the INSULAb telescope

a modular and versatile tracking system for beam tests

Mattia Soldani

Università degli Studi dell'Insubria

7th BTTB Workshop

CERN January 14th-18th 2019

outline

- the INSULAb telescope detectors
 - sensors and electronics
 - modular mechanics (to its highest!)
- the (very!) wide range of applications
 - high performance tracking and multiplicity measurement at many energies and intensities
 - particle physics, crystal
 characterization & detector
 R&Ds in 2018

the detectors

- double side CSEM sensors
- 1.92cm×1.92cm×300µm → low material budget
- 384 channels per side physical pitch is 25µm on junction side (½ floating) and 50µm on ohmic side → high spatial resolution
- full depletion in (36,54)V → low voltage requirement, along with the ±5V levels for the electronic chain
- strips-capacitors and capacitors-ASICs direct bonding;
 all on the same fiberglass support
 → robust

the detectors

→ very high spatial resolution at the price of a small transverse area — ideal for input beam characterization and precise angle measurement

- single side AGILE spare sensors → 2
 layers per module with different
 vistas
- large active area: ~9.29×9.29cm²
- 384 channels per side with physical pitch 121µm and readout pitch 242µm → spatial resolution is ~30µm
- thickness is 410µm per layer → 820µm per module
- same robustness (direct bonding, ASICs and sensor on the same fiberglass board) and low voltage requirement as the single side telescope modules

the readout electronics chain

optocoupler for bias adaptiononly for double side sensors

VME readout boards for trigger transmission to the detector and output digital signal storage → out-of-spill transmission to the PC.

3 128 channel **ASICs** per vista — 2 vistas in each box

repeater (1 per layer) for ASICs configuration & bias delivery

ADC boards for signal digitalization and transmission to VME crate (via flat ribbon cables)

the readout electronics chain

in-spill DAQ timing:

$$\frac{400}{f_{CLK}} + \frac{(10,20)\mu s \times N_{VRB} + 10\mu s \times N_{DIGI}}{(200,1200)\mu s} \Big|_{DIGI}$$

incompressible shift time; fCLK is 2.5MHz or 5MHz

initialization time for VRBs and digitizers

digitizers data readout; depends on digitizers features

 \rightarrow typically (300,500)µs in a crystal characterization beam test setup

storage in VRB memory banks & out-of-spill readout in $(2,10)s \rightarrow raw$ ntuples ready to use in few seconds!

	FRASCATI2014 Test Window				
	b				
▼ Writ	e file	run040070			
	Number of events (-1=inf):		15000		
	Run type (0=data, 1=pede, 4=NIM trig):		0		
	Hold GAMMA400 (0-10000 ns)		6000		
	Hold Chambers (0-10000ns)		800		
	CLOCK 0=5 1=2.5 2=1.25		2		
	Comments		ottom cluster		
		GO Debug			
		EXIT			

boxes and structures

boxes and structures

2018 LEMMA beam test @ H2

beam at high y & limited space along z for concrete blocks (rail on the upstream floor, magnet downstream) → robust solution with long plinth and Newport rails anywhere and anyhow

several beam tests in many different beams and experimental area conditions @ CERN (most of the lines). DESY and LNF between 2016& 2018...

INSULAb & ENUBET @ T9

- (0.5,10)GeV/c low intensity electron, muon and pion beam
- beam tests for calorimeters characterization → tracking system needed to draw efficiency and response maps, so large active area of the layers is needed

AXIAL @ H2 & OSCAR @ DESY

120GeV/c electrons & positrons for many crystal studies — (1,6)GeV @ DESY

input tracking performed with small high resolution double side sensors, larger ones in output

AXIAL @ H2 & OSCAR @ DESY

AXIAL @ H2 & OSCAR @ DESY

& straight crystals...

SELDOM @ H8

180GeV/c low divergence pion beam

no calorimetry, only the telescope in order to characterize channeling in long (up to 10cm!) bent crystals → this time the usage of 2 modules (large, single side) for output tracking is mandatory

10cm!

