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• Jets and ETMiss already have worse resolution than leptons and photons

• The problem is going to get even worse!

• We need high-performance hadronic reconstruction to keep up with pileup

• The discovery of di-Higgs won’t happen without this!
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ETmiss performance in high pileup data

 Z+jets event in high PU data recorded in 2016, with 103 number of vertices, 
tracks of pT > 1.5 GeV are shown.
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• ATLAS calorimeter is 
highly segmented: 
reconstruct with 3D 
topological clusters

• Cluster shape 
information can 
be used to 
calibrate 

• Can suppress 
pileup with noise 
thresholds 

• ATLAS also now has 
PFlow: new standard 
for Run2!

Topocluster grow
th
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• Particle flow uses the “best measurement” available: calorimeter at high pT, tracker at low pT

• PFlow can remove energy from pileup, while calorimeters don’t have the resolution 

• Relies on good matching between calorimeter and tracker

• “Confusion term” can increase resolution if matches are poor

• This is the challenge at high pileup!

• NB: CMS’s larger magnet and worse HCal make it ideally suited for PFlow, but ATLAS can benefit as 
well, especially at low pT

Particle Flow: Ups and Downs
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• Huge number of techniques to address this and 
remove residual effects of pileup

• PUPPI used in CMS, several methods in ATLAS

Pileup Mitigation on Inputs
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Figure 4: Event display for sample dijet event with 80 pileup interactions added. The

particle collections shown are LV (top left), PFlow (top right), PFlowCHS (bottom left), and

PUPPI (bottom right). Particles from the leading vertex are colored according to their pT ,

while particles from pileup are uncolored and their size is logarithmically proportional to their

pT . The unfilled colored circles show anti-kT R = 0.7 jets where the colors denote the pT bin.

The bins 25� 50 GeV, 50� 200 GeV, and > 200 GeV correspond to colors of magenta, cyan,

and blue respectively. In the PFlow and PFlowCHS events, the average value of pT among the

pileup cells is ⇠ 0.7 GeV and ⇠ 0.4 GeV, respectively.

The LV plot (top left) shows the original uncontaminated event. The PFlow plot (top

right) shows the e↵ect of all pileup particles being added to the event. The PFlowCHS plot

(bottom left) shows a reduced pileup density in central region where charged pileup has been

removed. The PUPPI plot (bottom right) is an event display that reproduces not only the

hard jets from the LV collection, but also manages to capture features outside of the jets and

remove a large portion of the pileup completely. The pT of the jets from PFlow and PFlowCHS

are area subtracted.
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• But the parton shower is not actually invertible!

• Many ways for the parton shower to proceed: no unique inverse!

• There is no correct clustering: only better or worse

• Clustering is something we choose: usually aim for “colinear” and “infrared” safety

• The standard at the LHC is anti-kT: cluster hard particles first, and soft around them

arXiv:0802.1189 
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• When we measure a muon, the “reconstructed” object has 
essentially the same pT as the true particle

• But because of pileup, and our sampling and non-compensating 
calorimeters, measured jets aren’t at the same pT as true jets

• Calibrations correct for this, and then use measurements to 
ensure data and MC are at the same scale

• And constrain the systematics along the way

Calibration Sequence
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• To first order, pileup contributions 
to jets can be viewed as isotropic

• Measure the ambient energy 
density, ρ, then correct the jet 
energy by ρ x Area

• Some residual dependences can 
be addressed with on-average 
corrections

• This removes the pileup energy 
from jets: now we can continue to 
calibrate

Pileup “Area Subtraction”
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• Calorimeters are sampling and non-compensating: hadrons 
won’t deposit their “full” energy

• Use MC to correct measured jet energies to “particle scale”

Jet Energy Scale (Correction)
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• Jets are now calibrated on average: but 
depending on flavor (quark/gluon/c/b…) 
and specific hadronization, true energy 
can still be offset from calibrated energy

• Many of these effects have measurable 
impact on jet properties: can use these 
to correct energies

• Iteratively correct for several different 
variables for best performance

• This can dramatically improve resolution: 
even for PFlow jets!

