

The spatial dependence of MCP-PMTs timing performance and its usability as a t0-reference detector

7th Beam Telescopes and Test Beams Workshop

Outline

- PICOSEC Micromegas Project
- Beam Measurements
- DAQ and Analysis (Software CFD)
- Time Resolution
- Charge Distribution
- Spatial Time Resolution
- Initial Number of Photoelectrons

PICOSEC Micromegas a RD51 Project

- Particle produce Cherenkov radiation
- Electrons are emitted by the radiation in a photocathode
- All primary ionised electrons are localised on the photocathode
- Due to high electric field, time jitter before first amplification minimised

THESSALONIKI

To measure the time resolution a t0 reference detector is needed <u>-> MCP-PMT</u>

PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector, Nucl. Instrum. Meth. A903 (2018) 317-325. doi:10.1016/j.nima.2018.04.033.

MCP-PMT: Hamamatsu R3809U-50

- Signal creation similiar to PICOSEC Micromegas:
 - Particle are passing a Cherenkov radiator
 - Electrons are emitted by a photocathode
- Signals are amplified in a Micro Channel Plate
 - Electrons are accelerated by a high Voltage
 - More electrons are emitted along the channel walls

Measurements are done at an operating Voltage of <u>2800 V</u>

R3809U-50 SERIES Hamamatsu PHOTONICS K. K. (2015). < https://www.hamamatsu.com/resources/pdf/etd/R3809U-50_TPMH1067E.pdf>.

MIP Beam Test

- Time reference: two MCP-PMTs (<5 ps resolution).
- Tracking system: 3 triple-GEMs (<u>40 μm</u> precision).
- Scintillators: used to select tracks & to avoid showers.
- Electronics: CIVIDEC preamp. + 2.5 GHz LeCroy scopes.

Beam Telescope @ CERN SPS H4

- Time reference: two MCP-PMTs (<5 ps resolution).
- Tracking system: 3 triple-GEMs (<u>40 μm</u> precision).
- Scintillators: used to select tracks & to avoid showers.
- Electronics: CIVIDEC preamp. + 2.5 GHz LeCroy scopes.

DAQ

- Waveforms are acquired with 20 GS/s oscilloscopes
- MCP-PMT and DUTs are sampled in the same acquisition window
- Tracking software provides an event counter to match with the signals

CFD Algorithm

Time delay and attenuation of the duplicated waveform depends on the demanded fraction of the amplitude:

$$t_{\rm d} = t_{\rm r} \cdot (1 - 0.4)$$

- Software CFD algorithm is used to extract signal arrival time from the full signal waveform
- Algorithm in the style of a hardware CFD circuit
- CFD can be calculated without information about the amplitude
 Advantage at fewer
 - sampling points

DAQ Uncertainty

Time Resolution

*) R3809U-50 SERIES Hamamatsu PHOTONICS K. K. (2015). < https://www.hamamatsu.com/resources/pdf/etd/R3809U-50_TPMH1067E.pdf>.

Cherenkov Light Propagation

Cherenkov Radiator

- MIPs are detected in a Cherenkov radiator in front of the MCP-PMT
- Number of photoelectrons are depending on amount of light reaching the photocathode
- Smaller signals are expected for MIPs detected further outside of the centre
- