
Introduction  to accelerator physics                                      Varna,  19 September, 1 October 2010               Davide Tommasini : Magnets (warm)

Magnets (warm)

Davide Tommasini
CERN

 Recommended reading
 Basic principles
 Requirements
 Design
Manufacture
 Examples



Introduction  to accelerator physics                                      Varna,  19 September, 1 October 2010               Davide Tommasini : Magnets (warm)

N. Marks
http://cas.web.cern.ch/cas/UK-2007/Lectures/PDF/Marks/Marks-Magnets.pdf

http://www.cockroft.ac.uk/education/Construction.ppt
D. Einfeld

http://cas.web.cern.ch/cas/Italy%202008/Lectures/PDFs/Einfeld.pdf
CAS Bruges (case study + T. Zickler + A.Dael + S. Sgobba)

http://cas.web.cern.ch/cas/Belgium-2009/Lectures/Bruges-lectures.htm
G.E.Fisher

“Iron Dominated Magnets” AIP Conf. Proc., 1987 -- Volume 153, pp. 1120-1227

Recommended reading

http://cas.web.cern.ch/cas/UK-2007/Lectures/PDF/Marks/Marks-Magnets.pdf�
http://www.cockcroft.ac.uk/education/Construction.ppt�
http://cas.web.cern.ch/cas/Italy 2008/Lectures/PDFs/Einfeld.pdf�
http://cas.web.cern.ch/cas/Belgium-2009/Lectures/Bruges-lectures.htm�


Introduction  to accelerator physics                                      Varna,  19 September, 1 October 2010               Davide Tommasini : Magnets (warm)

Basic principles : hydraulic circuit

To make a fluid circulating 
you need a pump

A difference of pressure 
creates a flow

The flow density is:
v=Q/A

∆P = R x Q

Little pressure drop across the hoses
Hoses are the highways of water
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Basic principles : electric circuit

A difference of voltage 
creates a current flow I

∆V = R x I

Little voltage drop across the wires 
Wires are the highways of electricity

To produce electrical current 
you need a generator

The current density is:
J= I / A 
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Basic principles : magnetic circuit

A magnetomotive force 
creates a magnetic flux Φ

The flux density is:
B=Φ/A

NI =  R x Φ

Little magnetomotive force in the iron 
Iron is the highway of magnetic field

To produce a magnetic field 
you need a coil

air
gap

iron 
core

coil

current

magnetic field
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Basic principles : constitutive equations
R = length /(electrical conductivity x section)
R = length/ (magnetic permeability x section)

∫ H∙dl (Ampère’s law)
magnetomotive force  =

R xΦ (Hopkinson’s law)

µ0 = 4π∙10-7 Tm/A

H can be interpreted as “magnetizing pressure”
In ferromagnetic materials you can create high B “using” little Hdl

AA
R

⋅
=

⋅
=

µσ
1      1
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Basic principles : constitutive equations

For iron, above 1.5-2 T any increase of magnetic field costs a lot of magnetomotive force

Bozorth, 1951
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Basic principles : magnetic field generation
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Basic principles : energy
Over an elementary length dl of elementary section ds
the magnetizing pressure H⋅dl produces a field B

The associated energy is:

dsBdlHE ⋅⋅⋅=
2
1

In a magnet little magnetizing pressure is used in the
iron, most of energy is stored in air.
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Basic principles : inductance
The inductance is the equivalent of the inertia.
A large inertia (I)/inductance (L) means you need:
• a large force to suddenly increase the speed
• a large voltage to suddenly increase the current/field
 you can store energy in a wheel rotating at speed ω
 you can store energy in a coil supplied by a current i

When the magnetic field has to be quickly changed you
want to keep the inductance low, typically by reducing
the number of coil turns.

