Jet and ET^{Miss} Performance for *hh* Searches

Double Higgs Production at Colliders Workshop

Maximilian Swiatlowski

Enrico Fermi Institute, University of Chicago

Why Care About Jet/E^{TMiss}?

Why Care About Jet/E^{TMiss}?

Why Care About Jet/E^{TMiss}?

Why Care About Jet/E_TMiss?

Why Care About Jet/E_TMiss?

• He's absolutely right!

- He's absolutely right!
- So why do we bother?

- He's absolutely right!
- So why do we bother?
 - And why are hadronic topics the only performance talks at this workshop?

So Why Care About Jet/E_TMiss?

So Why Care About Jet/E_TMiss?

 $\sigma_{\rm H} \cong 15 \ \rm pb$ $\sigma_{\rm HH} \cong 30 \ \rm fb$ The cross-section for di-Higgs is a factor of ~500 lower than single Higgs!

So Why Care About Jet/ETMiss?

 $\sigma_{\rm H} \cong 15 \ \rm pb$ $\sigma_{\rm HH} \cong 30 \ \rm fb$

- The cross-section for di-Higgs is a factor of ~500 lower than single Higgs!
- "Golden channels" suffer from double branching ratio penalty: (1/100 x 1/200)² for 4L, (1/1000)² for \\\

So Why Care About Jet/ETMiss?

 $\sigma_{\rm H} \cong 15 \ \rm pb$ $\sigma_{\rm HH} \cong 30 \ \rm fb$

- The cross-section for di-Higgs is a factor of ~500 lower than single Higgs!
- "Golden channels" suffer from double branching ratio penalty: (1/100 x 1/200)² for 4L, (1/1000)² for \\
- Almost any final state you can use involves jets and/or ET^{Miss}!

So Why Care About Jet/ETMiss?

 $\sigma_{\rm H} \cong 15 \ \rm pb$ $\sigma_{\rm HH} \cong 30 \ \rm fb$

- The cross-section for di-Higgs is a factor of ~500 lower than single Higgs!
- "Golden channels" suffer from double branching ratio penalty: (1/100 x 1/200)² for 4L, (1/1000)² for VV
- Almost any final state you can use involves jets and/or ET^{Miss}!
- The discovery will happen with jets and E_T^{Miss}!

CMS-DP-2017-028

 μ =100, today

• Jets and E_T^{Miss} already have worse resolution than leptons and photons

CMS-DP-2017-028

μ =100, today

 μ =200, tomorrow

- Jets and E_T^{Miss} already have worse resolution than leptons and photons
- The problem is going to get even worse!

CMS-DP-2017-028

µ=100, today

 μ =200, tomorrow

- Jets and E_T^{Miss} already have worse resolution than leptons and photons
- The problem is going to get even worse!
 - We need high-performance hadronic reconstruction to keep up with pileup

CMS-DP-2017-028

 μ =100, today

 μ =200, tomorrow

- Jets and E_T^{Miss} already have worse resolution than leptons and photons
- The problem is going to get even worse!
 - We need high-performance hadronic reconstruction to keep up with pileup
 - The discovery of di-Higgs won't happen without this!

Mapping Hadronic Observables

CMS-PRF-14-001

- CMS generally uses "particle flow" reconstruction
 - Match calorimeter and track information, use the "best" measurement
 - Can remove contributions from pileup: tracker gives vertex info

CMS-PRF-14-001

- CMS generally uses "particle flow" reconstruction
 - Match calorimeter and track information, use the "best" measurement
 - Can remove contributions from pileup: tracker gives vertex info

ATLAS-PERF-2014-07

- ATLAS calorimeter is highly segmented: reconstruct with 3D topological clusters
 - Cluster shape information can be used to calibrate
 - Can suppress pileup with noise thresholds
- ATLAS also now has PFlow: new standard for Run2!

