

Reflections or
 Double Higgs Productio at the LHC

Carlos E.M.Wagner
FFl and KICP, University of
 Argonne National Laborationy

Fermilab Wine and Cheese Seminar
Double Higgs Production Workshop Fermilab, September 4-8, 2017

A Standard Model-like Higgs particle has been discovered by the ATLAS and CMS experiments at CERN

We see evidence of this particle in multiple channels.

We can reconstruct its mass and we know that is about 125 GeV .

The rates are consistent
with those expected in the Standard Model.

We have observed the Higgs decaying to bottom quarks

Consistency with SM results
Errors are still large an admit deviations of a few tens of percent from the SM results

New tth results

Values overall consistent with the SM, but a few interesting small discrepancies are present at both experiments.

CMS Fit to Higgs Couplings Remarkable agreement with SM values

ATLAS Fit to Higgs Couplings
Departure from SM predictions of the order of few tens of percent allowed at this point

Still Unexplored:Self-Couplings of the Higgs Boson

- In the Standard Model, the self couplings are completely determined by the Higgs mass and the vacuum expectation value

$$
V_{S M}(h)=\frac{m_{h}^{2}}{2} h^{2}+\frac{m_{h}^{2}}{2 v} h^{3}+\frac{m_{h}}{8 v^{2}} h^{4}
$$

- In particular, the trilinear coupling is given by

$$
g_{h h h}=\frac{3 m_{h}^{2}}{v}
$$

- The Higgs potential can be quite different from the SM potential. So far, we have checked only the Higgs vev and the mass, related to the second derivative of the Higgs at the minimum.
- Therefore, it is important to measure the trilinear and quartic coupling to check its consistency with the SM predictions.
- Double Higgs production allows to probe the trilinear Higgs Coupling.

HH production modes

1 Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12;
[2] Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro 14;
[3] Ling, Zhang, Ma, Guo, Li, Li 14; [4] Li, Wang 16; [5] Li, Li, Wang 17;
[6] Dolan, Englert, Greiner, Nordstrom, Spannowsky 15;

Gluon fusion status

- Leading Order: loop-induced

Glover, van der Bij 88

A Mostly top contribution (bottom effects <1\%)

- Next-to-Leading Order approximations
- NLO in the Born-improved heavy mt limit (HTL) +90\% Dawson, Dittmaier, Spira 98
- FTapprox: full m_{t} dependence in real radiation -10\% Maltoni, Vryonidou, Zaro 14

- Full NLO corrections
-15\% w.r.t. B-i NLO
Born improved:
- $1 / \mathrm{m}_{\mathrm{t}}$ expansion in virtual corrections $\pm 10 \%$

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke 16;
Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke 16

- Two-loop corrections computed numerically using sector decomposition
- Grid+interpolation for fast numerical evaluation

