Search for resonant di-Higgs production with bbZZ decays

Apichart Hortiangtham, on behalf of CMS Collaboration

Northeastern University

apichart.hortiangtham@cern.ch

September 6, 2018

Double Higgs Production at Colliders Workshop, Fermilab

Resonant HH production in bbZZ decay channel

- $X \rightarrow HH \rightarrow bbZZ$.
- Currently looking at narrow width Radion (spin-0)
 [PhysRevD.62.045015] and Graviton (spin-2) [PhysRevLett.84.2080]
 models.
- Various final states can be considered (II = $\mu\mu$, ee):
 - bbZ(II)Z(νν)
 - ▶ bbZ(II)Z(qq)
 - ▶ bbZ(II)Z(II)
- Analyses being reviewed, no public results available.

$HH \rightarrow bb2l2\nu$: Signature and Backgrounds

- 2 b jets from $H\rightarrow$ bb, 2 leptons from Z, and MET from the other Z.
- HH \rightarrow bbWW \rightarrow bb2l2 ν also enters selections but orthogonality to bbWW analysis is maintained by the requirement that $M_{II} > 76$ GeV.

The main backgrounds in this channel are:

- $t\bar{t}$ + jets
- DY+ jets
- ullet $tar{t}$ is the most dominant one while DY is more signal-like background.

Other backgrounds are:

- single top quark productions
- diboson+jets
- ZH production

$HH \rightarrow bb2l2\nu$: Analysis Strategy

- Combine $\mu\mu$ and ee channels
- Baseline selections
 - 2 opposite sign leptons
 - a pair of b-jets with the highest MVA based b-tagging discriminant value and passing loose working point.
 - $90 < M_{bb}^H < 150 \text{ GeV}$
 - ▶ $76 < M_{II} < 106$ GeV (leptonic Z on-shell)
 - ▶ $M_T^{HH} > 100 \text{ GeV}$
 - ▶ MET cuts which vary with M_X , orthogonal with bb2l2q analysis
- DY and TT SFs, simultaneously fit of SR and CRs (defined by M_{ll}^Z and M_{bb}^H)
 - other minor backgrounds taken directly from MC
- BDTs are trained on bbZZ signal vs DY&TT events
 - ▶ 2 BDTs are used: low ($M_X \le 450$ GeV) and high mass regions
 - ▶ 9 variables are used: $M_{||}^{Z}$, M_{bb}^{ZZ} , M_{bb}^{H} , $\Delta R_{||}$, ΔR_{bb}^{H} , $p_{T}^{H_{bb}}$, $p_{T}^{Z_{||}}$, p_{T}^{ZZ} , E_{T}^{miss}
 - \blacktriangleright BDT cuts are optimized for each mass hypothesis and each channel (ee/ $\mu\mu$) separately
- M_T^{HH} distribution is used in the fits to extract limits (binned shape analysis)

$HH \rightarrow bb2l2\nu$: BDT Discriminant and M_T^{HH}

Figure: Output distribution for the BDT trained for low M_X mass in the electron channel (left) where the signal is KK-graviton, and the M_T^{HH} distribution (right).

5 / 15

$HH \rightarrow bb2l2q$: Signature and Backgrounds

• 2 b jets from $H\rightarrow bb$, 2 leptons from Z, and 2 jets from the other Z.

The main backgrounds in this channel are:

- $t\bar{t}$ + jets
- DY+ jets
- ullet DY is the larger background, but $tar{t}$ is closer kinematically to signal.

Other backgrounds are:

- W+jets
- single top quark productions
- diboson+jets
- SM Higgs production
- QCD multijet production

$HH \rightarrow bb2l2q$: Analysis Strategy

- Combine $\mu\mu$ and ee channels
- Assign 4 jets as H(bb) and Z(jj) using b-tag and kinematic information (see backup slide).
- Baseline selections
 - ▶ 2 opposite sign leptons, $M_{\parallel} > 12$ GeV
 - ▶ 4 jets assigned to H(bb) and Z(jj), at least 1 loose btag jet among the 4 H/Z jets
- Background estimation
 - normalize major backgrounds (DY, tt) to data in control regions
 - QCD multijets background from data driven approach
 - other minor backgrounds taken directly from MC
- Signal extraction
 - ▶ at least 1 medium btag jet among the 4 H/Z jets
 - ▶ MET cuts which vary with M_X , orthogonal with bb2l2 ν analysis
 - train BDT discriminant for each signal mass point
- BDT distributions are used in the fits to extract limits (binned shape analysis)

