

Taking Stock

- Higgs!
- Triumph of the Standard Model

- LHC Run I + Run II strong limits on New Physics
- Still, many good reasons to believe there is new physics
 - Theoretical: Naturalness (Higgs, CC), Flavor, Strong CP, Unification, Gravity ...
 - Empirical: Dark Matter, Neutrino Oscillations, Baryon Asymmetry
 - Higgs definitely plays a role in many, if not all, of these puzzles
- We've only collected about 5% of the total LHC dataset still room for new physics!

What do we know about the Higgs?

- Consistent with $J^{CP}=0^{++}$
- Couplings to top, gauge bosons at 10-20% level
- Couplings to bottom, tau observed
- No evidence for coupling to 1st, 2nd generations
- Higgs-self coupling?

Higgs pair production (Di-Higgs)

Scalar potential

$$V = -\mu^{2}|H|^{2} + \lambda|H|^{4}$$

$$= \frac{1}{2}m_{h}^{2}h^{2} + \frac{m_{h}^{2}}{2v}h^{3} + \frac{m_{h}^{2}}{8v^{2}}h^{4}$$

$$v = \sqrt{-\frac{\mu^2}{\lambda}} \qquad m_h^2 = 2\lambda v^2$$

Higgs pair production:

Triple coupling

First studies more than 30 years ago!

TWIN HIGGS-BOSON PRODUCTION ★

O.J.P. ÉBOLI 1

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

G.C. MARQUES, S.F. NOVAES

Instituto de Física, Universidade de São Paulo, CP 20516, 01498 São Paulo, SI

and

A.A. NATALE

Instituto de Física Teórica, CP 5956, 01405 São Paulo, SP, Brazil

Received 31 July 1987

We investigate the production of a standard Higgs boson pair in proton-proton collisions at the SSC energy. This process allows us to study the trilinear Higgs coupling.

The long march to higher orders in ggF HH production!

Leading Order: loop-induced

Eboli, Marques, Novaes, Natale 87; Glover, Van Der Bij 88, Dicus, Kao, Willenbrock 88; Plehn, Spira, Zerwas 96

Full NLO corrections

-15% w.r.t. B-i NLO

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke 16; Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke 16

- Two-loop corrections computed numerically using sector decomposition
- Grid+interpolation for fast numerical evaluation

New independent calculation, see Julien Baglio's talk

Next-to-Leading Order approximations

- NLO in the Born-improved heavy mt limit (HTL) +90% Dawson, Dittmaier, Spira 98
- FTapprox: full mt dependence in real radiation -10% Maltoni, Vryonidou, Zaro 14
- 1/mt expansion in virtual corrections ±10% Grigo, Hoff, Melnikov, Steinhauser 13; Grigo, Hoff, Steinhauser 15

• More results including full NLO mt dependence

NLO matched to parton shower using MC@NLO and POWHEG frameworks

Dedicated talk by Eleni Vryonidou Pythia Sherpa Jones, Kuttimalai 17 Heinrich, Jones, Kerner, Luisoni, Vryonidou 17

 NLL transverse momentum resummation — reasonable agreement with NLO+PS Ferrera, Pires 16

- NEW! Full NLO including BSM dimension 6 operators
- NEW! NLL threshold resummation with full mt dependence +4% w.r.t. NLO

Beyond NLO

- Born improved HTL at NNLO +20% w.r.t. NLO de Florian, JM 13; Grigo, Melnikov, Steinhauser 14
- NNLL threshold resummation in the HTL Shao, Li, Li, Wang 13; de Florian, JM 15
- NNLO including finite m_t effects (FTapprox) +12% w.r.t. NLO recommendation Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, JM 18 (8% smaller than YR4)

 NEW! NNLL+NNLO threshold resummation in the FTapprox de Florian, JM 18

Talk by Javier Mazzitelli

Current HXSWG

for total XS

Talk by Julien Baglio

gg → HH @ NLO in 2018: Two independent calculations finally exist on the market!