New independent calculation,

see Julien Baglio's talk

NNLO total cross sections

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV	
NLO [fb]	$27.78{ }_{-12.8 \%}^{+13.8 \%}$	$32.88{ }_{-12.5 \%}^{+13.5 \%}$	$127.7_{-10.4 \%}^{+11.5 \%}$	$1147{ }_{-9.9 \%}^{+10.7 \%}$	$m_{h}=125 \mathrm{GeV}$
$\mathrm{NLO}_{\text {FTapprox }}[\mathrm{fb}]$	$28.91{ }_{-13.4 \%}^{+15.0 \%}$	$34.25_{-13.2 \%}^{+14.7 \%}$	$134.1_{-11.1 \%}^{+12.7 \%}$	$1220{ }_{-10.6 \%}^{+11.9 \%}$	
$\mathrm{NNLO}_{\text {NLO-i }}[\mathrm{fb}]$	$32.69{ }_{-7.7 \%}^{+5.3 \%}$	$38.66{ }_{-7.7 \%}^{+5.3 \%}$	$149.3{ }_{-6.7 \%}^{+4.8 \%}$	$1337{ }_{-5.4 \%}^{+4.1 \%}$	Recall, in YR4:$\begin{aligned} & \sigma_{\mathrm{YR} 4}=\sigma_{\mathrm{NNLL}}^{\mathrm{HTL}} \\ & \quad+\left(\sigma_{\mathrm{NLO}}^{\mathrm{ful}}-\sigma_{\mathrm{NLO}}^{\mathrm{HTL}}\right) \\ & \sigma(13 \mathrm{TeV})=33.53 \mathrm{fb} \end{aligned}$
$\mathrm{NNLO}_{\mathrm{B}-\mathrm{proj}}[\mathrm{fb}]$	$33.42{ }_{-4.8 \%}^{+1.5 \%}$	$39.58{ }_{-4.7 \%}^{+1.4 \%}$	$154.2{ }_{-3.8 \%}^{+0.7 \%}$	$1406{ }_{-2.8 \%}^{+0.5 \%}$	
$\mathrm{NNLO}_{\text {FTapprox }}[\mathrm{fb}]$	$31.05_{-5.0 \%}^{+2.2 \%}$	$36.69{ }_{-4.9 \%}^{+2.1 \%}$	$139.9_{-3.9 \%}^{+1.3 \%}$	$1224_{-3.2 \%}^{+0.9 \%}$	
M_{t} unc. $\mathrm{NNLO}_{\text {FTapprox }}$	$\pm 2.6 \%$	$\pm 2.7 \%$	$\pm 3.4 \%$	$\pm 4.6 \%$	and arbitrary $\pm 5 \%$
$\mathrm{NNLO}_{\text {FTapprox }} / \mathrm{NLO}$	1.118	1.116	1.096	1.067	

- Increase w.r.t. previous order of about $\mathbf{1 2 \%}$ for LHC ($\sim 20 \%$ for $\left.\mu=m_{n h}\right)$, size decreasing with the energy
- Smaller cross sections compared to previous approximations (larger difference for higher energies)
- Strong reduction of the scale uncertainties
- Size of missing $\boldsymbol{m}_{\mathrm{t}}$ effects estimated at the few percent level Based on performance at previous order and on comparison between different approximations
- PDF $+\alpha_{s}$ uncertainties: $\pm 3.0 \%$ at the LHC

Projection for yybb

* Systematic uncertainty in jet energy scale is expected to reach 1%
* 1 (2) \% uncertainty in the selection efficiency of b (c) quark
- 2-10\% of uncertainty in misidentifying a light jet
* No degradation of the resolution and vertex finding

* The following cuts are applied:

Photon selection :

- Leading $p_{T}>m_{y y} / 3$
- Sub-Leading $p_{T}>m_{y j} / 4$
- $|\eta|<2.5$
- $100<\mathrm{m}_{\mathrm{yy}}<180 \mathrm{GeV}$

Jet Selection :

- $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$
- $\Delta \mathrm{Ryj}>0.4$
- $|\eta|<2.4$
- $80<\mathrm{m}_{\mathrm{ij}}<200 \mathrm{GeV}$
* The events are classified depending on the btagging score of the jets and m_{hh}

Significance for $3000 \mathrm{fb}^{-1}$ projected from 2.3-2.7 fb^{-1}
/ Expected limit - Run 2 analyses (36fb-1)

Efforts to increase the significance of the bbWW channel by using "topness" and "Higgsness" variables (talk by J. Kim, this workshop)

Beyond the Standard Model

- The Higgs mass parameter is sensitive to new physics effects that could modify its value to values of the order of the new physics scale.
- For this reason, one expects new physics not far above the TeV scale.
- Such new physics could lead to a modification of the Higgs couplings to SM particles, and also of the Higgs self couplings.
- In particular, modifications of the top Yukawa coupling or the trilinear Higgs coupling would lead to a modification of the loop induced rate.

Other things may happen :

- New particles can appear in the loop, dealing to modified Double Higgs production cross section.
- New resonances can appear, decaying to Higgs pairs.

Di-Higgs Production dependence on the Higgs self coupling

Frederix et al'14

Box Diagram is dominant, and hence interference in the gluon fusion channel tends to be enhanced for larger values of the coupling. At sufficiently large values of the coupling, or negative values, the production cross section is enhanced.

