Platform-independent integration of DAQ software using docker containers

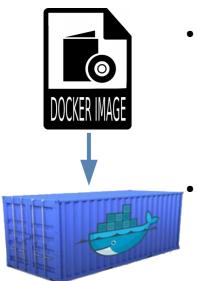
7th Beam Telescopes and Test Beams Workshop CERN January 15th-18th 2019

Jordi Duarte-Campderrós

Outline

- Why containers? ... What's a container?
- Using dockers with DAQ software
- A real case example: EUDAQ+BDAQ53
 - The last year's characterization suite for the next pixel modules at the IT of CMS Phase-II test beams

What's a container?



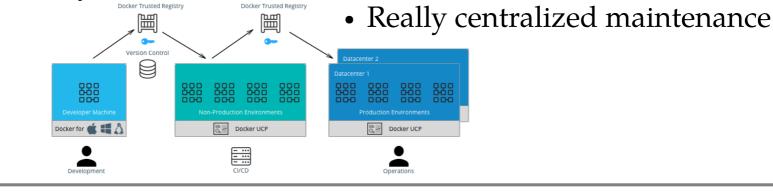
From docker web page: https://www.docker.com/resources/what-container

What is a Container

A standardized unit of software

• Packages up code and ALL dependencies → NO PLATFORM specific

- Standalone and executable package of software
 - Includes everything needed to run an application: code, runtime, system tools, system libraries and settings
 - Small sizes \rightarrow easy to ship, store and distribute
- Become a **container** at runtime (in docker, through a docker-engine)
 - Software isolated from environment (don't care **WHERE** is running)
 - Quick deployment, easy to go from DEV \rightarrow PROD environments


Why containers?

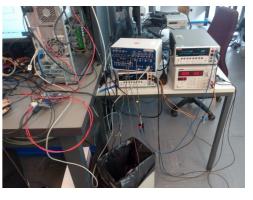
ASY_INSTALL) -?

((A BUNCH OF PATHS WITH "FRAMEWORKS" IN THEM SOMEWHERE)

- Minimized software installation
 - Free from dependency hell
- Multi-platform development and maintenance not needed
- Reproducibility → Same environment and code is used always: DEV ↔ PROD

Why containers (II)?

From docker "Why docker": https://www.docker.com/why-docker



BTTB7@CERN, Jan. 15th 2019 TB DAQ Software with docker -- jordi.duarte@cern.ch

- DAQ point of view: two typical environments while developing new sensors for HEP experiments:
 - The **LAB** environment, where parts or components of the modules (readout chips, sensors,...) are being tested or developed (new) functionalities
 - The **TEST BEAM** environment, where all these new functionalities are tested under a beam of particles, the working conditions the sensors are suppose to be, in order to characterize them