$HH \rightarrow bb2l2q$: BDT Training

- Construct BDT for each of the resonance mass hypotheses.
- Trained with 25 variables:

$$\blacktriangleright \ M_{II}^Z, \ M_{bb}^H, \ M_{jj}^Z, \ \Delta\phi_{I1,p_T^{miss}}$$

$$p_T^{b1}, p_T^{l1}, p_T^{l2}, p_T^{Z_{ll}}, p_T^{H_{bb}}$$

- $|\cos(\theta_{CS}^*)|, |\cos(\theta_{b,Hbb}^*)|, \text{ and } |\cos(\theta_{ZII,Hzz}^*)|$

Samples used for training:

 Signal and background samples described earlier, QCD multijet is negligible

$HH \rightarrow bb2l2q$: BDT Discriminant and M_{HH}

Figure: Output distribution for the BDT trained at $M_X = 650$ GeV in the muon channel (left) where the signal is Radion, and the M_{HH} distribution (right).

$HH \rightarrow bb4l$

- Signature: 2 b jets from H→bb, 4 leptons from ZZ.
- Combine 4μ , 4e, and 2μ 2e channels
- Backgrounds: ZZ and ggH
 - others: ttZ, SM Higgs production, ...
- Baseline selections
 - ▶ 4 leptons, $|M_{4I} M_H| \le 10$
 - ▶ 2 jets with the highest MVA based b-tagging discriminant value and at least 1 jet passing medium working point.
- Bayesian Neural Network for signal extraction.

Summary

- ullet Review of ongoing efforts for HH ightarrow bbZZ including
 - ightharpoonup HH ightharpoonup bb2l2 ν
 - ► HH → bb2l2q
 - ► HH → bb4l
- The works are being carried out both on RunII data and for the HL-LHC projections.

Backup

$HH \rightarrow bb2l2q$: H(bb) and Z(jj) Jets Assignment H(bb):

- Find the 2 highest CMVA score jets passing loose WP.
 - ▶ If 2 jets are found, done.
 - ▶ If only 1 jet is found, find another jet (without b-score requirement) which give closest invariant mass to M(j1+j2)=125 GeV.
- If not found, pick 2 jets which give closest invariant mass to M(j1+j2)=125 GeV.

Z(jj):

 Pick 2 jets (from the rest) which give closest invariant mass to M(mu1+mu2+j1+j2)=125 GeV as Z(jj).

Table: Efficiency of jet assignment, considering events with 4 reco jets (with generated jet matched).

Mass (GeV)	300	550	900
2 H(bb) jets are correctly assigned	60%	59%	57%
2 Z(jj) jets are correctly assigned	30%	29%	30%

$HH \rightarrow bb2l2q$: Preselection and Final Selection

- Preselection: (BG-dominated preselection for background determination and validation of control region.
 - 2 opposite sign leptons
 - ***** muons with $p_T > 20(10)$ GeV, $M_{\mu\mu} > 12$ GeV
 - ★ electrons with $p_T > 25(15)$ GeV, $M_{ee} > 12$ GeV
 - ▶ 4 jets assigned to H(bb) and Z(jj) with $p_T > 20$ GeV
 - * jets defined as H(bb) have b-jet regression applied, as provided by ${\rm bb}\gamma\gamma$ group
 - ▶ at least 1 loose btag jet among the 4 H/Z jets
- Final Selection: (applied for BDT training, also when calculating limits)
 - ▶ at least 1 medium btag jet among the 4 H/Z jets
 - ▶ MET cuts which vary with mass (in agreement with bbll $\nu\nu$ analysis):
 - ★ MET < 40 GeV for $M_X = 260\text{-}300 \text{ GeV}$
 - ★ MET < 75 GeV for $M_X = 350-600$ GeV
 - ★ MET < 100 GeV for $M_X = 650\text{-}1000$ GeV

$HH \rightarrow bb2l2q$: HH Angular Variables

- $cos(\theta_{CS}^*)$, θ_{CS}^* is the angle between the higgs momentum and the CS-axis (an axis that bisects the angle between the proton and the opposite of the another proton direction).
- $cos(\theta_{b,Hbb}^*)$, $\theta_{b,Hbb}^*$ is the angle between the leading b-jet and the higgs momentum.
- $cos(\theta^*_{Zuu,Hzz})$, $\theta^*_{Zuu,Hzz}$ is the angle between the Z boson decaying to muons and the higgs momentum.