22

2
1

2
1 iLIE ⋅=⋅= ω
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Basic principles : forces

In case of a uniform magnetic field

Em = ½ B∙H∙V = ½ B∙H∙S∙x

F = dE/dx = ½ B∙H∙S

in air H=B/µ0

The magnetic force is then ≈ B2∙4 kgf/cm2

A key (2 cm2) in 
B = 1T ⇒ F =   8 kgf
B = 2T ⇒ F = 32 kgf
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Basic principles : force
On a conductor immerged in magnetic field

F = I∙LxB

Example for the Anka dipole: 
On a the external coil side with N=40 turns, I= 700A, L~2.2 m

in an average field of B= 0.25 T 

F= 40∙700 ∙ 2.2∙0.25 = 15400 N ~ 1.5 tonsf
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Basic principles : time varying fields

When magnetic field varies use laminations, possibly with silicon (1-4%) to increase resistivity

Varying magnetic field →  voltage difference (Faraday law)
This effect acts against the variation (Lenz law)

V = - ∂Φ/∂t
Currents are generated in electrical conducting materials :
• opposing to the penetration of the magnetic field
• producing losses

[ ]
σµµπ

δ
⋅⋅⋅⋅
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Magnet types
NORMAL : vertical field on mid-plane

SKEW : horizontal field on mid-plane

Dipole Quadrupole Sextupole Octupole
|B|=const                |B|=G·r |B|=1/2·B”·r2                   |B|=1/6·B”’·r3
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Field Harmonics
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Requirements of an accelerator magnet
• operation mode
• physical constraints (space, transport, weight ...)
• strength
• good field region (may depend on working point)
• field quality at the different working conditions
• physical aperture
• power supply
• cooling
• radiation
• alignment
• reliability
• protection

understand, understand, understand & discuss
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Design : C-dipole

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

1. determine the required amperturns
neglecting the amperturns spent in the iron 

NI = gap∙B/µ0

B= 1.5 T, gap = 0.1 m ⇒ NI = 120 000 A

2. determine the required pole width
tentative ~ good field region + 2.5•gap

3. determine the coil section
tentative ~ 1 (air) 5 (water) A/mm2 

4. draw a tentative cross section
equi-flux section

5. use FE code
2D, possibly 3D if magnet is short
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The C-dipole: optimization

1.2 T

1.85 T

60 000 A

1.35 T
1.7 T

1.5 T

1.45 T
1.7 T
1.5 T1.7 T

1.5 T

60 000 A
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Field harmonics
“ALLOWED” FIELD HARMONICS

Magnet Type Harmonics Example

Dipole, n0=1 n=n0+2i 3,5,7,...

Quadrupole, n0=2 n=n0+4i 6,10,14,...

Sextupole, n0=3 n=n0+6i 9,15,21,...

Octupole, n0=4 n=n0+8i 12,20,28,...

                                                                                                      

    
50 100 150 200 25
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Design : losses
 In a coil of cross section S, total current I, per unit of length l,  

 In the yoke we have losses due to:
• hysteresis: up to 1.5 T we can use the Steinmetz law

• eddy currents: for silicon iron, an approximate formula is

where dlam is the lamination thickness in mm

2]/[ / I
S

mWlP ⋅=
ρ

mTcu ⋅Ω⋅−⋅+⋅= −810))20(0039.01(72.1ρ

mTAl ⋅Ω⋅−⋅+⋅= −810))20(0039.01(65.2ρ

steelsilicon for  0.02about  ,1.001.0  with ]/[ 6.1 ÷=⋅⋅= ηη BfkgWP
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Design : cooling with water
To increase the temperature of 1 kg of water by 1°C we need 1 kcal=1/4.186 kJ.

T
kWP

T
kWPlQ

∆
⋅≈

∆
⋅=

][15][3.14min]/[

To efficiently cool a pipe you need the fluid velocity be greater than zero on the 
wall, i.e. the flow being moderately turbulent (Reynolds > 2000):

C40~atfor water  ]/[][140~ °⋅⋅
⋅

= smvmmdvdRe υ
Small pipes need high velocity, however attention to erosion (v>3m/s)!
As cooling pipes in magnets can be considered smooth, a good approximation 
of the pressure drop ∆P as a function of the cooling pipe length L, the cooling 
flow Q and the pipe hole diameter d is derived from the Blasius law, giving:

75.4

75.1

][
min]/[][60][

mmd
lQmLbarP ⋅⋅=∆
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Design : cost

 Design 
 Tooling (punching, stacking, winding, molding) 
Materials
Manufacture
 Assembly + ancillaries + tests

