Radiation Protection at High Energy Accelerator Laboratories

<u>Heinz Vincke</u>, S. Roesler, M. Silari, C. Theis, Helmut Vincke, D. Forkel-Wirth DGS-RP, CERN

CAS, Varna 30th September 2010

Table of Content

- Some definitions
- Ionizing radiation
 - Prompt ionizing radiation
 - Radioactivity and ionizing radiation
- Radiological quantities and units
- Principles of radiation protection
- Radiation Protection for LHC
 - Radiation Monitoring
 - ALARA

Definition of Radiation Protection

Radiation protection: The protection of people from the effects of ionizing radiation, and the means for achieving this.

- Radiation Protection Training
- Assessment of radiological risks at work places
- Area monitoring
- Individual monitoring of personnel
- Control and characterization of radioactive material and waste
- Management of radioactive sources and waste
- Assessment of radiological risks related to new projects
- ...

At CERN: Responsibility of **CERN's Radiation Protection Unit**, providing expert advice, authorizing activities and controlling compliance of activities with RP rules.

Definition of Radiation Safety

Radiation safety: The achievement of proper operating conditions, preventions of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the environment from undue radiation hazards.

- shielding
- beam operation
- access system
- fire prevention
- ventilation
- optimized design of facility
- ...

Responsibility of **the owner of the source** emitting ionizing radiation (At CERN: Departments BE, PH, EN, TE)

Ionising Radiation

Ionising radiation are

- photons (X-rays, γ-radiation)
- particles (α-, β- (e⁺, e⁻), p⁺, p⁻, n, π⁺, π⁻, μ⁺, μ⁻...)

transporting sufficient energy to ionise directly and indirectly atoms and molecules

The interaction between ionising radiation and matter results in an energy absorption and a subsequent potential radiation damage of matter.

Ionising radiation is part of the nature and of human activities in medicine, research, industry, energy production and military

Prompt Ionising Radiation

hadron accelerator

cosmos

high energy, mixed radiation fields

Radiation Showers

Radiation showers development after impact of **ONE** hadron (120 GeV/c) on a copper target

Hadronic shower only

Hadronic shower + photons

8

Particle fields (SPS)

Attenuation of radiation H_0 (point source):

 $H = \frac{H_0 * e^{-d/l}}{R^2}$

d: shielding thickness R: distance I: attenuation free path concrete: I = 40 cm iron: I= 17 cm

Ambient Dose Equivalent Behind Shielding

Ionising Radiation due to Radioactivity

Radioactivity: the phenomenon whereby atoms undergo spontaneous random disintegration, usually accompanied by the emission of ionising radiation. The rate at which this nuclear transformations occurs in matter containing radionuclides is called **activity**. The equation is

$$A(t) = -dN/dt [Bq]$$
 1 $Bq = s^{-1}$ [1 $Ci = 3.7 \times 10^{10} Bq$]

where N is the number of nuclei of the radionuclide, and hence the rate of change of N with time is negative.

The radioactive **half-life** of a radionuclide is the time necessary for half of the nuclei present in the sample to decay

Radionuclides are either natural occurring or produced by nuclear reactions (artificial radionuclides).

Chart of Nuclei

Radioactivity

β-, γ-emitter:

Terrestrial Radionuclides

During the creation of the earth, terrestrial nuclides had been incorporated into the earth crust ($T_{1/2}$ some millions of years)

Nuclide	Symbol	Half-life	
Uranium-235	²³⁵ U	7.04 x 10 ⁸ a	0.72% of natural Uranium
Uranium-238	²³⁸ U	4.47 x 10 ⁹ a	99.3% of natural Uranium
Thorium-232	²³² Th	1.41 x 10 ¹⁰ a	
Potassium-40	⁴⁰ K	1.28 x 10 ⁹ a	Earth: 0.037-1.1 Bq/g

...and some more:

⁵⁰V, ⁸⁷Rb, ¹¹³Cd, ¹¹⁵In, ... ¹⁹⁰Pt, ¹⁹²Pt, ²⁰⁹Bi, ...

