

Double Higgs Production at Colliders Workshop Fermilab, September 7th, 2018

Substructure for HH signatures

Marc Antoine Osherson

Rutgers University

- When produced with sufficient momentum, higgs in HH signatures are best reconstructed as single large cone jets: most obvious case H → bb
- Resulting boosted higgses are composite, and can be exploited as such for event categorization, background estimates, etc...
- Properties we can exploit:
 - bb/cc-tagging
 - Jet Mass
 - Two-Pronged Structure
 - Other Aspects?

- When produced with sufficient momentum, higgs in HH signatures are best reconstructed as single large cone jets: most obvious case H → bb
- Resulting boosted higgses are composite, and can be exploited as such for event categorization, background estimates, etc...
- Properties we can exploit:
 - bb/cc-tagging¹
 - Jet Mass
 - Two-Pronged Structure
 - Other Aspects?
- Improvements? Future?

- When produced with sufficient momentum, higgs in HH signatures are best reconstructed as single large cone jets: most obvious case H → bb
- Resulting boosted higgses are composite, and can be exploited as such for event categorization, background estimates, etc...
- Properties we can exploit:
 - bb/cc-tagging
 - Jet Mass²
 - Two-Pronged Structure
 - Other Aspects?
- Improvements? Future?

- When produced with sufficient momentum, higgs in HH signatures are best reconstructed as single large cone jets: most obvious case H → bb
- Resulting boosted higgses are composite, and can be exploited as such for event categorization, background estimates, etc...
- Properties we can exploit:
 - bb/cc-tagging
 - Jet Mass
 - Two-Pronged Structure³
 - Other Aspects?
- Improvements? Future?

- When produced with sufficient momentum, higgs in HH signatures are best reconstructed as single large cone jets: most obvious case H → bb
- Resulting boosted higgses are composite, and can be exploited as such for event categorization, background estimates, etc...
- Properties we can exploit:
 - bb/cc-tagging
 - Jet Mass
 - Two-Pronged Structure
 - Other Aspects⁴?
- Improvements? Future?

Building Large Jets at CMS

- CMS jets are built from the Particle Flow Algorithm which uses information for every element of the detector.
 - Pileup removed with either CHS or PuPPI
 - PF candidates are natural inputs for substructure measurements

Jet Mass Algorithms at CMS

- Two dominant grooming techniques at CMS: Pruning¹ & Soft Drop²
- Pruning = Recluster
 - \circ Cluster the jet from its constituents, pausing at each pair of proto-jets to throw out those which fail p_T fraction or ΔR requirements
- Soft Drop = Decluster
 - Break the jet into its last two constituents
 - Discard half if it fails p_T fraction (ΔR requirements)

Building Large Jets at ATLAS

- ATLAS builds similar groomed jets from its calo-clusters.
- Similar idea, different algorithm: Trimming¹
 - Recluster jet into R = 0.2 subjets, discard subjets based on a p_T requirement.

Building Large Jets at ATLAS

- Track information is then incorporated in two stages: Track Assisted Mass and the Combined Mass.
 - \circ Track Assisted Mass $m^{TA} \equiv m^{track} \times \frac{p_T^{calo}}{p_T^{track}}$
 - Combined Mass is a linear combination of the calo and TA

mass:

Jet Improvements at ATLAS

- Recent developments at ATLAS promise improvements in the mass reconstructions.
 - Track-Calo Clusters: Combine the excellent energy resolution of the Calorimeter with the angular resolution of the Tracker into PF like 4-vectors:

Jet Improvements at ATLAS

- Recent developments at ATLAS promise improvements in the mass reconstructions.
 - Track Assisted Reclustered Mass: Build jets (R = 0.2)
 clusters, and calibrate them as with other jets.
 - Recluster these to a large jet, match and rescale tracks!

Jet Improvements at ATLAS

- Recent developments at ATLAS promise improvements in the mass reconstructions.
 - Track Assisted Reclustered Mass: Build jets (R = 0.2)
 clusters, and calibrate them as with other jets.
 - Recluster these to a large jet, match and rescale tracks!