 Other systems (cooling, power converters & distribution)
 Running costs (electric power, maintenance)

fixed

unitary
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Basic magnets
Magnet Pole shape Transfer function Inductance (H)

w  : pole width
g : vertical gap parallel B=µ0NI/g L=µ0N2A/g

A ≈ (w+1.2⋅g)⋅(l+g)

w  : pole width
g : vertical gap parallel B=µ0NI/g L=µ0N2A/g

A ≈ (w+1.2⋅g)⋅(l+g)

w  : pole width
g : pole gap 
t   : coil width

parallel B=µ0NI/g
L=2µ0N2A/g

A ≈ (d+2/3t)⋅(l+g)

w  : pole width
g : pole gap
t   : coil width 

parallel B=µ0NI/g L=µ0N2A/g
A ≈ (d+2/3t)⋅(l+g)

R  : aperture radius
d  : coil distance
t   : coil width 

2xy=R2 B(r)=G⋅r
G=2µ0NI/R2

L=8µ0N2A/R
A ≈ (d+1/3t)⋅(l+2/3R)

R  : aperture radius
d  : coil distance
t   : coil width 

3x2y-y3=R3 B(r)=S⋅r2=½B”⋅r2

S=3µ0NI/R3
L=20µ0N2A/R

A ≈ (d+1/3t)⋅(l+1/2R)

~0.95 efficiency may be introduced in the transfer function
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SR facilities : storage ring dipoles
ELETTRA ALS ESRF ANKA ASP ALBA SOLEIL SPRING-8 SLS DIAMOND

Bending radius [m] 5.5 ∞ 23.37 5.56 ∞ 7.05 5.36 39.27 5.73 7.16

N. of magnets 24 36 64 16 28 32 32 88 36 48

Dipole field [T] 1.21 1.35 0.86 1.5 1.3 1.42 1.71 0.68 1.4 1.4

Gradient [T/m] 2.86 5.19 0 0 3.35 5.65 0 0 0 0

Gap [mm] 70 50 54 41 42 36 37 64 41 46.6

Current [A] 1420 924 700 ? 660 695 530 538 1090 557 1337

ANKA ALBA ELETTRA SLS

SPRING-8

ASP

DIAMOND
SOLEIL SPEAR3

Gap = 50 mm  B= 1.4 T  G= 3.6 T/m

CLS
Gap=45 mm B= 1.35 T  G= 3.8T/m
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• Permanent magnet because of space between DTL tanks
• Sm2Co17 permanent magnets
• Integrated gradient of 1.3 to 1.6 Tesla
• 15 magnets
• Magnet length 0.100 m
• Field quality/amplitude tuning blocks

25

Pictured :  Cell-Coupled Drift Tube Linac module.

DTL tank

Permanent Magnets : LINAC 4
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Gradient: > 530 T/m
Aperture Ø: 8.25 mm
Tunability: 10-100%

Hybrid Magnets : CLIC final focus
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Manufacture : coils
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Manufacture : yoke
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Manufacture : yoke
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Manufacture : yoke
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Manufacture : yoke
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Manufacture : yoke
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MBW in the LHC : H-type dipole / 1
Parameter Value

Aperture 52 mm

Nominal field 1.42 T

Magnetic length 3.4 m

Weight 18 t

Water flow 19 l/min

Power 29 kW
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MBW in the LHC : H-type dipole / 2
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MQW Magnets
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Type VII
Type III

Type III - Assembly

Types  - I to X
Core O.D. - 113 to 245 mm
Core Length - 25 to 203 mm
Aperture Diameter - 22 to 103 mm

Yoke half - stacked and glued 0.65 mm laminations
assembled with shrunk fit outer ring then potted.

200 A
Type III – Field MeasurementQuadrupole Lamination

LINAC-2 Quadrupoles
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32 Dipole magnets for Booster Ring
Magnet Weight - 12000 Kg
Core Length - 1537 mm
Aperture - 103 mm
Magnetic flux @ 1.4 GeV operation 1.064 T

Yoke construction:
Laminated core stacked between 
‘thick’ end plates assembled using 
external welded tie bars.  Lamination 
insulation achieved through a 
phosphatizing process. 

1.4 GeV Magnet Cycle
Spare Booster Dipole

‘Thick’ End Plate

Laminations

Welded tie Bars

BDL correction Windings
compensate the 1% difference between
the inner and outer rings.