Large λ_{3} in tuned Higgs Portal

1 dimensionless
parameter
1 coupling 1 scale singlet potential dimensionless

$$
\mathcal{L} \supset \theta g_{*} m_{*} H^{\dagger} H \varphi-\frac{m_{*}^{4}}{g_{*}^{2}} V\left(g_{*} \varphi / m_{*}\right)
$$

$\underset{\text { (expansion in } \mathrm{h} / \mathrm{v} \text {) }}{\operatorname{Linear~EFT~valid~if~}} \quad \varepsilon \equiv \frac{\theta g_{*}^{2} v^{2}}{m_{*}^{2}} \ll 1 \quad$| Otherwise only derivative expansion |
| :--- |
| is allowed, many more couplings!! |

parametrically large $\lambda_{3} \quad \theta \simeq 1, g_{*} \simeq 3, m_{*} \simeq 2.5 \mathrm{TeV}$
(paying some tuning) $\varepsilon \simeq 0.1,1 / \Delta \simeq 1.5 \%, \delta c_{z} \simeq 0.1, \delta \kappa_{\lambda} \simeq 1$

Stefano Di Vita (INFN Milano)

$$
\left\{\begin{array}{l}
\left(H^{\dagger} H\right)^{2} \quad \Rightarrow \text { tuning of quartic } \Delta \sim \frac{\theta^{2} g_{*}^{2}}{\lambda_{3}^{\mathrm{SM}}} \\
\partial_{\mu}\left(H^{\dagger} H\right) \partial^{\mu}\left(H^{\dagger} H\right) \quad \Rightarrow \delta c_{z} \sim \theta^{2} g_{*}^{2} \frac{v^{2}}{m_{*}^{2}}=\theta \varepsilon
\end{array}\right.
$$

$$
\left(H^{\dagger} H\right)^{3} \Rightarrow \delta \kappa_{\lambda} \sim \theta^{3} g_{*}^{4} \frac{1}{\lambda_{3}^{S M}} \frac{v^{2}}{m_{*}^{2}}=\varepsilon \Delta
$$

DV, Grojean, Panico, Riembau, Vantalon [1704.01953]
Sep 4, 2018 / HH Production at colliders / Fermilab
17

Limits on the cross-section as a function of κ_{λ} combination dashed: expected solid: observed

The scale factor κ_{λ} is observed (expected) to be constrained in the range:

$$
-5.0<\kappa_{\lambda}<12.1\left(-5.8<\kappa_{\lambda}<12.0\right)
$$

High Lumi LHC : limit on κ_{λ} (for ATLAS with only yybb channel): D. Delgove, this workshop

$$
0.2<\kappa_{\lambda}<6.9
$$

Variation of the Di-Higgs Cross Section with the Top Quark and Self Higgs Couplings

Huang, Joglekar, Li, C.W.'17

Strong dependence on the value of kt and $\lambda 3$
Even small variations of kt can lead to 50 percent variations of the di-Higgs cross section

Putting everything together :

Sensitivity at the high luminosity LHC A. Shivaji's talk

New Fermions in the Loop

Dawson, Furlan, IL PRD87 (2013) 014007; Chen, Dawson, IL PRD90 (2014) 035016

- Assume full vector-like quark generation:
- SU(2) Doublet: $Q=(T, B)^{\mathrm{t}}$
- Two SU(2) Singlets: U, D
- Two up-type and two down-type heavy quarks: $T_{2}, T_{3}, B_{2}, B_{3}$

Stop Contributions

(1)

(5)

(8)

Stop Effects on Di-Higgs Production Cross Section

Orange : Stop corrections to kappa_g decoupled Red : X_t fixed at color breaking vacuum boundary value, for light mA Green : X_t fixed at color breaking boundary value, for $\mathrm{mA}=1.5 \mathrm{TeV}$ Blue : Same as Red, but considering kappa_t = 1.1

Invariant Mass Distributions

Provided lambda3 is not shifted to large values, acceptances similar as in the Standard Model

Why do we care about the potential ?