- First independent cross-check since 2016 for the full 2-loop NLO QCD corrections in gluon fusion!
 - → Complete different method compared to the 2016 calculation [IBP, Richardson extrapolation, etc]
 - \rightarrow Code flexible: m_t , M_H not fixed a priori, can be changed at will
 - → results compatible with 2016 study

$$\sigma_{
m PDF4LHC}^{
m NLO} =$$
 32.92(10) fb vs $\sigma^{
m literature} =$ 32.91(11) fb

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke '16]

[Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher, to appear]

Talk by Eleni Vryonidou

HH@NLO + Parton Shower

(full mt effects)

- Reliable predictions at low HH and jet pT,
- Parton shower impacts tails of certain distributions (e.g., HH pT)
- Implemented in POWHEG and MG5_aMC@NLO

Talk by Javier Mazzitelli

Full-theory approximation - NNLO_{FTapprox}

Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, JM 18

 Combination of full NLO with heavy-m_t NNLO, NNLO piece improved to account for finite-m_t effects

NNLO total cross sections

\sqrt{s}	13 TeV	$14 \mathrm{TeV}$	27 TeV	100 TeV
NLO [fb]	$27.78 {}^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
$NLO_{FTapprox}$ [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25 {}^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$\mathrm{NNLO}_{\mathrm{NLO-i}}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	±2.6%	$\pm 2.7\%$	±3.4%	±4.6%
${ m NNLO_{FTapprox}/NLO}$	1.118	1.116	1.096	1.067

- Increase w.r.t. previous order of about 12% for LHC (~20% for μ =mnh), size decreasing with the energy
- Smaller cross sections compared to previous approximations (larger difference for higher energies)
- Strong reduction of the scale uncertainties
- Size of missing mt effects estimated at the few percent level
 Based on performance at previous order and on comparison between different approximations
- PDF+α_S uncertainties: ±3.0% at the LHC

Standard Model HH theory is in good shape!

What level of precision is ultimately needed in HH calculations? Can it be achieved? Are we already there?

- Ability to discover/observe HH?
- Ability to extract the self coupling?
- To place meaningful constraints on new physics, and/or robustly state that we have detected new physics in HH?

Uncertainties in backgrounds systematics are potentially/likely a limiting factor in probing HH

 What advances from theory are needed to help mitigate background systematics?

Talks by L. Cadamuro and P. Bokan

How well do we need to measure the self-coupling?

- Answer I: As precisely as we can!
- Answer 2: If no new state associated with EWSB is found a the LHC, then one can potentially still expect deviations on the order of 20%

Model	$\Delta g_{hhh}/g_{hhh}^{SM}$
Mixed-in Singlet	-18%
Composite Higgs	tens of $\%$
Minimal Supersymmetry	$-2\%^a$ $-15\%^b$
NMSSM	-25%
LHC 3 ab ⁻¹ [36]	[-20%, +30%]

[Gupta, Rzehak, Wells]

How large can the self-coupling be?

• Constraints from partial wave unitarity & perturbativity

$$|\lambda_{hhh}/\lambda_{hhh}^{SM}| \lesssim 6.5 (6.0)$$

[Di Luzio, Grober, Spannowsky]

 Existing constraints combined with unitarity & perturbativity typically give smaller deviations from the SM value

See also talk by Stefano Di Vita

Talk by Jeong Han Kim

Use new kinematic variables to discriminate dileptonic Higgs vs. tt

Higgsness (H)

