Secondary Infrastructure
Or: Cold boxes and other stuff...

BTTB7
16.01.2019
André Rummler
Secondary Infrastructure?

- Mostly from the point of view of EUDET telescope user support at CERN – telescope (infrastructure) as a service
- Beam and beam instrumentation
- Telescope
- Slow control / Logging / Remote control / Automation
- Reconstruction software
- Analysis software
- And...?? Small stuff that gets forgotten or is deemed “luxury” but costs valuable beam time
- Tools → electronics, scintillator holder, lead bricks, rasps, valves, … → user workshop?
- Log books
- Positioning
- Cold box
Positioning

- Huge demand for small scale and large scale positioning:
 - Telescopes
 - DUTs
- @CERN: DESY table, XSCA table, (PI table – also mix and match between telescope)
- Mechanics astonishingly expensive and takes time to implement
- Increasing demand
Cold Boxes

- Why cooling – silicon detectors have heat dissipation, need increasingly lower temperatures with progressing radiation damage to avoid runaway: -20°C ... -40°C
- Have to be light tight but easily accessible for mounting and alignment
- Sounds simple but is not trivial
- Compared to the “real” detector:
 - Maximum flexibility
 - Devices not designed for proper heat transfer (PCB instead of stave concept)
 - No dedicated cooling effort
- Now a (not necessarily chronological) gallery of ATLAS pixel (R&D, IBL, ITK...) cold boxes 2009 – 2019
Cold Boxes – The Peltier Approach

• “Oslo” box ~ 2009

• Holders on rotating stages which were cooled by individually supplied and regulated (commercial PID controller) Peltier elements

• PCBs with sensors mounted with screws on holders and sensors cooled PCBs

• Peltier elements back cooled with water/glycol mixture by Huber chiller (mid range)

• Flushed with nitrogen

• Pro:
 − Peltier elements are simple and cheap

• Contra:
 − Absolute heat transfer insufficient
 − Only -15°C reached on frame stably this was not sufficient to manage -20°C on sensor
 − Box was very heavy and no stage available thus only manual adjustment of x-y position
 − Only four samples and care necessary to exclude collision
Cold Boxes – Dry Ice aka DOBOX

• Dry ice as a readily available and easily to handle cooling agent: -78°C

• First iteration pellets in box – cold but difficult to remove and quickly consumed

• Next iterations introduced (about three):
 - Dry ice slides
 - Separate compartment for exchange without heating up
 - Heating foil in the bottom for quick heating up
 - Better lid
 - Narrower version for DESY
 - Full mounting set (also used for all other boxes with base plate which became a standard: 1*1 grid of M5 threaded holes)

• Copper stripes attached to back of modules and base plate for heat transfer

• Pros:
 - No movable parts
 - Cheap
 - Big reserve of cooling power
Cold Boxes – Dry Ice aka DOBOX

- Temperature on sensor difficult to measure

- Cons:
 - Consumable
 - Heavy / Weight changes through sublimation
 - No Temperature Regulation
 - Attempted quite successfully counter heating with resistor and software PID controlled power supply
 BUT
 - Quite big overhead
Cold Boxes – Base plate cooled

- Derived from Dortmund lab setup
- Operated with silicon oil and a Julabo deep temperature chiller (-90°C)
- Possibility to pre-cool nitrogen for flushing
- Same principle used as in dry ice boxes: contact
- But realized (simulated) that most cooling happened actually through the air as sample mounting not optimized for heat conductivity
- Works well for cold box of FEI4 telescope
Cold Boxes – Heat Exchanger

- MPI box
- Purely air (nitrogen) cooling with heat exchanger back cooled with Julabo FP-90 deep temperature chiller
- Two versions: Second iteration a bit taller to accommodate new sensors
- Less precise but cheaper and sturdier remote controlled linear stages

Pros:
- Works very well down to -40°C
- Basically plug and play

Cons:
- Experienced some issues with this particular chiller
- Quite long cool down and warm up
- Now even lower temperatures and higher heat loads are required
Cold Boxes – Alternative

- Future requirements:
 - Lower temperatures
 - Higher heat loads
 - Faster cycles save beam time
 - Magnetic field
 - Light weight for lower energy beams
 - Easier alignment between samples

- Controlled liquid nitrogen evaporation

- Vortex tube:
 - Simple
 - Requires pressurized air
 - Noise
 - Maximum -50°C

- Cold air generator (e.g. TA-5000):
 - Promising
 - Turn key solution
 - Expensive
Backup