- First of all, it is a fundamental part of the Standard Model. If new physics is at very high scales, one expects a renormalizable potential, like in the SM

$$
V(\phi, 0)=\frac{m^{2}}{2}\left(\phi^{\dagger} \phi\right)+\frac{\lambda}{4}\left(\phi^{\dagger} \phi\right)^{4}+\sum_{n=1}^{\infty} \frac{c_{2 n+4}}{2^{(n+2)} \Lambda^{2 n}}\left(\phi^{\dagger} \phi\right)^{n+2}
$$

- All terms beyond the first two would cancel.
- If, however, there is new physics coupled to the Higgs close to the weak scale, one would expect non-trivial modifications to the potential, that should be measurable.
- The trilinear coupling may be obtained, in general,

$$
\lambda_{3}=\frac{3 m_{h}^{2}}{v}\left(1+\frac{8 v^{2}}{3 m_{h}^{2}} \sum_{n=1}^{\infty} \frac{n(n+1)(n+2) c_{2 n+4} v^{2 n}}{2^{n+2} \Lambda^{2 n}}\right)
$$

- Hence, the departures from the SM prediction are a probe of the potential modifications.

$$
\delta=\frac{\lambda_{3}}{\lambda_{3}^{S M}}-1=\frac{8 v^{2}}{3 m_{h}^{2}} \sum_{n=1}^{\infty} \frac{n(n+1)(n+2) c_{2 n+4} v^{2 n}}{2^{n+2} \Lambda^{2 n}}
$$

Effective Potential and the Matter-Antimatter Asymmetry

Theory vs. Observation

Q Baryons annihilate with antibaryons via strong interactions mediated by mesons. Assuming you start from equal number of batons and antibaryons, this is a very efficient annihilation channel and one can show that the density will freeze at

$$
\frac{n_{\bar{B}}}{n_{\gamma}}=\frac{n_{B}}{n_{\gamma}} \simeq 10^{-20}
$$

Q How does this compare to experiment? First of all, we have the problem of the unobserved antimatter. Secondly, from the analysis of BBN and CMBR, one obtains, consistently

$$
\frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{n}_{\gamma}} \approx 610^{-10}
$$

Q How to explain the absence of antimatter and the appearence of such a small asymmetry ?

Small Asymmetry may be generated primordially: Baryogenesis

Murayama
Assuming the existence of a small primordial asymmetry solves the puzzle. Indeed, matter-antimatter annihilation can now occur efficiently and finally the small asymmetry will lead to observable matter in the Universe

Baryogenesis at the weak scale

- Under natural assumptions, there are three conditions, enunciated by Sakharov, that need to be fulfilled for baryogenesis. The SM fulfills them :
- Baryon number violation: Anomalous Processes
- C and CP violation: Quark CKM mixing
- Non-equilibrium: Possible at the electroweak phase transition.

Baryon Asymmetry Preservation

If Baryon number generated at the electroweak phase transition,

$$
\begin{aligned}
& \frac{n_{B}}{s}=\frac{n_{B}\left(T_{c}\right)}{s} \exp \left(-\frac{10^{16}}{\mathrm{~T}_{\mathrm{c}}(\mathrm{GeV})} \exp \left(-\frac{\mathrm{E}_{\text {sph }}\left(\mathrm{T}_{\mathrm{c}}\right)}{\mathrm{T}_{\mathrm{c}}}\right)\right) \\
& \mathbf{E}_{\text {sph }} \propto \frac{8 \pi \mathbf{v}}{\mathrm{~g}} \quad \begin{array}{l}
\text { Kuzmin, Rubakov and Shaposhnikov, '85-'87 } \\
\text { Klinkhamer and Manton '85, Arnold and Mc Lerran '88 }
\end{array}
\end{aligned}
$$