$$H \equiv \min_{\vec{r}_T = \vec{p}_{\nu T} + \vec{p}_{\bar{\nu} T}} \left[\frac{\left(m_{\ell^+ \ell^- \nu \bar{\nu}}^2 - m_h^2 \right)^2}{\sigma_{h_{\ell}}^4} + \frac{\left(m_{\nu \bar{\nu}}^2 - m_{\nu \bar{\nu}, peak}^2 \right)^2}{\sigma_{\nu}^4} + \frac{\left(m_{\ell^- \bar{\nu}}^2 - m_{W^*, peak}^2 \right)^2}{\sigma_{W_*}^4} + \frac{\left(m_{\ell^- \bar{\nu}}^2 - m_{W^*, peak}^2 \right)^2}{\sigma_{W_*}^4} + \frac{\left(m_{\ell^+ \nu}^2 - m_{W^*, peak}^2 \right)^2}{\sigma_{W_*}^4} + \frac{\left(m_{\ell^+ \nu}^2 - m_{W^*, peak}^2 \right)^2}{\sigma_{W_*}^4} \right],$$
two possible ways of paring ν and ℓ off-shell

Triple coupling from Single Higgs Processes

Talk by Stefano Di Vita

Gorbahn, Haisch '16

Degrassi, Giardino, Maltoni, Pagani '16

Bizon, Gorbahn, Haisch, Zanderighi '16

Talk by Stefano Di Vita

Bound on $\delta \kappa_{\lambda}$ from inclusive rates

[Grojean, Panico, Riembau, Vantalon, Di Vita '17]

Impact of differential single Higgs measurements

Talk by Ambresh Shivaji

Single Higgs fits to $\delta \kappa_{\lambda}$ can complement HH measurements

- Are there motivated models that predict only deviations in $\delta \kappa_{\lambda}$ (or a restricted set of coupling deviations)?
- Are there other ways to pin down deviations in other SM couplings (i.e., remove flat direction)? LHC? Future Colliders?

Differential measurements will provide additional handles - still early days

- No data available yet, impact of experimental systematics remains to be seen
- So far, differential rate studies carried out for HH, VBF, VH, ttH channels. It will also be interesting to extend to ggF

Enhancing Double Higgs Production with BSM

Talk by lan Lewis

Couplings different from the SM+EFT

• New physics in the loop.

New resonances.

• Double exotic Higgs production.

3/24

New colored states in Higgs pair production

 New colored scalars can in principle dramatically enhance
 Higgs pair production

 However, it is difficult to get a large di-Higgs enhancement and still be consistent with the observed single Higgs production rate

Naturalness and top partners

e.g., stops in SUSY stabilize Higgs mass

Stops are colored, couple strongly to Higgs, and thus can provide an important contribution to Higgs pair production

Di-Higgs modifications from stops

Factor of few enhancement in HH rate possible, particularly if top Yukawa is enhanced

Talk by Ian Low

In my view, one class of couplings that has not received enough attention is the HHVV coupling:

$$D_{\mu}H^{\dagger}D^{\mu}H \supset g^2h^2V_{\mu}V^{\mu}$$
 $\mathcal{S}^{W^{\pm}_{\mu}}$

This coupling can be probed by double Higgs production in the VBF channel!

 Simultaneous measurements of HVV, HHVV and TGCs provide a unique window into the pNGB nature of the 125 GeV Higgs.

Talk by Ian Lewis

Di-Higgs resonance

- Appears in many motivated models
- Connection to naturalness, dark matter, electroweak baryogenesis,...

 Resonance can enhance di-Higgs rate (single production) and also alter kinematics of final state Higgses

[Dawson, Lewis '15]

Talks by L. Cadamuro and P. Bokan

Interference effects in di-Higgs resonances

Talks by Ian Lewis, Marcela Carena

- · Off-shell interference:
 - Higher mass resonance, more important

Dawson, IL PRD92 (2015) 094023

pp \rightarrow hh (Singlet Model), $\sqrt{S} = 13 \text{ TeV}$

- On-shell interference:
 - Need phase between loops and imaginary part of propagator.

Carena, Liu, Riembau PRD 97 (2018) 095032

"Exotic" double Higgs production Type II 2HDM + Singlet Model

Talks by Nausheen Shah

- Categorize final states as
 - h₁₂₅ + visibles
 - mono-h₁₂₅
 - Z + visibles
 - mono-Z

Have we constructed and explored all motivated BSM scenarios with modifications to double Higgs production?