Installed Booster Dipole

3
4

2
1

LINAC to Booster Booster to PS

Booster Ring

PS Booster Magnets
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Main units PS, combined function

Typical “TSTLHC” cycle for LHC 

1.256T, 900 ms, 25.08 GeV
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Combined function dipole / quadrupole, PS machine

Main coils (4) for dipole / 
quad. Field, Al, 20 turns 
total, 6000A max, 1.2TPole Face Windings

Figure of Eight Windings
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Septum magnet East Experimental area

Massive yoke, DC operated, 1.4 T in the gap, ferromagnetic 
chamber with  µ-metal shield around the north beam

High current density ( 80 A/mm2), 50 turns, 1300A, high 
cooling capacity of 15.6 m3/h
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Magnet with solid yoke parts assembled with bolts.

Main parameters
Name MDX
Type Vertical correcting dipole

Installation SPS experimental area
Nominal peak field [T] 1.33

Imax [A] 240
Résistance [Ω] 0. 305
Inductance [H] 0. 221

Yoke lenght [mm] 400
Gap [mm] 80

Total weight [kg] 1000

Corrector dipole North Experimental area



Introduction  to accelerator physics                                      Varna,  19 September, 1 October 2010               Davide Tommasini : Magnets (warm)

Main parameters
Name MCIA V
Type Vertical correcting dipole

Nominal peak field [T] 0.26
Imax [A] 3.5

N. Of turns 1014
Résistance [Ω] 13.9

Yoke lenght [mm] 450
Gap [mm] 32.5

Total weight [kg] 300

Magnet with glued laminated yokes assembled with bolts.

Corrector dipole in TI2 and TI8 LHC injection lines
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Magnet with laminations welded in a steel envelope 
H-type dipole, half-yokes assembled with welded plates

Main parameters
Name MBB
Type Bending dipole

Nominal peak field [T] 1.8
Imax [A] 4900

N. Of turns 16
Résistance [Ω] 4.46 . 10-3

Inductance [H] 0.018
Yoke lenght [mm] 2225

Gap [mm] 52
Total weight [kg] 17400

Main dipole in the SPS
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Magnet with laminations welded in a steel envelope 
half-yokes assembled with bolts.

Main parameters
Name MDVW
Type Vertical correcting dipole

Nominal peak field [T] 0.266
Imax [A] 55

N. Of turns 2 x 50
Résistance [Ω] 1.76
Inductance [H] 1.12

Yoke lenght [mm] 429
Gap [mm] 200

Total weight [kg] 1100

Corrector dipole for E-Cloud experiment in SPS
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Water-cooled magnet with plain conductor coils equipped 
with external water circuit.

Main parameters
Name MCVA
Type Vertical correcting dipole

Nominal peak field [T] 0.059
Imax [A] 5

Résistance [Ω] 12.5
Yoke lenght [mm] 400

Gap [mm] 170
Total weight [kg] 130

Corrector dipole for BBLR experiment in SPS
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Air-cooled magnet

Main parameters
Name MCVA
Type Vertical correcting dipole

Nominal peak field [T] 0.059
Imax [A] 5

Résistance [Ω] 12.5
Yoke lenght [mm] 400

Gap [mm] 170
Total weight [kg] 130

Corrector dipole for BBLR experiment in SPS
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Water-cooled magnet with insulators 

Main parameters
Name QTL
Type Quadrupole

Nominal gradient field [T/m] 24
Imax [A] 416

N. Of turns 4 x 42
Résistance [Ω] 0.276
Inductance [H] 0.390

Yoke lenght [mm] 2990
Inscribed radius [mm] 80

Total weight [kg] 9900

Separated insulators

Moulded insulating distributor

Quadrupole of TT40 (SPS to CNGS)
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Water-cooled magnet without insulators (insulating hoses).

Main parameters
Name MQI
Type Quadrupole

Nominal gradient field [T/m] ≥ 53.5
Imax [A] 530

N. Of turns 4 x 11
Résistance [Ω] 0.036
Inductance [H] 0.013

Yoke lenght [mm] 1400
Inscribed radius [mm] 16

Total weight [kg] 1070

Quadrupole of TI2 injection line to the LHC
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Spectrometer magnet in T7 line (LHCb )of East Hall
Parameter Value

Aperture 500 mm

Nominal field 1.4 T

Pole width 1000 mm

Pole length 1000 mm

Weight 65 t

Power 750 kW
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