Baryon number erased unless the baryon number violating
processes are out of equilibrium in the broken phase.
Therefore, to preserve the baryon asymmetry, a strongly first order phase transition is necessary:

$$
\frac{\mathrm{v}\left(T_{c}\right)}{T_{c}}>1
$$

Electroweak Phase Transition

Higgs Potential Evolution in the case of a first order

Phase Transition

Gravitational Waves may be produced at the Phase Transition

First Order Phase Transition

Grojean, Servant, Wells'06
Joglekar, Huang, Li, C.W.'15

- Simpler case

$$
\begin{aligned}
V(\phi, T) & =\frac{m^{2}+a_{0} T^{2}}{2}\left(\phi^{\dagger} \phi\right)+\frac{\lambda}{4}\left(\phi^{\dagger} \phi\right)^{2}+\frac{c_{6}}{8 \Lambda^{2}}\left(\phi^{\dagger} \phi\right)^{3} \\
\lambda_{3} & =\frac{3 m_{h}^{2}}{v}\left(1+\frac{2 c_{6} v^{4}}{m_{h}^{2} \Lambda^{2}}\right)
\end{aligned}
$$

- Demanding the minimum at the critical temperature to be degenerate with the trivial one, we obtain

$$
\left(\phi_{c}^{\dagger} \phi_{c}\right)=v_{c}^{2}=-\frac{\lambda \Lambda^{2}}{c_{6}} . \quad \lambda+\frac{3 c_{6}}{2 \Lambda^{2}} v^{2}=\frac{m_{h}^{2}}{2 v^{2}}
$$

- Negative values of the quartic coupling, together with positive corrections to the mass coming from non-renormalizable operators demanded.
- It is simple algebra to demonstrate that,

$$
\frac{2}{3} \leq \delta \leq 2
$$

$$
\begin{gathered}
T_{c}^{2}=\frac{3 c_{6}}{4 \Lambda^{2} a_{0}}\left(v^{2}-v_{c}^{2}\right)\left(v^{2}-\frac{v_{c}^{2}}{3}\right) . \\
\frac{v^{2}}{m_{h}}<\Lambda<\frac{\sqrt{3} v^{2}}{m_{h}}
\end{gathered}
$$

- Now, in the two extremes, either vc or Tc go to zero, so in order to fulfill the baryogengesis conditions one would like to be somewhat in between.

More General Modifications of the Potential

In general, it is difficult to obtain negative values of δ and at the same time a strongly first order phase transition (SFOPT)

(a)

(c)

(b)

(d)

Joglekar, Huang, Li, C.W.'15

Realizing the Effective Theory

- It turns out that one can realize the effective theory by integrating out a singlet.
- In this case, there is a relation between the modifications of the potential and the trilinear coupling with the mixing of the singlet with the SM Higgs

$$
V\left(\phi_{h}, \phi_{s}, T\right)=\frac{m_{0}^{2}+a_{0} T^{2}}{2} \phi_{h}^{2}+\frac{\lambda_{h}}{4} \phi_{h}^{4}+a_{h s} \phi_{s} \phi_{h}^{2}+\frac{\lambda_{h s}}{2} \phi_{s}^{2} \phi_{h}^{2}+t_{s} \phi_{s}+\frac{m_{s}^{2}}{2} \phi_{s}^{2}+\frac{a_{s}}{3} \phi_{s}^{3}+\frac{\lambda_{s}}{4} \phi_{s}^{4}
$$

- Integrating out the singlet, for as and lambdas small, one obtains a modification of the effective quartic and c6 couplings

Menon, Morrissey, C.W.'04

$$
V(h, T)=\frac{m^{2}(T)}{2} \phi_{h}^{2}+\frac{\lambda_{h}}{4} \phi_{h}^{4}-\frac{\left(t_{s}+a_{h s} \phi_{h}^{2}\right)^{2}}{2\left(m_{s}^{2}+\lambda_{h s} \phi_{h}^{2}\right)} .
$$

- Moreover, the trilinear coupling can be rewritten in terms of the mixing with the singlet

$$
\lambda_{3}=6 \lambda_{h} v_{h} \cos ^{3} \theta\left[1+\left(\frac{\lambda_{h s} v_{s}+a_{h s}}{\lambda_{h} v_{h}}\right) \tan \theta+\frac{\lambda_{h s}}{\lambda_{h}} \tan ^{2} \theta\right] .
$$