Uranium-Radium Decay Chain

Nukleonenzahl

www.periodensystem.net

Radon Map of Switzerland

Cosmogenic Radionuclides

Cosmogenic nuclides are produced by nuclear reaction of cosmic particles with stable nuclei of the atmosphere

Nuclide	Symbol	Half-life	Nuclear Reaction
Carbon-14	¹⁴ C	5730 a	e.g. ¹⁴ N(n,p) ¹⁴ C;
Tritium-3	³ Н	12.3 a	Interaction of cosmic radiation with N or O; ⁶ Li(n,alpha) ³ H
Beryllium-7	⁷ Be	53.28 d	Interaction of cosmic radiation with N or O

More cosmogenic radionuclides: ¹⁰Be, ²⁶Al, ³⁶Cl, ⁸⁰Kr, ...

Note: ⁷Be and Rn decay products are always found in intake filter

...and we find radioactivity in our body

Nuclide	Total activity in human body (~ 70 kg)
Uranium	~ 1 Bq
Thorium	~ 0.1 Bq
Potassium 40	~ 4 - 5 kBq
Radium	~ 1 Bq
Carbon 14	~ 15 kBq
Tritium	~ 20 Bq

...e.g. the more muscles, the more Potassium 40..

Artificial Radioactivity

Reaction Mechanism:

- Fusion
- Fission
- High Energy Nuclear Reaction (Spallation)
- more hadronic nuclear reactions (p,n), (n,γ),
- Gamma induced nuclear reaction (γ,n)

Spallation

Production and Decay of Radionuclides

Rule-of-thumb (probably very obvious):

the shorter the half-life, the faster the build-up, the faster the decay

It takes about 5 half-lives to reach saturation of activity

When is a material radioactive?

• Activity

Specific activity exceeds the CERN exemption limits as given in Table 2 (column 2) of EDMS doc 942170

AND

 total activity exceeds the CERN exemption limits as given in Table 2 (column 2) of EDMS doc 942170.

OR

Dose rate

- Ambient dose equivalent rate measured in 10 cm distance of the item exceeds 0.1 uSv/h after subtraction of the background.
 - Slightly radioactive < 10 uSv/h
 - Radioactive < 100 uSv/h
 - Highly radioactive > 100 uSv/h

OR

Surface contamination

1 Bq/cm² in case of unidentified beta- and gamma emitters and 0.1 Bq/cm² in case of unidentified alpha emitters. Once a radio-nuclide has been identified then the CS-values given in Table 4 of EDMS doc 942170 can be used.

22

When is a material radioactive?

CERN CH1211 Genève 23	942170	REV. VALIDITÉ	(CERN)	Référence	942170 8.0 VALIDITÉ
Suisse		ρέςέρεως			Page 10 de 48
CERNY		REFERENCE	Nuclide	LE [Bq/kg] and LE _{abs} [Bq], Operation	LE [Bq/kg] and LE _{abs} [Bq], Design studies
			V-47	2.00E+05	2.00E+05
		Date: 02-12-2009	V-48	5.00E+03	1.00E+03
			V-49	6.00E+05	6.00E+05
		in puls	Cr-48	5.00E+04	5.00E+04
Operati	ional Radiation Protect	ion Rule	Cr-49	2.00E+05	2.00E+05
			Cr-51	3.00E+05	1.00E+05
			Mn-51	1.00E+05	1.00E+03
			Mn-52	6.00E+03	1.00E+03
			mMn-52	1.00E+05	1.00E+03
Exemption a	and Clearance d	f Matorial at	Mn-53	3.00E+05	1.00E+05
	and clearance c		Mn-54	1.00E+04	1.00E+02
	CERN		Mn-56	4.00E+04	1.00E+03
	U LINI		Fe-52	7.00E+03	1.00E+03
			Fe-55	3.00E+04	3.00E+04
			Fe-59	6.00E+03	1.00E+03
			Fe-60	9.00E+01	9.00E+01
			Co-55	9.00E+03	1.00E+03
			Co-56	4.00E+03	1.00E+02
			Co-57	5.00E+04	1.00E+03
			Co-58	1.00E+04	1.00E+03
			mCo-58	4.00E+05	4.00E+05
			Co-60	1.00E+03	1.00E+02
			mCo-60	6.00E+06	1.00E+05
DOCUMENT PRÉPARÉ PAR :	DOCUMENT VÉRIFIÉ PAR :	DOCUMENT APPROUVÉ PAR :	Co-61	1.00E+05	1.00E+04
S. Roesler / DG-SCR	N. Conan / DG-SCR	D. Forkel-Wirth / DG-SCR	mCo-62	2.00E+05	1.00E+03
C. Theis / DG-SCR	T. Otto / DG-SCR		Ni-56	1.00E+04	1.00E+04
	L. Ulrici / DG-SCR		Ni-57	1.00E+04	1.00E+04
	Heinz Vincke / DG-SCR		Ni-59	2.00E+05	1.00E+05
	M. Widorski / DG-SCR		Ni-63	7.00E+04	7.00E+04
			Ni-65	6.00E+04	1.00E+03
			Ni-66	3.00E+03	3.00E+03
			Cu-60	1.00E+05	1.00E+05
	GROUPE D'APPROBATION		Cu-61	8.00E+04	8.00E+04
			Cu-62	1.00E+04	1.00E+04
			Cu-64	8.00E+04	1.00E+04
			Cu-66	3.00E+03	3.00E+03
		[]	Cu-67	3.00E+04	3.00E+04
			Zn-62	1.00E+04	1.00E+03
			Zn-63	1.00E+05	1.00E+04