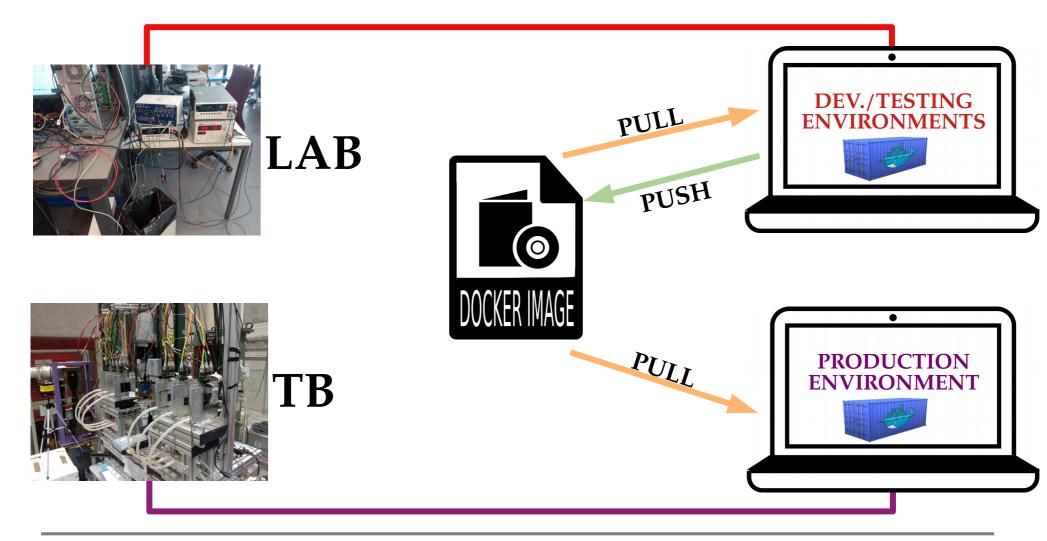


- DAQ point of view: two typical environments while developing new sensors for HEP experiments:
 - The LAB environment, where parts or components of the modules (readout chips, sensors,...) are being tested or developed (new) functionalities → the DEV. env.

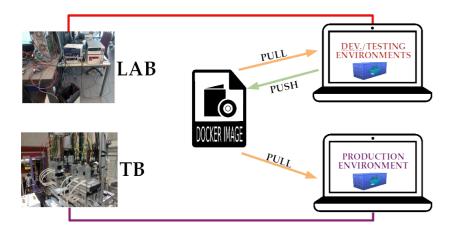
CONTINUOUSLY CHANGING

• DAQ point of view: two typical environments while developing new sensors for HEP experiments:

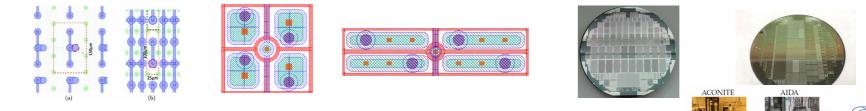
MODERATED CHANGES/STABLE


The TEST BEAM environment where all these new functionalities are tested under a beam of particles, the working conditions the sensors are suppose to be, in order to characterize them

 → the PROD. env.



- Minimize software installation (dependencies, libraries, ..)
- Exactly same software in the lab than in the Test beam areas (reproducibility)
- Simplified maintenance (no need for multi-platform support)
- Very quick deployment from LAB to TB areas
 - Changes, fixes, etc.. are very quickly propagated



DESY.

CMS Inner Tracker Phase-II: pixel sensors characterization campaign at 2018

 sensor technology (3D, planars), geometries (several thickness), geometry layout (25x100/50x50 um² pitch), radiation tolerance, ...

- Test beam characterization @ CERN and DESY
 - EUDET/AIDA-like telescopes
- New readout chip: **RD53A**

- Several DAQ systems (YARR/BDAQ53)
- Using a commercial FPGA board (Xilinx KC705)
- Several configurations/approaches for the chip carriers boards and FMC adapter cards

A real-case example

■ Ⅲ ♠ ♥ % %3			Zoom In Zoo	m Out					Today ▼ ← Past Futu
GANTT			2018	L	1.	July	I		
Name	Begin date	End date	April	May	June	July	August	September	October
 Irradiable sensor carrier PCB 	4/13/18	5/31/18		-			A 7/30/18		
 BDAQ53+KC705 DAQ for RS and TB 	5/2/18	5/31/18			1				
 Sensor flip-chippping 	4/16/18	5/31/18			h				
 Bare assembly gluing and bonding 	6/1/18	6/14/18							
 Radioactive Source testing (CERN) 	6/5/18	6/18/18				L.			
 Irradiation L3 (2.2e15) 	6/19/18	7/2/18							
 Beam 	6/19/18	6/25/18				ί – L			
 Cooling 	6/26/18	7/2/18							
 Irradiation L2 (5e15) 	6/19/18	7/16/18							
Beam	6/19/18	7/2/18				i h			
Cooling	7/3/18	7/16/18]		
 Irradiation L1/2 (10e15) 	6/19/18	8/13/18				1			
 Beam 	6/19/18	7/16/18					և		
Cooling	7/17/18	8/13/18							
 irradiation L1 (20 e15) 	6/19/18	8/27/18				1			
 Beam 	6/19/18	7/23/18				R.	h		
 Cooling 	7/24/18	8/27/18							
TB: OT + AIDA-2020	6/13/18	6/19/18							
 TB: SPS IT 	7/25/18	7/31/18							
TB: SPS IT	9/26/18	10/2/18							
 TB: SPS AIDA-2020 SPS 	10/3/18	10/9/18							
TB: SPS IT	10/24/18	10/30/18							