Modified λ_{3}, mixing angle and SFOPT

Orange :SFOPT
 Solid lines : Higgs mixing angle Dashed lines : $1+\delta$

Joglekar, Huang, Li, C.W.'15

Positive corrections to λ_{3}
Mixing angle suppresses Higgs coupling to the top
Difficult to test experimentally

Modified couplings and resonant contributions in 2HDMs and beyond

Low Energy Supersymmetry: Type II Higgs doublet models

Q. In Type II models, the Higgs Hd would couple to down-quarks and charge leptons, while the Higgs Hu couples to up quarks and neutrinos. Therefore,

$$
\begin{aligned}
g_{h f f}^{d d, l l} & =\frac{\mathcal{M}_{d d, l l}^{\text {diag }}}{v} \frac{(-\sin \alpha)}{\cos \beta}, \quad g_{H f f}^{d d, l l}=\frac{\mathcal{M}_{d d, l l}^{\text {diag }}}{v} \frac{\cos \alpha}{\cos \beta} \\
g_{h f f}^{u u} & =\frac{\mathcal{M}_{u u}^{\text {diag }}}{v} \frac{(\cos \alpha)}{\sin \beta}, \quad g_{H f f}^{u u}=\frac{\mathcal{M}_{u u}^{\text {diag }}}{v} \frac{\sin \alpha}{\sin \beta}
\end{aligned}
$$

(9. If the mixing is such that $\cos (\beta-\alpha)=0$

$$
\begin{array}{lll}
h=-\sin \alpha H_{d}^{0}+\cos \alpha H_{u}^{0} & \sin \alpha=-\cos \beta, & \tan \beta=\frac{v_{u}}{v_{d}} \\
H=\cos \alpha H_{d}^{0}+\sin \alpha H_{u}^{0} & \cos \alpha=\sin \beta &
\end{array}
$$

then the coupling of the lightest Higgs to fermions and gauge bosons is SM-like. We shall call this situation ALIGNMENT

Haber and Gunion'03, Delgado, Nardini, Quiros'13, N. Craig, J. Galloway \&Thomas'13, Dev and Pilaftsis'14
M. Carena, H. Haber, I. Low, N. Shah and C.W.'15 and '15
Q. Observe that close to the alignment limit, the heavy Higgs couplings to down quarks and up quarks are enhanced (suppressed) by a $\tan \beta$ factor.
Q. It is important to stress that the couplings of the CP-odd Higgs boson are

$$
g_{A f f}^{d d, l l}=\frac{\mathcal{M}_{\text {diag }}^{\text {dd }}}{v} \tan \beta, \quad g_{A f f}^{u u}=\frac{\mathcal{M}_{\text {diag }}^{\text {uu }}}{v \tan \beta}
$$

H and A Decay to Higgs and Gauge Boson Pairs

 Suppressed at Alignment

Deviations from Alignment

$$
c_{\beta-\alpha}=t_{\beta}^{-1} \eta, \quad s_{\beta-\alpha}=\sqrt{1-t_{\beta}^{-2} \eta^{2}}
$$

The couplings of down fermions are not only the ones that dominate the Higgs width but also tend to be the ones which differ at most from the SM ones

$$
\begin{aligned}
& g_{h V V} \approx\left(1-\frac{1}{2} t_{\beta}^{-2} \eta^{2}\right) g_{V}, \quad g_{H V V} \approx t_{\beta}^{-1} \eta g_{V}, \\
& g_{h d d} \approx(1-\eta) g_{f}, \quad \quad g_{H d d} \approx t_{\beta}\left(1+t_{\beta}^{-2} \eta\right) g_{f} \\
& g_{h u u} \approx\left(1+t_{\beta}^{-2} \eta\right) g_{f}, \quad \quad g_{H u u} \approx-t_{\beta}^{-1}(1-\eta) g_{f}
\end{aligned}
$$