Activation of Material at Hadron Accelerators

Beam losses result in the activation of material (beam line components, tunnel structure, etc.)

Activation

of air, gas, water, cooling liquids at hadron accelerators

Radiological Quantities and Units

Absorbed Dose D:
Unit:energy absorbed per mass
1 Gy = 1 J/kg
[1 Gy = 100 rad] $D = \frac{1}{m} \int E dV$ Equivalent Dose H:
Unit:absorbed dose of organs weighted by
the radiation weighting factor w_R of radiation R:
1 Sv (= $w_R \times Gy$)
[1 Sv = 100 rem] $H_T = \sum_R w_R D_{T,R}$

Effective dose E: Unit: Sum of all equivalent doses weighted with the weighting factor w_T for tissue T 1Sv

$$E = \sum_{T} w_{T} H_{T}$$

Radiation Weighting Factors

Type and energy of radiation R	Radiation weighting factor, w _R
Photons, all energies	1
Electrons and muons, all energies	1
Neutrons:	
<10 keV	5
10 to 100 keV	10
> 0.1 to 2 MeV	20
> 2 to 20 MeV	10
> 20 MeV	5
Protons, other than recoil protons, E > 2 MeV ICRP 103 (protons and charged pions)	5 (2)
Alpha particles, fission fragments, heavy nuclei	20

27

Neutron Radiation Weighting Factors (ICRP 103)

Values for neutrons replaced by a continuous function in ICRP 103 (2007)

Biological Effects

Stochastic effects:

no dose threshold (linear function of dose)

increase of probability by 5% per Sv for:

genetic defects cancer

result does not depend on the amount of absorbed dose but the probability of having the effects is proportional to the dose absorbed.

delayed health detriments

Deterministic effects:

dose received in short time interval dose threshold: > 500 mSv

immediate consequences: vomiting immun deficiency erythema and necrose

health detriments are function of the dose

lethal dose: 5 – 7 Sv

<u> 30 </u>

General Principles of Radiation Protection Legislation

1) Justification

any exposure of persons to ionizing radiation has to be justified

2) Limitation

the personal doses have to be kept below the legal limits

3) Optimization

the personal doses and collective doses have to be kept as low as reasonable achievable (ALARA)

Dose Limits

	Dose limits for 12 months consecutive (mSv)				
	Non-occupationally	Occupationally exposed persons			
	exposed persons	В	А		
EURATOM	< 1	< 6	< 20		
Germany/France	< 1	< 6	< 20		
CERN	< 1	< 6	< 20		
Switzerland	< 1	< 2	.0		

