Two New Low Energy Beam Lines at the CERN North Area: from Design to Commissioning

M. Rosenthal, N. Charitonidis, Y. Karyotakis, A.C. Booth, P. Chatzidaki, E. Nowak, I. Ortega-Ruiz, P. Sala, P. Carriere, L. Gatignon, S. Girod, V. De Jesus, E. Harrouch, A. Rahmoun

14.01.2019

Outline

• Brief overview of the CERN North Area

- New VLE tertiary branches of the H2 and H4 beam lines
 - Beam line design, instrumentation and optics optimization
 - Development of full Monte-Carlo models and expected performance
 - Commissioning and first analysis of measured beam line data
- Summary

The CERN North Area

(see also introduction talk by A. Gerbershagen)

Hardware limitations of magnets

The CERN North Area

Extended by new "very low energy" branches in 2018

Hardware limitations of magnets

H2-VLE and H4-VLE

- Secondary hadron beam ~80 GeV/c on secondary target to produce locally a tertiary VLE beam (0.3 – 7 or 12 GeV/c)
- VLE beams composed of pions, protons, kaons, electrons, muons.
- Different target materials to optimize total particle rate vs. pion-positron-ratio:
 - Copper for p > 3 GeV/c
 - Tungsten for $p \le 3 \text{ GeV/c}$
 - (Lead for pure electron beams)
- First experiments are the two large-size detector prototypes (LAr-TPC) in the framework of the Neutrino Platform Project

Beam Line Design (H4-VLE)

Beam Optics Optimization

- Beam Optics Calculation and Tracking of the beam optics using MADX / MADX-PTC (Methodical Accelerator Design Polymorphic Tracking Code)
- Evaluation and optimization using the linear R-Matrix parameters

Beam Optics Optimization

- Tracking to obtain the entire beam behaviour
- Two different optimization goals achieved:
 - Maximizing particle transmission
 - Minimizing beam spot size at detector entrance

Monte-Carlo Simulations

- Full Monte-Carlo models implemented in Geant4 (via G4Beamline) and FLUKA
 - More realistic magnet geometry:

- Detailed modelling of concrete and iron blocks for shielding studies
- Implementation of magnetic field settings (beam optics)
- Full simulations of particle-matter interactions, e.g. particle production, transmission and decay

Expected Beam Line Performance (H2-VLE)

- Example: Expected beam line performance with GEANT4 (Physics List: FTFP_BERT)
- Secondary hadron beam @ 80 GeV/c
 - Assumed composition: 70% π^+ , 24% p, 6% K
 - Trigger rate normalized to 10⁶ secondaries at beginning of H2/H4 line per 4.8 seconds (spill length)
- Trigger rate reduces towards lower momenta
 - Rate jump between 3 and 4 GeV/c due to target material change
 - Simultaneous change of pion-to-positron ratio with material change

Expected Beam Line Performance (H4-VLE)

- Example: Expected beam line performance with GEANT4 (Physics List: FTFP_BERT)
- Secondary hadron beam @ 80 GeV/c
 - Assumed composition: 70% π^+ , 24% p, 6% K
 - Trigger rate normalized to 10⁶ secondaries at beginning of H2/H4 line per 4.8 seconds (spill length)
- Trigger rate reduces towards lower momenta
 - Rate jump between 3 and 4 GeV/c due to target material change
 - Simultaneous change of pion-to-positron ratio with material change

Beam Line Instrumentation

- Goals of the beam line instrumentation:
 - Transverse profiles for beam tuning
 - Trigger of experiment
 - Particle identification on event-by-event basis:
 - Momentum measurement
 - Time-of-Flight measurement
 - Tagging by Cherenkov light
- Installed detectors in H4-VLE:
 - Newly developed scintillating fiber detectors:
 - 8 beam profile monitors (XBPF)
 - 3 triggering monitors (XBTF)
 - 2 threshold Cherenkov counters using different pressures and/or gases

Beam Line Instrumentation

- Goals of the beam line instrumentation:
 - Transverse profiles for beam tuning
 - Trigger of experiment
 - Particle identification on event-by-event basis:
 - Momentum measurement
 - Time-of-Flight measurement
 - Tagging by Cherenkov light

p (GeV/c)	е	μ	π	K	р
1	CH1	TOF	TOF	/	TOF
2	CH1	TOF	TOF	/	TOF
3	CH1	CH2	CH2	TOF	TOF
4	CH1	CH2	CH2	TOF	TOF
5	CH1	CH1	CH1	CH2	!CH
6	CH1	CH1	CH1	CH2	!CH
7	CH1	CH1	CH1	CH2	!CH

XBPF (Profile)

XBTF (Trigger)

Commissioning of the 2 lines

- Commissioning of H2-VLE and H4-VLE in 2018
- First beam taken in H4-VLE end of September 2018 and H2-VLE in November 2018

First Commissioning Results of H4-VLE

- Measured trigger rates have been compared to Geant4 and FLUKA simulations
- A 95% percent efficiency for each trigger plane has been assumed.
- The data has been normalized to 1 Mio. events on the secondary target (VLE-target)
 - 1-3 GeV/c tungsten
 - 4-7 GeV/c copper
- Very good agreement of simulations with data could be achieved

First Commissioning Results of H4-VLE

- Particle ID on event-by-event basis requires combination of time-of-flight, reconstructed momentum and Cherenkov tagging
- Expected ToF vs. momentum diagram could be measured
- Available PID capacities depend on momentum:
- Momentum (GeV/c) 10^{3} Example for 3 GeV/c Cherenkov 1 Cherenkov 2 Events 300 Cherenkov $\times S_2 \times S_3 / S_2 \times S_3$ pion/muon-tagging positron- 10^{2} 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Momentum: 3 GeV/c tagging Deuteron 250 No light in both Cherenkovdetectors 200 preliminary 10 150 χ^2 / ndf 28.04/22 Index 486.1 ± 1.6 100 24.84 ± 1.73 Protons Kaons _k 0.2 Proton e 0.1752 ± 0.0044 50 mu 0.05343 ± 0.01314 0.1 Positron Kaōn preliminary pions 0.58 ± 0.01 100 110 120 130 140 150 160 170 90 150 160 80 90 140 100110 120 130CO, Pressure [bars] TOF (ns) TOF (ns)

preliminary

 10^{4}

Summary

- The CERN North Area has been extended within the framework of the CERN Neutrino Platform Project.
- Two new very low energy branches extending the existing H2 and H4 beam lines have been successfully designed and commissioned.
- First experimental data for the DUNE collaboration could be taken end of 2018.
 - The observed beam line performance in H4-VLE agrees well with the expectations obtained by two different Monte-Carlo-Codes GEANT4 and FLUKA.
 - Similar measurements performed in H2-VLE, analysis on-going.
- First analysis also indicate a good prediction of the beam composition at various momenta.
 - More detailed analysis on-going.