Global Sequential Calibration
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• First step of using data: equalize response across detector

• Detector cracks, material can be poorly modeled in simulation

• Use well measured central jets as reference, and normalize other jets to the center

• Dijet events should be balanced: select this topology to ensure good reference

Eta-Intercalibration
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• Use well measured reference system 
(Z, Ɣ, or low-pT system) to measure 
response of jets in data and MC

• Correct data to MC scale

In-Situ Calibration
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• Resolution (and its uncertainties) 
set how well we reconstruct our 
Higgs’s

• Want this as low as possible, but 
also want data and MC resolutions 
to agree!

• Improved inputs, pileup 
corrections, calibrations can 
reduce the JER

• This will be critical to our 
success in Run 3/4

JER Determination
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Pileup Tagging

 20
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• Even after pileup corrections for energy, can have entirely new jets from pileup vertices

• Even after charged-hadron subtraction, neutral components can create new jets

• Can tag whether jets are coming from the primary vertex

• ATLAS and CMS both use pileup taggers to remove these extra jets

• PFlow removes huge number of pileup jets just by removing tracks from non-primary vertex!

Pileup Tagging
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• Forward region has no tracking: can’t 
tell which vertex jets are originating 
from

• But we can balance forward jets 
against central jets, and the use 
vertex information from there!

• This (along with jet shape 
information) is enough to reject 
some amount of forward pileup jets

• Run4 will improve η coverage of ID, but 
performance will still degrade at high η: 
techniques like this can help!

fJVT

 22

ATLAS-PERF-2016-06 
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ETMiss Reconstruction 
and Performance 

 23
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• Add up the event!

• Everything that’s not part of a 
reconstructed object gets summed as the 
“soft term”

• In CMS, use raw PFlow objects

• In ATLAS, use tracks (or now PFlow)

• No forward region and no neutrals 
with track, but performance gain 
relative to clusters because of 
pileup robustness

• Critical to reconstruct leptonic W: one of 
the important sub-channels for di-Higgs!

ETMiss Calculation
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What is MET?
• MET = ‘Missing Transverse Energy’ =

|’missing transverse momentum’|

𝐸𝑇𝑚𝑖𝑠𝑠 = −σ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑃𝑇 = −(σℎ𝑎𝑟𝑑 𝑃𝑇 + σ𝑠𝑜𝑓𝑡 𝑃𝑇)

MET in 2017,2018 dataHard Term: computed 
from reconstructed physics 
objects
Soft Term: soft objects, not 
associated to any physics 
objects

• Real MET: neutrino, WIMP, 
LSP …

• Fake MET: mismeasured, 
miscalibrated physics objects 
fakeMET=MET(reco)-MET(truth)

Aaron O’neil

Paolo Francavilla
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• Here, compare:

• ETMiss with track soft term

• ETMiss with calorimeter soft term, 

• pTMiss built with only tracks

• Track soft term improves pileup 
robustness, maintains good resolution

• Scale can be degraded slightly wrt 
calorimeter measurement, but is 
more robust

ATLAS ETMiss Performance
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ATLAS-PERF-2016-07 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2016-07/
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• CMS uses PFlow: robust to pileup, but still some 
dependence at highest luminosities

• New methods like PUPPI can correct for this, but these can 
overcorrect the scale: care needed at low ETMiss

CMS ETMiss Performance
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• Instead of just using the raw 
value of ETMiss, weight by the 
resolution

• Often fake ETMiss comes from 
mismeasured jets: if you know 
the resolution is bad, don’t 
count it in the significance 
calculation so high

• Especially in our hh systems, with 
low pT jets, ETMiss significance can 
improve reconstruction!

ETMiss Significance
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Looking Forward

 28
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• ATLAS’s version of PFlow— 
including GSC improvements to 
resolution— is now the standard 
for final Run2 analyses

• Large gains in resolution and ETMiss 
stability!

• Many important steps (e.g. b-
tagging) remain, but large 
improvements at low pT now 
standard for ATLAS

ATLAS Improvements
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• Jet resolution matters— and our work can 
improve it!

• Can make the Higgs peak 30% narrower 
with b-jet regression and kinematic fit 
(using event ETMiss)

• This is a huge improvement for the 
analysis!

