drell-Yan process in ee and $\mu\mu$ channel
 - Drive 2 b-tags from untagged sample to avoid poor MC statistics
- Parametric deep neutral network (DNN): train signal bench marks only once
 - One for non-resonant search and one for resonant search
- Fit template: DNN output vs Mjj

b

р

н

V

MET

W*


W

Parametric Deep Neutral Network(DNN)

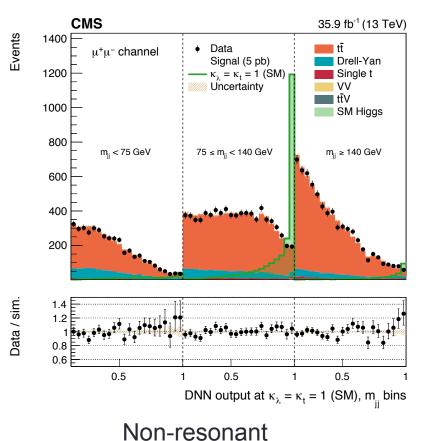
- Two trainings : non-resonant and resonant
 - ➡ In each case, train the all signal bench marks once

• DNN training inputs

- → Kinematics: $\mathbf{m}_{ll}, \Delta R_{ll}, \Delta R_{jj}, \Delta \phi_{ll}, p_T^{ll}, p_T^{jj}, \min \Delta R_{l,j}, \mathbf{MT}$
- Lepton flavors: same flavor or not (1 or 0)
- ➡ Non-resonant: 32 combinations of $\kappa_{\lambda}, \kappa_t$
- ➡ Resonant: m_X = 260, 270, 300, 350,400, 450,500,550, 600, 650, 750, 800, 900 GeV
- Benefits from parametric DNN
 - Similar performance to the model with dedicated training on each bench mark
 - Reliable to interpolate between different signal bench marks

T. Huang

CMS overview: diHiggs production in $bb\ell v\ell v$

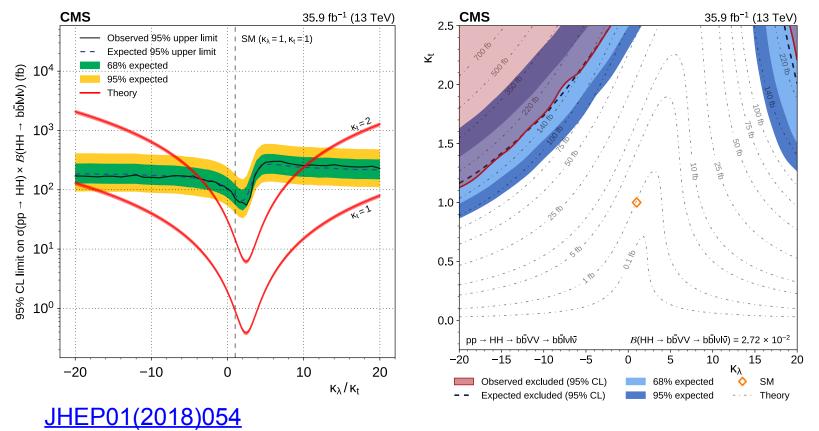

Eur. Phys. J. C (2016) 76: 235

Parametric input

Final Discriminants: DNN output vs Mjj

Events

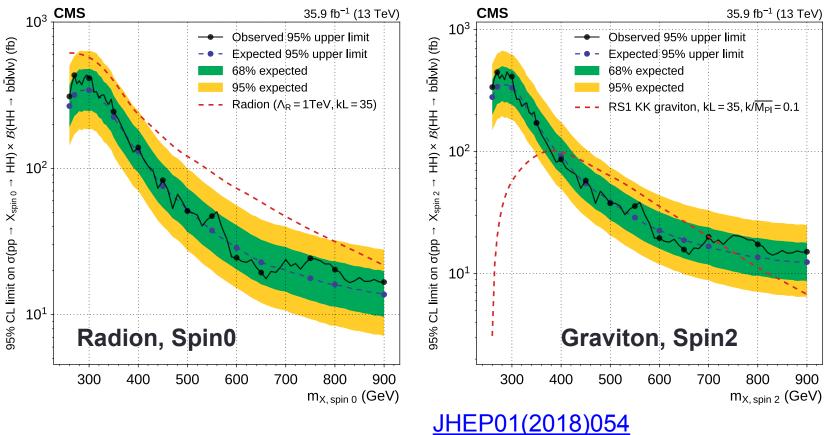
Data / sim.