Impact of Modified Couplings

- In general, assuming modified couplings, and no new light particle the Higgs can decay into, the new decay branching ratios are given by

$$
B R(h \rightarrow X X)=\frac{\kappa_{X}^{2} B R(h \rightarrow X X)^{\mathrm{SM}}}{\sum_{i} \kappa_{i}^{2} B R(h \rightarrow i)^{\mathrm{SM}}}
$$

- For small variations of (only) the bottom coupling, and $X \neq b$

$$
\begin{gathered}
B R(h \rightarrow b \bar{b}) \simeq B R(h \rightarrow b \bar{b})^{\mathrm{SM}}\left(1+0.4\left(\kappa_{b}^{2}-1\right)\right) \\
B R(h \rightarrow X X) \simeq B R(h \rightarrow X X)^{\mathrm{SM}}\left(1-0.6\left(\kappa_{b}^{2}-1\right)\right) \\
\frac{B R(h \rightarrow b \bar{b})}{B R(h \rightarrow X X)}=\frac{B R(h \rightarrow b \bar{b})^{\mathrm{SM}}}{B R(h \rightarrow X X)^{\mathrm{SM}}}\left(1+\left(\kappa_{b}^{2}-1\right)\right)
\end{gathered}
$$

- So, due to the its large contribution to the Higgs decay width, a modification of a bottom coupling leads to a large modification of all other decay branching ratios (larger than the one into bottoms !)
- Observe that the coefficients are just given by the SM bottom decay branching ratio and its departure from one.

Carena, Haber, Low, Shah, C.W.' I4
M. Carena, I. Low, N. Shah, C.W.'I3

Higgs Decay into Gauge Bosons

Mostly determined by the change of width

Small μ

$$
\mu / M_{\mathrm{SUSY}}=2, \quad A_{t} / M_{\mathrm{SUSY}} \simeq 3
$$

CP-odd Higgs masses of order 200 GeV and $\tan \beta=10 \mathrm{OK}$ in the alignment case

Low values of μ similar to the ones analyzed by ATLAS

ATLAS-CONF-2014-0IO

Bounds coming from precision h measurements

Heavy Supersymmetric Particles

Heavy Higgs Bosons : A variety of decay Branching Ratios

Precision measurement constraining M_{H}
to be above 500 GeV away from alignment
$\sigma(g g \rightarrow H)=1100,330,70 \mathrm{fb}$ $\sigma(b b H)=9,39,239 \mathrm{fb}$
at $M_{H}=500 \mathrm{GeV}$ and $\tan \beta=2,4,10$.

Carena, Haber, Low, Shah, C.W.'I4

$$
m_{h}^{\text {alt }}: \text { Large } \mu \text {. Alignment at values of } \tan \beta \simeq 12
$$

Depending on the values of μ and $\tan \beta$ different search strategies must be applied.

At large $\tan \beta$, bottom and tau decay modes dominant.
As $\tan \beta$ decreases decays into SM-like Higgs and wek bosons become relevant

Light Charginos and Neutralinos can significantly modify M the CP-odd Higgs Decay Branching Ratios

Carena, Haber, Low, Shah, C.W.'I4

At small values of μ ($M_{2} \simeq 200 \mathrm{GeV}$ here), chargino and neutralino decays prominent. Possibility constrained by direct searches.

Extensions of the Higgs sector containing two Higgs doublets and Singlets (well known example: NMSSM)

Alignment in the NMSSM (heavy or Aligned singlets)

(iii)

(iv)

Carena, Low, Shah, C.W.'I3

It is clear from these plots that the NMSSM does an amazing job in aligning the MSSM-like CP-even sector, provided
λ is about 0.65