- Very tight agenda, with scheduled test beams while
 - Sensor modules (with RD53A assembled) not even delivered
 - BDAQ53 in continuous development (fixes, new functionalities, ...)
 - BDAQ53 integration into EUDAQ
 - Several open choices for the test beam setups (Mezzanines cards, adapter cards, ...)

→ EXCELENT USE-CASE FOR DAQ-SOFTWARE DOCKERIZATION

telescope

EUDET telescopes

https://telescopes.desy.de/Main Page

- **EUDET/AIDA-**like telescopes •
 - High resolution telescopes,
 - available around the world (CERN, DESY, SLAC, Bonn, ...);

Producer 0

Producer 1

Producer N

- stable (>10 years usage)
- **EUDAQ:** DAQ framework •

TLU

Allows to integrate your Device Under Test (DUT) into the DAQ infrastructure

Run Control

Storage

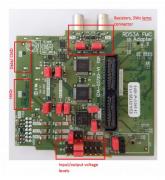
Monitor

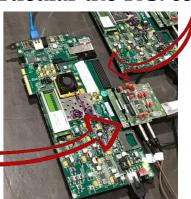
Data Collector

Log Collector



https://cds.cern.ch/record/2287593/files/%20RD53A_Manual_V3-42.pdf https://gitlab.cern.ch/silab/bdaq53


- **RD53A**: a demonstrator readout chip for HL-LHC upgrade of ATLAS and CMS
 - 65 um CMOS technology
 - Not a production chip
 - Several implemented choices (as Analog Front-Ends, ..)


• **BDAQ53**: Bonn DAQ for the RD53A chip

Supports several DAQ hardware platforms, in particular the KC705 (a commercial Kintex 7 FPGA type)

• Firmware modifications for the CMS IT setup made by **Esther Silva** (IFCA) in order to use the KC705 with the **CERN FMC** card

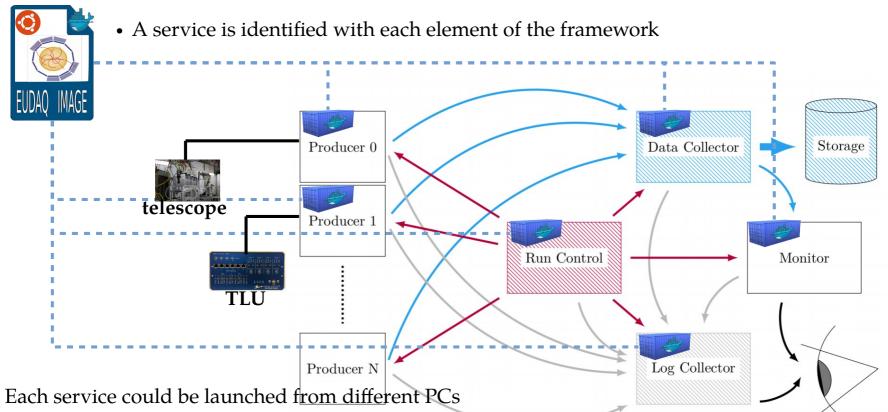
EUDAQ dockerization

https://github.com/duartej/dockerfiles-eudaqv1 https://github.com/duartej/dockerfiles-eutelescope