Radiation Area Classification – One Mean to Limit Doses

	Area	Dose limit	Ambient dose equivalent rate		Sign	CERN
		[year]	Work place	Low occupancy		
	Non-designated	1 mSv	0.5 µSv/h	2.5 µSv/h		
	Supervised	6 mSv	3 µSv/h	15 µSv/h	Dosimèter obligatory Dosimètre obligatoire Protection Radiprotection Radiprotection Radiprotection	
Area	Simple	20 mSv	10 µSv/h	50 µSv/h	Dosimèter obligatory Dosimètre obligatoire Protection Radiprotection Radiprotection Radiprotection	Ø
iation /	Limited Stay	20 mSv		2 mSv/h	LIMITED STAY SÉJOUR LIMITÉ Dosimeters obligatory Dosimètres obligatoires	ed Are
Rad	High Radiation	20 mSv		100 mSv/h	HIGH RADIATION HAUTE RADIATION Dosimeters obligatory Dosimètres obligatores	Controll
	Prohibited	20 mSv		> 100 mSv/h	PROHIBITED AREA ZONE INTERDITE No Entry Défense d'entrer	Ŭ

Courtesy N. Conan, M. Widorski

Safety Instruction S3-GSI1, EDMS 810149

Optimization

- Any justified job is considered as optimized when different appropriate solutions have been evaluated and judged against each other from the radiation protection viewpoint,
- The decisional process leading to the chosen solution can be reconstructed at any time, and the risk of failure and the elimination of radioactive sources have been taken into account.
- Optimisation can be considered as respected if the activity never gives rise to an annual dose of more than 100 μSv for persons professionally exposed or 10 μSv for members of the public

Occupational Exposure of CERN Personnel

Evolution of collective dose equivalent for personnel monitored in person-mSv per year

The decrease of collective neutron dose equivalent is due to the subtraction of natural background (1999) and to the introduction of a technically more advanced dosimeter (2001).

Distribution of Personal Annual Doses

Dose	Persons	Persons	Persons	Persons	Persons
interval	Concerned	Concerned	Concerned	Concerned	Concerned
(mSv)	(2005)	(2006)	(2007)	(2008)	(2009)
0.0	3074	4192	5131	5143	5042
0.1-0.9	1522	1738	898	1020	1219
1.0-1.9	53	37	33	40	39
2.0-2.9	9	17	2	3	13
3.0-3.9	3	4	1	1	2
4.0-4.9	4	2	1	1	-
5.0-5.9	1	-	-	-	-
> 6.0	-	-	-	-	-

Distribution of personal annual dose equivalent from 2004 on in intervals of increasing personal dose. The majority of monitored persons did not receive any personal dose. In 2009 only 54 persons exceeded an annual dose of 1 mSv.

CERN Reference Levels

Year	Number of persons with effective doses above 6 mSv/year	Activity		
2000	13	Cable changes, beam instrumentation, transport, radiation protection		
2001	2	Transport, maintenance of beam instrumentation		
2002	2	Transport		
2003	5	Transport, radiation protection, Gamma radiography		
2004	0			
2005	0	Occupationally		
2006	0	exposed workers:		
2007	0	Annual individual,		
2008	0	effective dose should		
2009	0	stay below 6 mSv		

Radiation Monitoring - ARCON/RAMSES

38

Monitors for Protection of Environment

ARCON and RAMSES use the same/similar type of monitors

Operational Radiation Protection Monitors

ARCON and RAMSES use the same/similar type of monitors

REM counter

Gas filled, high pressure ionization chamber

Beam-on: to protect workers in areas adjacent to accelerator tunnels and experiments against prompt radiation (mainly neutrons, E < some GeV) Alarm function

Air filled ionisation chamber

Beam-off: to protect workers during maintenance and repair against radiation fields caused by decay of radionuclides (mainly gammas, E < 2.7 MeV) **No alarm function**