Decays into pairs of SM-like Higgs bosons suppressed by alignment

Crosses: HI singlet like Asterix : H2 singlet like

Carena, Haber, Low, Shah, C.W.' I 5

Significant decays of heavier Higgs Bosons into lighter ones and Z's

Relevant for searches for Higgs bosons

Crosses: HI singlet like Asterix: H2 singlet like

Blue : $\tan \beta=2$
Red : $\tan \beta=2.5$
Yellow: $\tan \beta=3$

Carena, Haber, Low, Shah, C.W.'I5

Search for (psudo-)scalars decaying into lighter ones
CMS-PAS-HIG-15-001

It is relevant to perform similar analyses replacing the Z by a SM Higgs (and changing the CP property of the Higgs)

Reach at the high luminosity LHC Depends on decay of singlet modes

Can we do better for double Higgs production and test a SFOPT ? Back to the singlet extension

- Branching ratios into 2 SM Higgs bosons may be enhanced if other couplings are suppressed
- This happens in the singlet extension of the SM, since all singlet couplings are proportional to its mixing with the SM (not only the trilinear)
- Unfortunately, the production of the singlet is also proportional to the mixing angle square and hence, double Higgs production can only be sizable for small values of the singlet mass and some departure from alignment
- For not very large values of the singlet mass, interference between the resonant and non-resonant production may become relevant

Constraints on $\mathrm{pp} \rightarrow \mathrm{h}_{2} \rightarrow \mathrm{~h}_{1} \mathrm{~h}_{1}$ rates

- Cannot arbitrarily increase Higgs branching ratios.
- More complicated scalar potential, more minima: 6 extrema in total
- Singlet cannot contribute to fermion and vector boson masses.
- Have to guarantee that global minimum has Higgs doublet vev is 246 GeV .

Branching Ratio $\sin \theta$ Dependence, $\mathrm{b}_{4}=4.2$
Double Higgs Production $\sin \theta$ Dependence at $13 \mathrm{TeV}, \mathrm{b}_{4}=4.2$

IL, M. Sullivan PRD96 (2017) 035037

Interference effects and SFOPT

There are interesting interference effects between the SM production rate and the resonance production rate that modifies your reach

Dependence on mixing angle implicit in the definition of the trilinear coupling (not the effective field theory one)

Di-Higgs Production as a signal of Enhanced Yukawa couplings

Bauer, MC, Carmona (1801.00363)
Correlation between enhanced Higgs-fermion couplings and di-Higgs production in 2HDM w/ flavour symmetry
Visible in resonant \& non-resonant, dedicated LHC searches

FIG. 2: Left: Cross section for Higgs pair production in units of the SM prediction as a function of κ_{f}^{h} for $c_{\beta-\alpha}=-0.45(-0.4)$ and $M_{H}=M_{H^{ \pm}}=550 \mathrm{GeV}, M_{A}=450 \mathrm{GeV}$ in blue (green) at $\sqrt{s}=13 \mathrm{TeV}$. Right: Invariant mass distribution for the different contributions to the signal with $c_{\beta-\alpha}=-0.45$ and $\kappa_{f}^{h}=5$ (blue), $\kappa_{f}^{h}=4$ (green) and $\kappa_{f}^{h}=3$ (red) at $\sqrt{s}=13 \mathrm{TeV}$, respectively. Solid (dot-dashed) lines correspond to the NLO (LO) calculation for the sum of the resonant and non-resonant production, while dotted (dashed) lines correspond to the pure resonant (non-resonant) contributions.

Conclusions

- The structure of the Higgs potential is still unknown and can differ significantly from the SM one. Only known is the location of the minimum and the second derivative of the potential, given by v and the square of mh .
- The trilinear coupling provides a way of going beyond this knowledge, and can be probed at best by double Higgs production.
- Rate of double Higgs production rate in the SM very well known, of order 30 fb .
- Small rates and large backgrounds make the determination of the trilinear coupling difficult.
- Current projections show that the high luminosity LHC may be sensitives to trilinear couplings from values close to zero up to about 5 times the SM values can be probed.
- Rates may also be increased by modifications of the top coupling, or extra particles in the loop. These effects may be tested in single Higgs production, demanding a global fit to all couplings to determine the trilinear one.
- Resonant production of di-Higgs final states can be significant, but suppressed by Higgs mixing.
- Production of non-standard states, together with the SM one, may be relevant.