- Built over an Ubuntu 16
- EUDAQ v1.x-dev + all its dependencies
 - GCC-14, ROOT, QT5, ...
 - TLU and CMS Phase-I pixel support included
 - using eudaq fork: https://github.com/duartej/eudaq
 - Every change in this repo will trigger a new building in the dockerhub image repository
 - EUTelescope image: EUDAQ image + LCIO+EUTelescope
- Image creation and setup: https://github.com/duartej/dockerfiles-eudaqv1

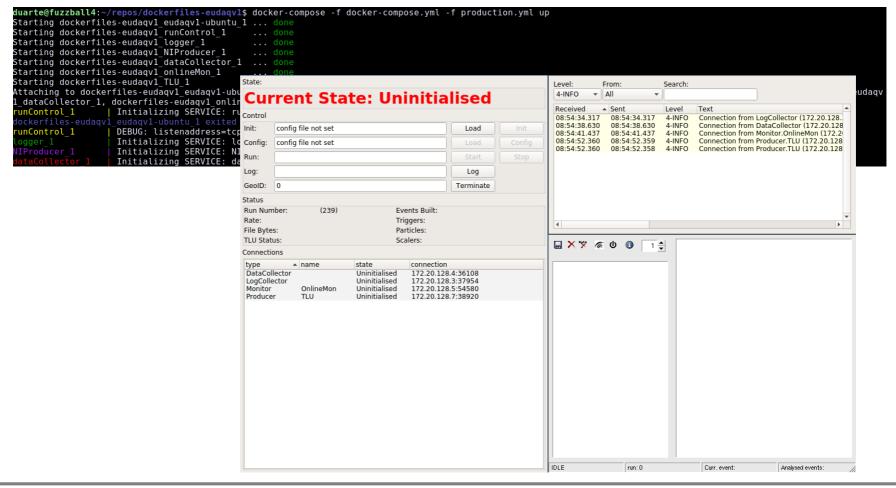
```
$ git clone -b eutelescope https://github.com/duartej/dockerfiles-eudaqv1
$ cd dockerfiles-eudaqv1
$ source setup.sh
$ docker pull duartej/eudaqv1-ubuntu:latest
$ docker-compose -f docker-compose.yml -f production.yml up
```

- docker-compose configurations are available to run properly each element of the framework (run control, data collector, ...)
 - Development & production configurations



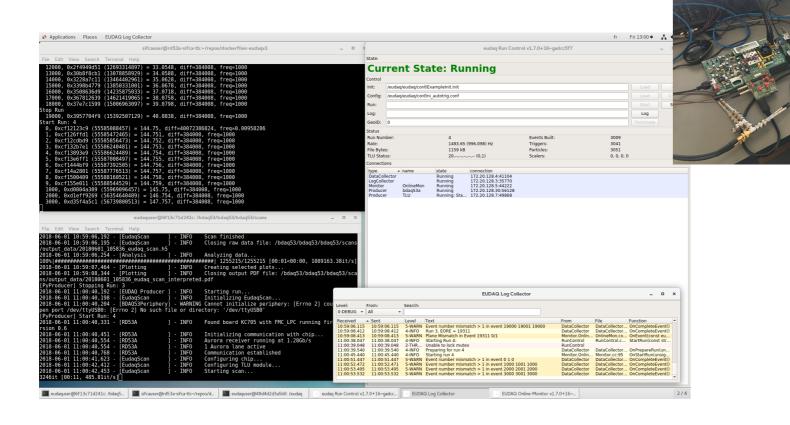
•

EUDAQ dockerization


- Data are shared if needed between containers
- Hardware communicate perfectly with the containerized services
- Only need to be exposed the IP address of RunControl service (all other elements are being attached to it)

EUDAQ dockerization

Example launching available services (default config.) in prod. :



EUDAQ dockerization

TLU and a RD53A with dockerized EUDAQ in a LAB setup:

18

TB DAQ Software with docker -- jordi.duarte@cern.ch

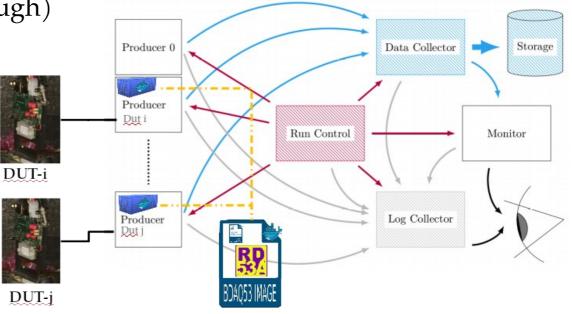
BDAQ53 dockerization

https://github.com/duartej/dockerfiles-bdaq53a

- Built over the EUDAQ image
- BDAQ53 dependencies
 - python mostly (numpy, scipy, matplotlib,...)
 - using bdaq53 fork: https://gitlab.cern.ch/sifca/bdaq53
 - Every change in this repo will trigger a new building in the dockerhub image repository
 - No master branch:
 - eutelescope branch: uses EUDAQ image as base
 - Plain branch: uses EUTELESCOPE image as base

• Image creation and setup: https://github.com/duartej/dockerfiles-bdaq53a

- \$ EDAQDOCKER=<path to dockerfiles-eudaqv1 local folder>
- \$ git clone -b eutelescope https://github.com/duartej/dockerfiles-bdaq53a.git
- \$ cd dockerfiles-bdaq53a
- \$ source setup.sh \${EDA0D0CKER}
- \$ docker pull duartej/bdaq53:eutelescope



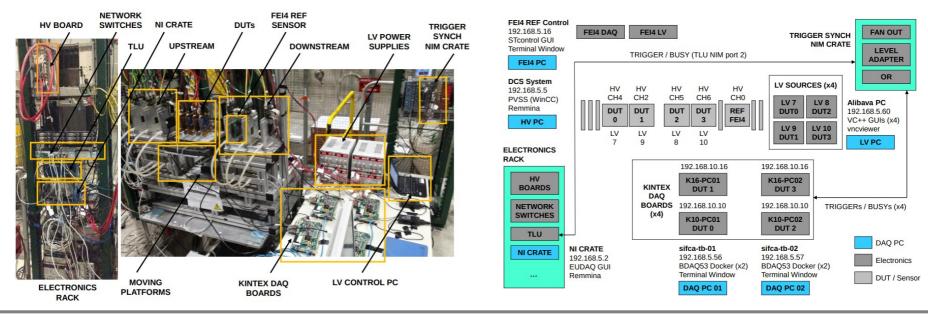
- The container is used to launch the BDAQ53 producer (chip command control and data sending controlled by the EUDAQ run control)
 - BDAQ53 is integrated into EUDAQ
- Each container is associated to a unique DUT
 - DUT isolated from the host computer (board IP address should be unique in the host PC, though)
 - Potentially the same PCs could control any number of DUTs, launching any number of containers (we tested up to 2 DUTS per PC)

BDAQ53 dockerization

Extracted from the oct.-2018 TB's shifter instructions slides:

Launching EUDAQ Producers (from ACONITE PC)