Particle Flow: Ups and Downs

- Particle flow uses the "best measurement" available: calorimeter at high pT, tracker at low pT
 - PFlow can remove energy from pileup, while calorimeters don't have the resolution
- Relies on good matching between calorimeter and tracker
 - "Confusion term" can increase resolution if matches are poor
 - This is the challenge at high pileup!
- NB: CMS's larger magnet and worse HCal make it ideally suited for PFlow, but ATLAS can benefit as well, especially at low pT

Pileup Mitigation

ATLAS

-2 -1.5

Pvthia Dijet vs= 14 Te

Voronoi + SoftKiller 0.(

Simul

events

180

160

140

120

100

80

60

40

20

0^L0

CMS

Preliminary

20

10

30

ATLAS Simulation Preliminary Pythia Dijet \sqrt{s} = 13 TeV 0.6 Anti-k_T LCW, R=0.4 No Pileup Correction Jet-Area subtraction In^{true}l<0.8, <u>=200 Vor. Spread. • Vor. Spread. + CVF 5 GeV-0.5 Vor. Supp. + SK 0.6
CS, ΔR^{max}=0.25 + SK 0.6 0.4 0.2 Ratio to Uncorrected 55 40 45 50 60 p_rtrue [GeV]

0.5

0

1.5

ATLAS-CONF-2017-065

uthiets R-04

ATLAS Simulation Preliminary

Pythia Dijet \sqrt{s} = 14 TeV, μ = 200

-2

-1.5 -1 -0.5

- Huge number of techniques to address this and remove residual effects of pileup
- PUPPI used in CMS, several methods in ATLAS

Jet Reconstruction and Calibration

• Naively, jet algorithms are the inverse of the parton shower:

• But the parton shower is not actually invertible!

- But the parton shower is not actually invertible!
 - Many ways for the parton shower to proceed: no unique inverse!

- But the parton shower is not actually invertible!
 - Many ways for the parton shower to proceed: no unique inverse!
- There is no *correct* clustering: only better or worse

- But the parton shower is not actually invertible!
 - Many ways for the parton shower to proceed: no unique inverse!
- There is no *correct* clustering: only better or worse
- Clustering is something we choose: usually aim for "colinear" and "infrared" safety

• Naively, jet algorithms are the inverse of the parton shower:

- But the parton shower is not actually invertible!
 - Many ways for the parton shower to proceed: no 1
- There is no *correct* clustering: only better or worse
- Clustering is something we choose: usually aim for "cc

• The standard at the LHC is anti- k_T : cluster hard particles first, and soft around them

Calibration Sequence

- When we measure a muon, the "reconstructed" object has essentially the same p_T as the true particle
- But because of pileup, and our sampling and non-compensating calorimeters, measured jets aren't at the same p_T as true jets
- Calibrations correct for this, and then use measurements to ensure data and MC are at the same scale
 - And constrain the systematics along the way

Pileup "Area Subtraction"

- To first order, pileup contributions to jets can be viewed as isotropic
- Measure the ambient energy density, ρ, then correct the jet energy by ρ x Area
- Some residual dependences can be addressed with on-average corrections
- This removes the pileup energy from jets: now we can continue to calibrate

Jet Energy Scale (Correction)

- Calorimeters are sampling and non-compensating: hadrons won't deposit their "full" energy
- Use MC to correct measured jet energies to "particle scale"

Global Sequential Calibration

- Jets are now calibrated on average: but depending on flavor (quark/gluon/c/b...) and specific hadronization, true energy can still be offset from calibrated energy
- Many of these effects have measurable impact on jet properties: can use these to correct energies
 - Iteratively correct for several different variables for best performance
- This can dramatically improve resolution: even for PFlow jets!