• Can we do similar things to other jet 
categories? 

• ATLAS’s GSC already does this to some 
extent, but can be further improved

Highlights in Higgs Analyses
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• Lots of effort to estimate resolutions 
and performance for the HL-LHC

• Forward tracking will bring 
improved pileup suppression

• Constituent-level corrections 
with tracking information improve 
resolution by 30%

• These are the objects that will make 
up our Higgses: resolutions are 
degrading, but new ideas may 
recover this

Dealing with High Luminosity
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• CMS upgrades also present a huge opportunity to 
improve reconstruction at high pileup 

• New detectors will call for entirely new 
reconstruction

• How can 4D reconstruction from the timing 
detector improve jet and ETMiss resolution?

• Can the high granularity calorimeter remove 
the effects of pileup? 

CMS Upgrades
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Figure 1.2: Left: Simulated and reconstructed vertices in a 200 pileup event assuming a MIP
timing detector covering the barrel and endcaps. The vertical lines indicate 3D-reconstructed
vertices, with instances of vertex merging visible throughout the event display. Right: Rate of
tracks from pileup vertices incorrectly associated with the primary vertex of the hard interac-
tion normalized to the total number of tracks in the vertex.

0.3 mm�1. The performance of b-jet identification, which relies on vertex reconstruction, is
enhanced. The removal of pileup tracks from the isolation cones improves the identification
efficiency for isolated leptons and photons, which are key signatures of many processes of in-
terest for the HL-LHC program. Similarly, the reconstruction of spatially extended objects and
global event quantities that are vulnerable to the pileup, such as jets and pmiss

T , is also signif-
icantly improved. At 200 pileup, the pmiss

T resolution improves by about 10% and the rate of
reconstructed jets that are spuriously clustered particles from pileup interactions (“pileup jets”)
is reduced by up to 40%, using track-time information in jet reconstruction.

Chapter 3 presents thorough simulation studies of track and vertex reconstruction, of parti-
cle isolation, of jet and pmiss

T reconstruction, and of benchmark physics measurements and
searches. These studies consistently motivate that precision timing in the barrel and in the
endcaps, with about 30 ps resolution, not only offsets the performance losses in the transition
from 140 to 200 pileup events, but also recovers the Phase-1 (40 pileup) performance of the
CMS detector, thereby enhancing the HL-LHC physics reach.

1.2 Impact of precision timing on the HL-LHC physics program
The CMS physics program at the HL-LHC will target a very wide range of measurements,
including in-depth studies of the Higgs boson properties and direct searches for physics be-
yond the standard model (BSM). The added value of a timing detector, quantified in terms of
improved vertex identification, acceptance extension for isolated objects, improved pmiss

T reso-
lution, and pileup jet rate reduction, makes a significant impact on the CMS physics program
across several channels. These performance gains are gauged in Chapter 3 with benchmark
analyses representative of Higgs boson measurements, supersymmetry (SUSY) and other BSM
searches. A synopsis is presented in Table 1.1, where detector requirements are mapped into
analysis and physics impacts. The benefits are broad, as further expanded below.

The characterization of the Higgs boson properties, with precision measurements of the Higgs
boson couplings to standard model (SM) particles, and the search for rare SM and BSM decays,
will benefit from the improved acceptance for isolated objects, and in the case of H ! gg de-
cays from improved vertex identification. The quality of the isolation discriminant relies on the

3

CMS HGTD TDR 
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https://cds.cern.ch/record/2296612/files/LHCC-P-009.pdf
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• We could get away without using jets and 
ETMiss for the Higgs boson discovery

• But with the branching ratios and cross-
sections we’re facing for hh, we don’t get 
to choose the “golden channels” anymore

• Anything we discover will need to use 
jets and/or ETMiss

• When we improve our objects, we 
improve our analyses

• We need these tools to make 
these discoveries!

Conclusions
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Backup
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Noise Thresholds
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
JetEtmissApprovedBOOST2014EventDisplays

No pileup

μ = 80, no noise thresh

μ = 80, w/ noise thresh

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApprovedBOOST2014EventDisplays
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissApprovedBOOST2014EventDisplays