9


Online Monitor Producer	FEI4 REF sensor Producer				
Launch Online Monitor Producer from ACONITE PC:	Connect to FEI4 PC from ACONITE PC:				
• cd /home/telescope/software/eudaq-duartej-vlXdev	• ssh -X testbeamuser@192.168.5.16				
• bin/OnlineMon.exe -sc 0 -r tcp://192.168.5.2	Launch FEI4 REF sensor Producer from FEI4 PC:				
Use the Online Monitor to display a previous Run:	• cd /workl/testbeamuser/software/USBPix_rxdisable/bin				
• bin/OnlineMon.exe -sc 0 -f/data/run00XXXX.raw	• ./STcontrol_eudag -r 192.168.5.2				
BDAQ53 Docker Producer (DUT0)	BDAQ53 Docker Producer (DUT2)				
Connect to sifca-tb-01 from ACONITE PC:	Connect to sifca-tb-02 from ACONITE PC:				
• ssh -X sifcauser@192.168.5.56	• ssh -X sifcauser@192.168.5.57				
Launch the BDAQ53 Docker image from sifca-tb-01:	Launch the BDAQ53 Docker image from sifca-tb-02:				
• cd /home/sifcauser/repos/dockerfiles-bdaq53	• cd /home/sifcauser/repos/dockerfiles-bdaq53				
• docker-compose runrm scans-10	• docker-compose runrm scans-10				
• Introduce DUT ID [0,1,2,3]: 0	• Introduce DUT ID [0,1,2,3]: 2				
Launch BDAQ Producer from BDAQ53 Docker image:	Launch BDAQ Producer from BDAQ53 Docker image:				
• python scan_eudaq tcp://192.168.5.2 -b 0	• python scan_eudaq tcp://192.168.5.2 -b 2				
BDAQ53 Docker Producer (DUT1)	BDAQ53 Docker Producer (DUT3)				
Connect to sifca-tb-01 from ACONITE PC:	Connect to sifca-tb-02 from ACONITE PC:				
• ssh -X sifcauser@192.168.5.56	• ssh -X sifcauser@192.168.5.57				
Launch the BDAQ53 Docker image from sifca-tb-01:	Launch the BDAQ53 Docker image from sifca-tb-02:				
• cd /home/sifcauser/repos/dockerfiles-bdaq53	• cd /home/sifcauser/repos/dockerfiles-bdaq53				
• docker-compose runrm scans-16	• docker-compose runrm scans-16				
• Introduce DUT ID [0,1,2,3]: 1	• Introduce DUT ID [0,1,2,3]: 3				
Launch BDAQ Producer from BDAQ53 Docker image:	Launch BDAQ Producer from BDAQ53 Docker image:				
• python scan_eudaq tcp://192.168.5.2 -b 1	• python scan_eudaq tcp://192.168.5.2 -b 3				

Slide from Fco. Javier Gonzalez Sanchez

TB DAQ Software with docker -- jordi.duarte@cern.ch BTTB7@CERN, Jan. 15th 2019

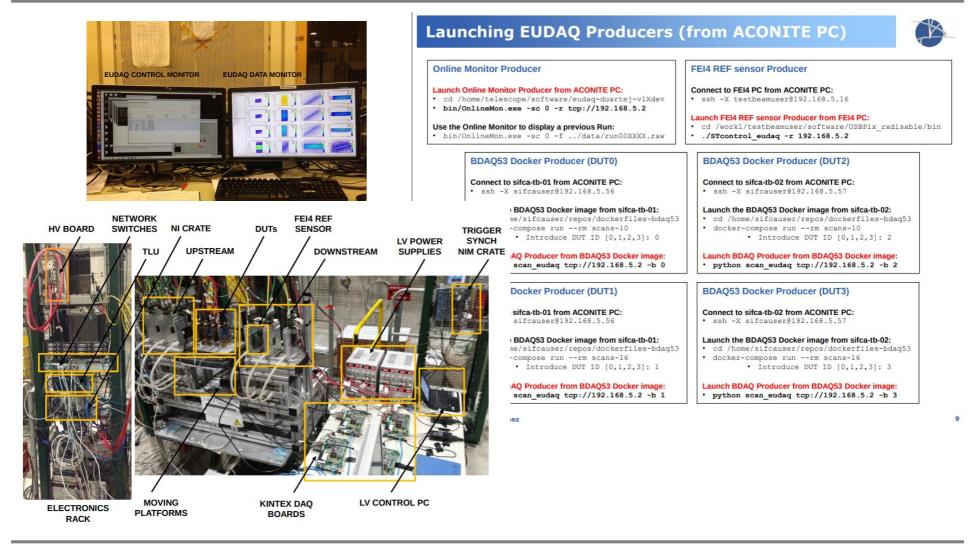
Deployment: CMS IT Phase-II TB campaign 2018