~8.0m

SELDOM @ H8

enormous bending angles, up to 16mrad \rightarrow it is fundamental that output modules (which are positioned at ~1m and ~2m respectively from the crystal center) have large transverse coverage \rightarrow sensors with resolution of ~30µm are enough to make all the channeling phenomena clearly distinguishable

KLEVER @ H2

120GeV/c electrons for the production of Bremsstrahlung photons → characterization of thick straight W crystals for the enhancement on photoconversion

intricate setup with

- multiple stages of Si sensors output stage mainly for multiplicity measurement
- trigger system based on scintillators coincidence & anticoincidence in order to deal with the central neutral stage

LEMMA@H2

intricate setup for $e^+e^- \rightarrow \mu^+\mu^-$ studies with 45GeV/c high intensity positron beam:

- 20 telescope vistas for input and output pattern reconstruction
 → complicated
 mechanical and cables
 configuration & careful
 alignment procedure
 needed
- coincidence of 5 trigger signals from scintillators
- many calorimeters and muon DT chambers

MUonE @ COMPASS

186GeV/c muon wide (size of several tens of cm) and intense beam hits a series of 16 tracking layers \rightarrow ~8 months feasibility test of a setup for muon-electron elastic scattering kinematics studies \rightarrow stability over time & DAQ remote control!

outlook

planning many upgrades in the readout chain — new boards, replacement of flat ribbon cables with optical fibers, etcetera...

development of multiple hit disambiguation methods signal correlation in double side layers, stereo layers, etcetera...

beam tests at LNF, DESY and Fermilab are under planning for 2019/2020

the INSULAb telescope:

- up & running off the shelf
- tracking with high spatial resolution
- tracking with wide transverse coverage
- multiplicity counting
- modular → many configurations

conclusions

the detector — technical specs

Detector	Double
Produced by	CSEM
ASIC	VA2
Detector dimensions [cm ²]	1.92×1.92
Number of readout channels	384
Bulk thickness [µm]	300
Resistivity [kΩ·cm]	> 4
Leakage current [nA/strip]	1.5-2.0
Full depletion bias voltage [V]	36-54
AC coupling	no (150 pF ext. cap.)
p-side - junction	
physical pitch [μm]	25
readout pitch [μm]	50
floating scheme	yes
n-side - ohmic	10-30
physical pitch [μm]	50
readout pitch [µm]	50
floating scheme	no
Fiberglass support	
shape	square
dimensions [cm ²]	12.5×12.5
thickness [cm]	1.0
ASIC connection	direct bonding

ASIC name	VA2
Process (N-well CMOS)	1.2 μm
Die surface [mm ²]	6.18×4.51
Die thickness [μm]	~600
Number of channels	128
Input pad size [µm²]	50×90
Output pad size [μ m ²]	90×90
ENC at 1 μ s of peaking time [e ⁻ rms]	$80 + 15 \cdot C_d$
Power consumption [mW]	170
Slow shaper peaking time [μ s]	1-3
Fast shaper peaking time [µs]	not present
Dynamic range [# MIPs]	±4
Current gain [µA/fC]	~25

the detector — technical specs

Item	Value
Dimension (cm ²)	9.5×9.5
Thickness (μm)	410
Readout strips	384
Readout pitch (μ m)	242
Physical pitch (μ m)	121
Bias resistor (M Ω)	40
AC coupling Al resistance (Ω /cm)	4.5
Coupling capacitance (pF)	527
Leakage current (nA/cm ²)	1.5

ASIC name	TAA1	
process (N-well CMOS)	0.8um	
die surface	5.174mm×6.919mm	
die thickness	~600um	
nr. of channels	128	
input pad pitch	100um	
output pad pitch	200um	
power consumption	<400uW/channel	

the readout electronics chain

repeater **ADC** FPGA Altera EP2C8

VME readout board

optocoupler

acronyms

- Enhanced NeUtrino BEams for kaon Tagging
- Oriented SCintillAtoR crystals
- **S**earch for the **EL**ectric **D**ip**O**le **M**oment of strange and charm baryons at LHC
- **K**_I Experiment for **VE**ry **R**are events
- Low EMittance Muon Accelerator