Eta-Intercalibration

- First step of using data: equalize response across detector
 - Detector cracks, material can be poorly modeled in simulation
- Use well measured central jets as reference, and normalize other jets to the center
 - Dijet events should be balanced: select this topology to ensure good reference

In-Situ Calibration

JER Determination

- Resolution (and its uncertainties) set how well we reconstruct our Higgs's
- Want this as low as possible, but also want data and MC resolutions to agree!
- Improved inputs, pileup corrections, calibrations can reduce the JER
 - This will be critical to our success in Run 3/4

Pileup Tagging

Pileup Tagging

- Even after pileup corrections for energy, can have entirely new jets from pileup vertices
 - Even after charged-hadron subtraction, neutral components can create new jets
- Can tag whether jets are coming from the primary vertex
 - ATLAS and CMS both use pileup taggers to remove these extra jets
 - PFlow removes huge number of pileup jets just by removing tracks from non-primary vertex!

fJVT

<u>ATLAS-PERF-2016-06</u>

- Forward region has no tracking: can't tell which vertex jets are originating from
 - But we can balance forward jets against central jets, and the use vertex information from there!
 - This (along with jet shape information) is enough to reject some amount of forward pileup jets
- Run4 will improve η coverage of ID, but performance will still degrade at high η: techniques like this can help!

ET^{Miss} Reconstruction and Performance

E_TMiss Calculation

- Add up the event!
- Everything that's not part of a reconstructed object gets summed as the "soft term"
 - In CMS, use raw PFlow objects
 - In ATLAS, use tracks (or now PFlow)
 - No forward region and no neutrals with track, but performance gain relative to clusters because of pileup robustness
- Critical to reconstruct leptonic W: one of the important sub-channels for di-Higgs!

ATLAS ET Miss Performance

- Here, compare:
 - E_T^{Miss} with track soft term
 - E_T^{Miss} with calorimeter soft term,
 - pT^{Miss} built with only tracks
- Track soft term improves pileup robustness, maintains good resolution
 - Scale can be degraded slightly wrt calorimeter measurement, but is more robust

CMS E_TMiss Performance

- CMS uses PFlow: robust to pileup, but still some dependence at highest luminosities
- New methods like PUPPI can correct for this, but these can overcorrect the scale: care needed at low E_T^{Miss}

E_TMiss Significance

- Instead of just using the raw value of E_T^{Miss}, weight by the resolution
 - Often fake E_T^{Miss} comes from mismeasured jets: if you know the resolution is bad, don't count it in the significance calculation so high
- Especially in our hh systems, with low p_T jets, E_T^{Miss} significance can improve reconstruction!

Looking Forward

ATLAS Improvements

- ATLAS's version of PFlow including GSC improvements to resolution— is now the standard for final Run2 analyses
- Large gains in resolution and E_T^{Miss} stability!
- Many important steps (e.g. btagging) remain, but large improvements at low p_T now standard for ATLAS

Highlights in Higgs Analyses

- Jet resolution matters— and our work can improve it!
 - Can make the Higgs peak 30% narrower with b-jet regression and kinematic fit (using event ET^{Miss})
 - This is a huge improvement for the analysis!
- Can we do similar things to other jet categories?
 - ATLAS's GSC already does this to some extent, but can be further improved

Dealing with High Luminosity

- Lots of effort to estimate resolutions and performance for the HL-LHC
 - Forward tracking will bring improved pileup suppression
 - Constituent-level corrections with tracking information improve resolution by 30%
- These are the objects that will make up our Higgses: resolutions are degrading, but new ideas may recover this

30

35

40

45

50

55

p_true [GeV]

60

CMS Upgrades

- CMS upgrades also present a huge opportunity to improve reconstruction at high pileup
- New detectors will call for entirely new reconstruction
 - How can 4D reconstruction from the timing detector improve jet and E_T^{Miss} resolution?
 - Can the high granularity calorimeter remove the effects of pileup?

M. Swiatlowski (UC)

Conclusions

- We could get away without using jets and E_T^{Miss} for the Higgs boson discovery
- But with the branching ratios and crosssections we're facing for hh, we don't get to choose the "golden channels" anymore
- Anything we discover will need to use jets and/or ET^{Miss}
 - When we improve our objects, we improve our analyses
 - We need these tools to make these discoveries!

Backup

Noise Thresholds

JetEtmissApprovedBOOST2014EventDisplays