- EUDAQ containers routinely used at LAB
 - Never deployed at TB areas due to other high priority tasks, but ready to be tested
- BDAQ53 containers routinely deployed and used at test beams at CERN
 - Proof of concept and tests at first TB (June 2018), used on all posterior TBs, with increasing complexity (more DUTs)
 - Different areas (H6A, H6B, H2)
 - Up to 4 DUTs at the same setup: 2 DAQ PCs with 2 containers each

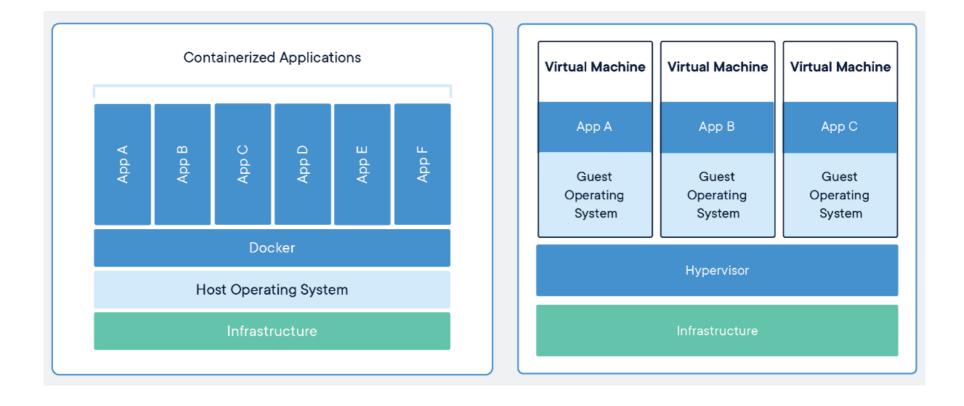
BTTB7@CERN, Jan. 15th 2019

TB DAQ Software with docker -- jordi.duarte@cern.ch

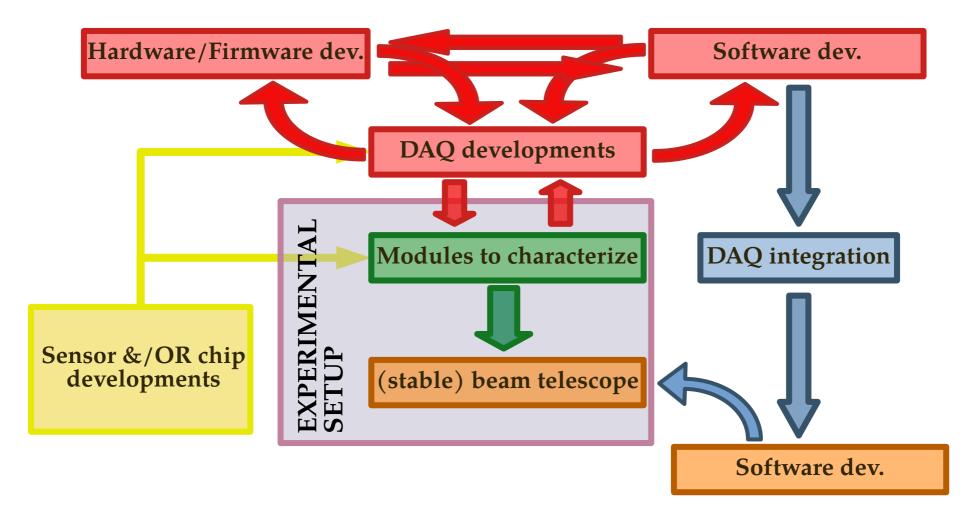
Conclusions



- DAQ software for EUDET telescopes and RD53A chip has been dockerized
 - No issues found (hardware communication, services communication, CPU and storage speed, ...)
- DAQ software containers SUCCESSFULLY used during the 2018 TB campaign for the CMS Inner Tracker Phase-II group
 - All data show in conf./workshops/papers/... from CMS IT Phase-II obtained at CERN during 2018 was taken with the BDAQ53 DAQ software dockerized
 - Proved to fulfill expectations:
 - Minimize maintenance
 - Reproducibility between LAB and TB areas
 - Robustness
 - Rapid deployment:
 - Download image with changes in the TB DAQ PCs and run