Substructure at CMS

• Dominant substructure variable for Higgs searches at CMS is the so-called N-subjettiness¹.

$$\tau_{N} \equiv \frac{1}{d_{0}} \sum_{k} p_{T,k} min(\Delta R_{1,k}, \Delta R_{2,k}, \cdots \Delta R_{N,k},)$$

- Ratio of τ_N variables
 - serve as strong discriminants.
- Can be correlated to kinematic properties of the event.

Substructure at ATLAS

- Different approach: Energy Correlation Functions
- Better theoretical motivation
- Similar discrimination

$$D_2^{(eta)} \equiv rac{e_3^{(eta)}}{\left(e_2^{(eta)}
ight)^3}$$

Exotic Jet Topologies

- H→bb isn't the whole story! Full exploration of HH signatures should consider other "exotic" decays of the SM higgs.
 - Already saw $WW^* \rightarrow qqlv^1$
 - ZZ* and WW* can go to 4q
 - Do we have the technology to reconstruct this: yes²
 (and we have had for some time)
 - \circ τ_4 used in recent CMS result (SUSY signature)³

Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at $\sqrt{s}=8\,\mathrm{TeV}$

^{1:} https://indico.cern.ch/event/731450/timetable/#41-dedicated-object-reconstruc

Exotic Jet Topologies

- Search for $X \to VH$, considers all hadronic $H \to bb/4q$
 - H → bb dominates significance at low masses, but WW*
 category contributes at high masses where background are
 naturally lower.
 - Uncertainties for four-pronged variables were large.
- Equivalent HH signatures not public, but in the works.

Exotic Jet Topologies

 While no recent public results, such decays are on the experimental radar! ATLAS's Track Assisted Reclustering evaluated the effect on H→ WW* jets.

Lessons from Top Tagging

- Considerable improvements in substructure tagging are possible with new machine learning techniques.
- Take the example of top tagging¹:
- CMS uses N-subjetiness variables coupled with soft-drop mass to identify boosted hadronic Tops -- Very similar to H-tag
- Further improvements possible with dedicated strategies, e.g. HEP Top Tagger (HTT)

^{1:} paper Pulling Out All the Tops with Computer Vision and Deep Learning

Lessons from Top Tagging

- Considerable improvements in substructure tagging are possible with new machine learning techniques.
- Take the example of top tagging¹:
 - "Jet Image" based CNN to separate QCD from top decays

100,000 QCD Jet Images

100,000 Top Jet Images

Lessons from Top Tagging

- Considerable improvements in substructure tagging are possible with new machine learning techniques.
- Take the example of top tagging¹:
 - Large improvement, even without b-tagging information!

ML for Higgs Tagging

- There are already a number of improved Higgs results, though none currently implemented in public CMS/ATLAS results:
 - Multi-taggers¹
 - CNN approaches similar to the top taggers²
 - ONew? Seems like we are only scratching the surface!

^{1:} CMS DP Note New Developments for Jet Substructure Reconstruction in CMS

Challenges in H-tagging

- We do not have a sample of boosted Higgses in data to calibrate our techniques and taggers. Have to extrapolate:
 - \circ g \rightarrow bb and V decays currently used.
 - Some talk of $t \rightarrow bW+FSR$ for a 4-pronged tagger.
- Result are large uncertainties on the signals.
- ML could provide some solutions.

Table 2: Summary of systematic uncertainties in the signal and background yields.

	0	•
Source	Uncertainty (%)	
Signal yield		
Trigger efficiency	1–15	
H jet energy scale and resolution	1	
H jet mass scale and resolution	2	
H jet τ_{21} selection	+30/-26	
H-tagging correction factor	7–20	
Double-b tagger discriminator	2–5	
Pileup modelling	2	
PDF and scales	0.1-2	
Luminosity	2.5	
Background yield		
$R_{p/f}$ fit 2.6 (LL category) 6.8 (TT category)		

^{1:} figure <u>Top Tagging with New Approaches</u>

Conclusion

- It's a great time to use substructure for HH searches!
 - Current tools are mature, tested, working.
 - New tools are being developed. Lots of room for improvement. Many avenues to explore.
 - Many channels never fully explored.

Thank you