- Can we find new connections with the open questions (naturalness, dark matter, neutrinos, baryogenesis, etc.)
- Can we find interesting connections with other experimental or observational probes (astrophysics/cosmology, intensity, precision frontiers)

Does the experimental community require a prioritized categorization of BSM benchmarks for HH?

• EFT, non-resonant models (particles in the loop), resonances, exotic Higgses, ...

HE-LHC opportunities for HH

Rare channels potentially become important at HE-LHC

[Goncalves, Han, Kling, Plehn, Takeuchi '17]

Talk by Stefania Gori

Higgs self coupling at CEPC/FCC-ee

Talk by Anadi Canepa

HH production at ILC

Talk by Philipp Roloff

• ILC,
$$\sqrt{s}$$
 = 500 GeV, L = 4 ab⁻¹:
 $\Delta \lambda / \lambda = 27\%$ DESY-THESIS-2016-027

Triple Higgs Production?

Hopeless at LHC [Plehn, Rauch]

Maybe at 100 TeV pp collider (FCC-hh)?

[Papaefstathiou, Sakurai]

$$\mathcal{V}_{\text{self}} = \frac{m_h^2}{2v} (1 + c_3) h^3 + \frac{m_h^2}{8v^2} (1 + d_4) h^4$$

process	$\sigma_{ m LO}~({ m fb})$	$\sigma_{ m NLO} imes { m BR} imes {\cal P}_{ m tag} \ ({ m ab})$	$\epsilon_{ m analysis}$	$N_{ m 30~ab^{-1}}^{ m cuts}$
$hhh \to (bb)(bb)(\gamma\gamma)$, SM	2.89	5.4	0.06	9.7
$hhh \to (b\bar{b})(b\bar{b})(\gamma\gamma), c_6 = 1.0$	0.46	0.9	0.04	1.1
$hhh \to (b\bar{b})(b\bar{b})(\gamma\gamma), c_6 = -1.0$	7.94	15.0	0.05	22.5
$\overline{bbbb}\gamma\gamma$	1.28	1050	2.6×10^{-4}	8.2
$hZZ, ({ m NLO}) (ZZ o (bar b)(bar b))$	0.817	0.8	0.002	$\ll 1$
$hhZ,({ m NLO})(Z o (bar b))$	0.754	0.8	0.007	$\ll 1$
$hZ,({ m NLO})(Z o(bar b))$	8.019×10^{3}	1129	$\mathcal{O}(10^{-5})$	$\ll 1$
$bar{b}bar{b}\gamma + ext{jets}$	2.948×10^{3}	2420	$\mathcal{O}(10^{-5})$	$\mathcal{O}(1)$
$bar{b}bar{b} + \mathrm{jets}$	5.449×10^{3}	4460	$\mathcal{O}(10^{-6})$	$\ll 1$
$bar{b}\gamma\gamma + { m jets}$	98.7	4.0	$\mathcal{O}(10^{-5})$	$\ll 1$
hh + jets, SM	275.0	592.7	7×10^{-4}	12.4
$hh + \text{jets}$, $c_6 = 1.0$	153.8	331.5	0.001	9.9
$hh + \text{jets}$, $c_6 = -1.0$	518.2	1116.9	4×10^{-4}	13.4

Outlook

- Studies of double Higgs production are clearly important!
 - Provides the only direct probe of the self coupling
 - May provide clues to some of the open questions related to naturalness, baryongenesis, and others
- HH theory calculations are in good shape; what more can/should we do?
- Numerous examples on BSM in HH, already interesting constraints from Run-II data; keep exploring new ideas, connections to open puzzles, and novel signatures.
- Observing double Higgs remains challenging at HL-LHC. I expect there will continue to be breakthroughs in analysis methods/strategies. How can the theory/ phenomenology best help with this effort?
- A rich experimental program to determine the Higgs properties, and study HH production, is underway and has a bright future ahead!

Many thanks to the organizers!!!