- Just used docker, but other alternatives as *singularity* (used at CERN clusters) are planned to be checked as well

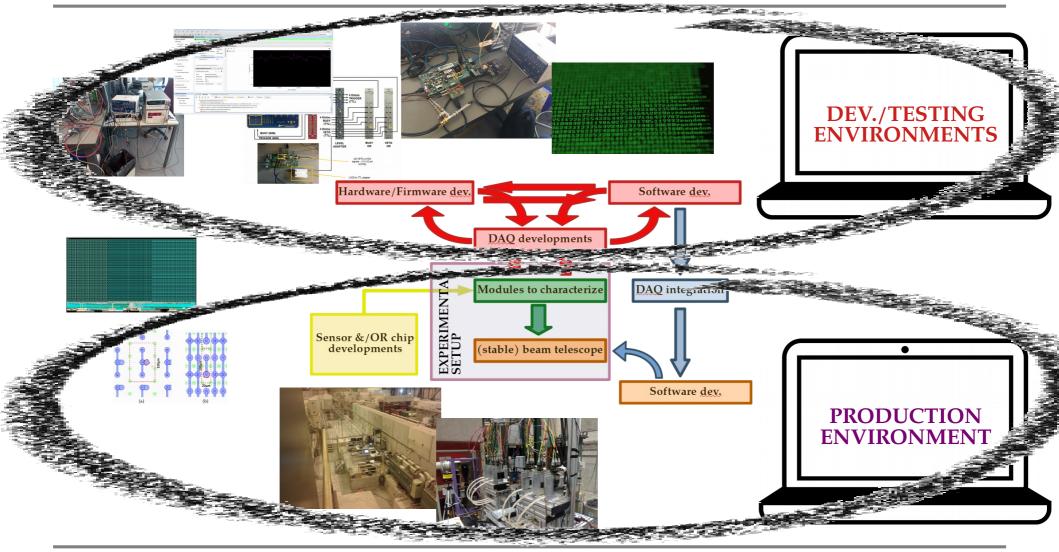

BACKUP SLIDES

• Plenty of explanations at the Internet, a particular good one: https://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-virtual-machine



DE MAEZTU

DAQ software at HEP experiments



DAQ software at HEP experiments

BTTB7@CERN, Jan. 15th 2019

TB DAQ Software with docker -- jordi.duarte@cern.ch

EUDAQ dockerization

https://github.com/duartej/dockerfiles-eudaqv1 https://github.com/duartej/dockerfiles-eutelescope

- Image build and usage instructions: https://github.com/duartej/dockerfiles-eudaqv1
- Dockerhub: https://cloud.docker.com/u/duartej/repository/docker/duartej/eudaqv1-ubuntu https://cloud.docker.com/u/duartej/repository/docker/duartej/eutelescope
- Latest built image from dockerhub:

docker pull duartej/eudaqv1-ubuntu

docker pull duartej/eutelescope

https://github.com/duartej/dockerfiles-bdaq53a

- Image build and usage instructions: https://github.com/duartej/dockerfiles-bdaq53a
 - **eutelescope** branch: uses EUDAQ image as base
 - **Plain** branch: uses EUTELESCOPE image as base
- Latest built image from dockerhub:

docker pull duartej/bdaq53:eutelescope
docker pull duartej/bdaq53:plain