Operational Radiation Protection Monitors

LHC Area Monitoring

42

LHC Area Classification – Beam On

beam line (without shielding)	Dose for full beam loss (Gy)	Dose rate at quench limit (Sv/h)	Dose rate c beam gas i (mSv/h)	caused by nteractions
sinciding)			ultimate	nominal
1 m	5500	10	20	14
2 m	2500	5	10	7
3 m	1200	3.3	7	5
5 m	500	2	4	3
Remark: all dos ncreased by a	se and dose ra a factor of 20 %	ates have to be o 6 to 30 % outsid	doubled inside le due to phot	e and tonic
Remark: all doe ncreased by a contribution Quench lin Beam gas days) → 2	se and dose ra a factor of 20 % mit: 1E7 pro interactions 21400/(m s)	ates have to be o 6 to 30 % outsid ptons/(m s) (ultimate): ~1	doubled inside e due to phot E16/year (e and tonic
Remark: all dos ncreased by a contribution Quench lis Beam gas days) → 2 Attenuatio	se and dose ra a factor of 20 % mit: 1E7 pro interactions 21400/(m s) on of concre	ates have to be o 6 to 30 % outsid otons/(m s) (ultimate): ~1	doubled inside le due to phot E16/year (e and tonic
Remark: all dos ncreased by a contribution Quench lis Beam gas days) → 2 Attenuation 100 cm co	se and dose rates factor of 20 % mit: 1E7 pro- interactions 21400/(m s) on of concre- oncrete \rightarrow f	ates have to be of 6 to 30 % outsid ptons/(m s) (ultimate): ~1 ete: factor ~ 10	doubled inside e due to phot E16/year (e and tonic
Remark: all dos ncreased by a contribution Quench lis Beam gas days) → 2 Attenuation 100 cm co 200 cm co	se and dose rates factor of 20 % mit: 1E7 productions interactions 21400/(m s) on of concrete oncrete \rightarrow for for the factor of	ates have to be of 6 to 30 % outsid ptons/(m s) (ultimate): ~1 ete: factor ~ 10 factor ~ 100	doubled inside e due to phot E16/year (e and tonic
Remark: all dos noreased by a contribution Quench lis Beam gas days) → 2 Attenuation 100 cm co 200 cm co 300 cm co	se and dose rates factor of 20 % mit: 1E7 pro- interactions 21400/(m s) on of concrete oncrete \rightarrow f oncrete \rightarrow f oncrete \rightarrow f	ates have to be of 6 to 30 % outsid ptons/(m s) (ultimate): ~1 ete: factor ~ 10 factor ~ 100 factor ~ 1000	doubled inside e due to phot E16/year (e and tonic

Design of ATLAS shielding

Effect of trigger holes is small (~15%). When these holes are filled their impact will be even smaller.

Dose rate varies in USA15 along the wall. Worst case are $\sim 4 uSv/h$, and $\sim 2uSv/h$ in the central region where the trigger cable ducts are located.

Future Critical Regions of LHC

- Momentum and betatron cleaning regions at Points 3 and 7
- Beam dump caverns
- TCDQ/TCDS diluter system at Point 6
- TAS collimators in the ATLAS and CMS interfaces
- TAN neutral particle absorbers at Points 1 and 5
- Low- β regions at Points 1 and 5
- Dispersion suppressor regions at Points 1 and 5

How does it look?

⊒49

Detailed MC Calculations

- Remanent Dose Rates ranging from 0.1-20 mSv/h (cooling time of 8 hours to 4 months)
- Regular interventions
- Possible additional interventions on nearby elements (e.g., vacuum pumps, magnet modules, beam instrumentation
- Possible failure of elements

ALARA: Collimator Exchange LHC Point 7

Actions		Collective Dose / mSv					
		8h	1d	1w	1m	4m	
without permanent ba	keou	t					
CF with bolts	54.5	38.7	26.5	12.3	7.2	3.1	
CF with chain clamps	51.4	36.5	24.9	11.5	6.8	2.9	
CF with bolts + 2nd beam line	99.4	70.7	48.0	21.8	12.9	5.6	
CF with chain clamps+ 2nd beam line	95.3	67.8	45.9	20.7	12.3	5.3	
with permanent bakeout							
CF with bolts	28.0	19.5	13.9	6.7	3.9	1.7	
CF with chain clamps	24.9	17.3	12.3	5.9	3.4	1.5	
CF with bolts+ 2nd beam line	46.3	32.2	22.8	10.7	6.2	2.7	
CF with chain clamps+ 2nd beam line	42.2	29.3	20.7	9.6	5.5	2.4	

51

Dependency on Cobalt Content

Residual Dose Rate (μ Sv/h) as a function of the stainless steel Cobalt content (representative for location in front of the target support)

Implementation of ALARA at CERN

Already since December 2006:

- systematic, formalized approach
- Presently applied to the PS, ISOLDE, SPS and CNGS and LHC to be extended to all work in radiation areas
- "close collaboration" between RP and the maintenance team and the RSO

All work in radiation areas has to be optimised

- Supervised Radiation Area: general optimisation by shielding, optimised installation of workplaces...
- Controlled Radiation Areas: All work must be planned and optimised including an estimate of the collective dose and of the individual effective doses to the workers participating in the completion of the task (Dossier D'Intervention en Milieu Radioactif - DIMR).

most of the ALARA elements were already used all over CERN in the past.