CMS 35.9 fb⁻¹ (13 TeV) 1000 Data tī μ⁺μ⁻ channel Signal (5 pb) Drell-Yan $m_v = 400 \text{ GeV}$ Single t 800 Uncertaintv VV ttV SM Higas 600 m_{ii} ≥ 140 GeV m,, < 75 GeV 75 ≤ m_{ii} < 140 GeV 400 200 1.4 1.2 0.8 0.6 0.5 05 05 1 DNN output at m = 400 GeV, m bins Resonant

JHEP01(2018)054

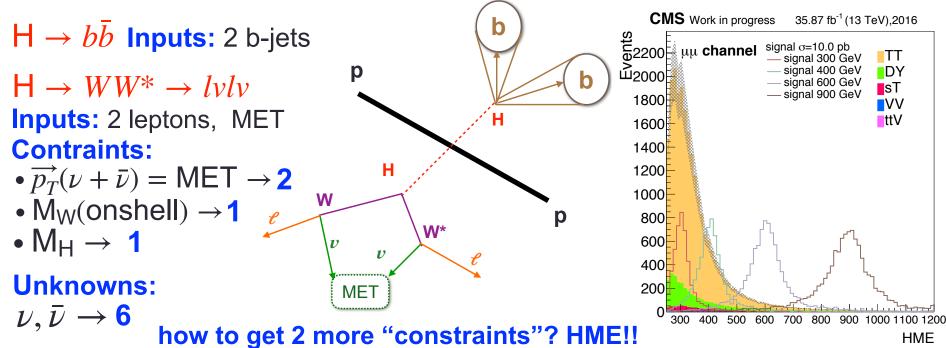
- X-axis: DNN output in 3 macro Mjj bins
- GOOD agreement between data and MC
 - ➡ |Data/MC-1| < 4%, within uncertainty</p>
 - ➡ Uncertainties are post-fit


Non-resonant: Contraints on SM HH Production

- With SM HH hypothesis, 2016 CMS data excludes σxBr(HH->bblvlv) above 72fb at 95% confidence level
 - → 95% C.L. upper limit on signal strength σ/σ_{SM} : Observed = 79 and Expected = 89^{+46}_{-28}
 - Stringent limits could be expected by combing other channels

T. Huang

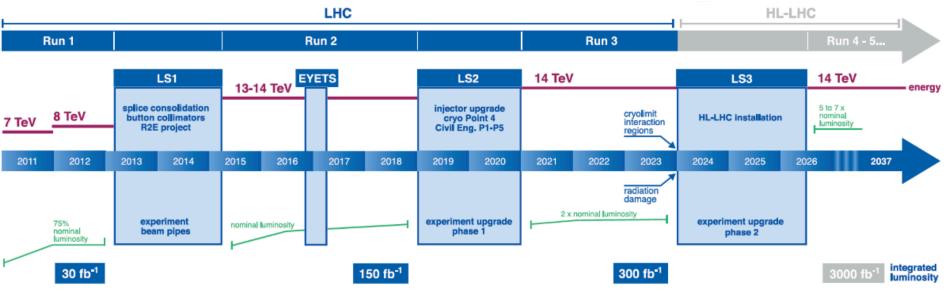
Resonant: Constraints on BSM


- In low mass region, large ttbar background limits the exclusion power of this channel
- No deviation from SM prediction

T. Huang

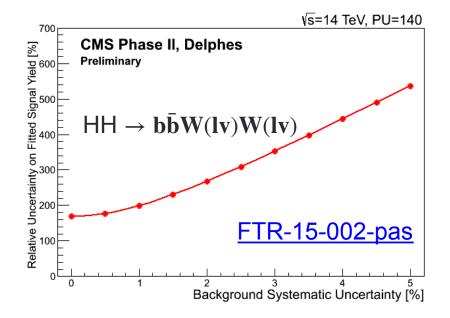
rightarrow Observed limits agreed with expected limits within 1σ

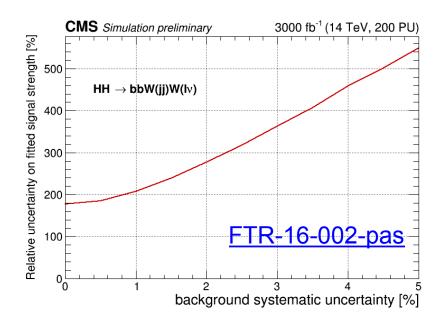
New Development: Heavy Mass Estimator


In our phenomenological study on bbWW*(IvIv) with Delphes, heavy mass estimator (HME) was developed to reconstruct the heavy resonance mass with two neutrinos in final state
Phys. Rev. D 96, 035007

- 1. Randomly generate η and φ of one neutrino, 10k trials
- 2. Generations in kinematic allowed region gives analytic solutions
- 3. With 2 b-jets, each solution gives one estimator of heavy resonance mass
- 4. Select the most probable estimator as final estimator for this event

Application of HME technique to CMS analysis under study


T. Huang

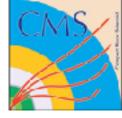

HL-LHC Upgrade and Projection

- HL-LHC
 - → Higher collision energy: 14TeV. $\sigma_{\text{HH, SM}}$ increased to ~40fb
 - ➡ Higher instantaneous luminosity: 5-7.5 x 10³⁴ cm⁻²s⁻¹. <PU>=140-200
 - ➡ More data: ~3000 fb⁻¹ at end of HL-LHC
- CMS upgrade plans: <u>Phase-II UpgradeTP</u>
 - ➡ Detectors and electronics: new silicon tracker, new GEM detectors ...
 - ➡ L1 Trigger: adding track-trigger and rate @ 750k...
- Delphes parameterized with extrapolated CMS condition to model phase-2 CMS detector

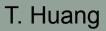
HH To bbWW* in HL-LHC: non-resonant

- Signal: SM diHiggs with σ =40fb
- Main background: ttbar
- Event selections:
 - ➡ 2 b-tagged jets
 - 2 opposite sign lepton
 - Neural network (NN) discriminator
- Final results: #Signal=37.1; #Background =3875
- More sophisticated analysis of this channel in HL-LHC is being explored for YellowReport

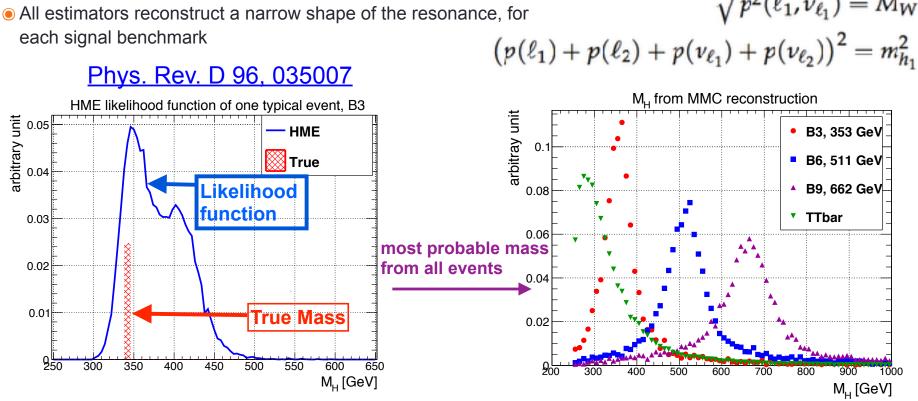
- Signal: SM diHiggs with σ =40fb, 10% systematics uncertainty
- Main background: ttbar
- Event selections:
 - ➡ 2 b-tagged jets out of >= 4 jets
 - Exact one lepton
 - ➡ Missing ET >= 20 GeV
 - Boosted decision tree discriminator
- Final results: #Signal=68.1; #Background =8698
 - With 5% background uncertainty, 95% upper limit on signal strength is ~10


Further improvement can be expected from precision timing detector in Phase-2 upgrade, which improves b-tagging efficiency by >10% while controls the mistagging rate at current level

T. Huang

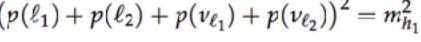

Summary

- Resonant and non-resonant analysis with 2016 data collected by CMS were published. No significant deviation from SM predication
 - → Non-resonant : Observed (expected) signal strength $\sigma/\sigma_{SM} = 79 (89^{+46}_{-28})$
 - Resonant: limits on Radion(spin-0) and Graviton(spin-2) with m_x in [260, 900] GeV
- Sensitivities of dilepton and single lepton channel in bbWW* in non-resonant production are projected to HL-LHC, which showed promising results
- Prospects for the future
 - Extend the search to 2017 and 2018 data
 - Evaluate the heavy mass estimator technique to improve sensitivity
 - Possibly investigate the HH production also in bbjjlv final state