ALARA at CERN - 3 levels

CRITÈRE DE DÉBIT DE DOSE

Débit d'équivalent de dose prévisionnel ($\dot{\it H}$) dans la zone d'intervention :

50 μS	v∙h⁻¹	2 mSv⋅h⁻¹
niveau I	niveau II	niveau III

CRITÈRE DE DOSE INDIVIDUELLE

Équivalent de dose prévisionnel individuel (H_i) pour l'intervention, ou pour l'ensemble des interventions de même nature lorsque celles-ci sont répétées plusieurs fois sur une année :

100	μSv	1 mSv	
niveau I	niveau II	1	niveau III

CRITÈRE DE DOSE COLLECTIVE

Équivalent de dose prévisionnel collective (H_c) pour l'intervention, ou pour l'ensemble des interventions de même nature lorsque celles-ci sont répétées plusieurs fois sur une année :

- ALARA procedures 3 levels:
 - If the rad. risk is low
 - <> very light procedure
 - If it is medium
 an optimization effort is required
 - If it is **high**
 - <> an optimization effort is required, the procedure will be submitted to the ALARA committee

CERN aims to optimize

- work coordination
- work procedures
- handling tools
- design
- material

to reduce dose to personnel

ALARA

Starts already during at the design phase:

- Choose the right material
- Design the components for optimised maintenance and repair (imagine yourself maintaining a radioactive component)
- Design the whole facility for optimised maintenance and repair (optimised lay-out, space, cranes, easy access to equipment, etc.)

55

• Consider remote handling as an option

Examples:

• Use of plug-in systems, e.g. for collimators allowing short installation and replacement times.

ALARA

Starts already during at the design phase:

Examples:

• Orientation of accelerator components in order to facilitate the access to the connection boxes at their less-radioactive end.

56

- Flanges for vacuum pipes which allow for easy coupling/de-coupling.
- Remote bake-out system for critical parts.
- Patch-panels for cables allowing an easier replacement and the use of especially radiation-resistant cables in high-loss areas.
- Use of cables with a radiation resistance of at least 500kGy.
- Placement of ionization chambers (PMI) to monitor remotely residual dose rates at locations with the highest expected losses.
- and....

Examples – CNGS horn water circuit repair

Leak in water outlet of cooling circuit of reflector

Observation:

- High refill rate of closed water circuit of reflector cooling system
- Increased water levels in sumps Reason:
- Inadequate design of water outlet connectors (machining, brazing)

Horn and Reflector Repair

\rightarrow Repair and exchange

- Detailed radiation dose planning and minimization
- Practice of repair/improvement work on the spare horn in order to reduce exposure time
- Each work step executed by up to 4 persons to reduce individual dose
- Additional local shielding (EN/MEF)

 → total integrated dose: 1.6 mSv

Inspection of the CNGS target

- Dry runs in 867 on spare target
- Installation (in TCC4) of
 - temporary concrete shielding + thick lead glass + plastic cover on the floor
 - remote controlled cameras
 - Motor to rotate the target
- Remote controlled transport of the target
- Inspection done with an endoscope
 - → total integrated dose: 287 uSv (17 persons, dose max 48 uSv)

Dismantling of TCX blocks in TCC6

- Modification of a forklift (EN/MEF)
 - Installation of a lead shield and lead glass
 - Design of a new 'fork' (EN/HE)

If ordering new shielding blocks consider that this forklift can be used for transport.
Think about modification of existing blocks

ALARA

61

Acknowledgement

M. Brugger (EN-STI) I. Brunner N. Conan A. Hess A. Herve D. Perrin C. Tromel

THANK YOU FOR YOUR ATTENTION!!