Backup

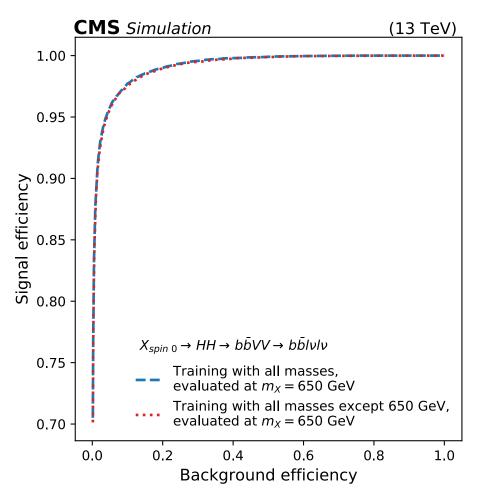
HME contribution To H(bb)H(WW)


Heavy Mass Estimator

Onstruct the likelihood function of each event via the random generations of η and ϕ of one neutrino

• The most probable mass in likelihood function is taken as the estimator of heavy resonance in each event

 $E_{T_x} = p_x(v_{\ell_1}) + p_x(v_{\ell_2})$ $E_{Ty} = p_y(v_{\ell_1}) + p_y(v_{\ell_2})$ $\sqrt{p^2(\ell_1,\nu_{\ell_1})} = M_W$



Likelihood for single event

Reconstructed mass shape for signal and ttbar

T. Huang

Parametric DNN

 Parametric DNN gives similar performance w/wo including Mx=650 in training

T. Huang

CMS overview: diHiggs production in $bb\ell v\ell v$

JHEP01(2018)054

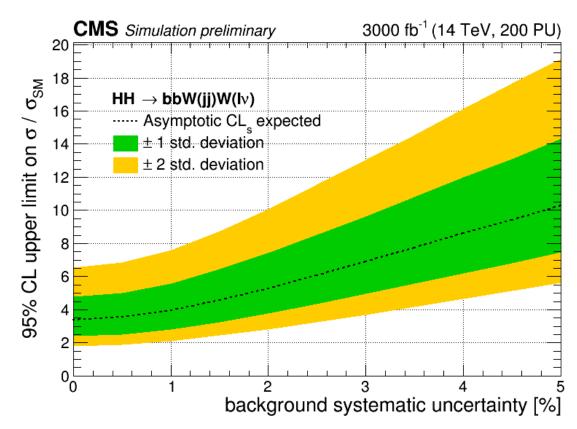
Systematics

Source	Background yield variation	Signal yield variation		
Electron identification and isolation	2.0–3.2%	1.9–2.9%		
Jet b tagging (heavy-flavour jets)	2.5%	2.5-2.7%		
Integrated luminosity	2.5%	2.5%		
Trigger efficiency	0.5 - 1.4%	0.4 - 1.4%		
Pileup	0.3 - 1.4%	0.3–1.5%		
Muon identification	0.4-0.8%	0.4–0.7%		
PDFs	0.6–0.7%	1.0 - 1.4%		
Jet b tagging (light-flavour jets)	0.3%	0.3-0.4%		
Muon isolation	0.2–0.3%	0.1–0.2%		
Jet energy scale	< 0.1 - 0.3%	0.7-1.0%		
Jet energy resolution	0.1%	<0.1%		
Affecting only $t\bar{t}$ (85.1–95.7% of the total bkg.)				

	Affecting only it (65.1–95.7 % of the total bkg.)	
$\mu_{ m R}$ and $\mu_{ m F}$ scales	12.8–12.9%	
tt cross section	5.2%	
Simulated sample siz	ee <0.1%	

JHEP01(2018)054

Affecting only DY in $\mathrm{e}^\pm\mu^\mp$	channel (0.9% of the total bkg.)
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	24.6-24.7%
Simulated sample size	7.7–11.6%
DY cross section	4.9%


Affecting only DY estimate from data in same-flavour events (7.1–10.7% of the total bkg.)Simulated sample size18.8–19.0%Normalisation5.0%

Affecting only single top quark (2.5–2.9% of the total bkg.)				
Single t cross section	7.0%			
Simulated sample size	$<\!0.1 ext{}1.0\%$			
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	$<\!0.1–\!0.2\%$			
Affecting only signal	SM signal	$m_{\rm X} = 400 {\rm GeV}$		
$\mu_{ m R}$ and $\mu_{ m F}$ scales	24.2%	4.6 - 4.7%		
Simulated sample size	<0.1%	<0.1%		

T. Huang

Semi-lepton in bbWW* in HL-LHC

FTR-16-002-pas

T. Huang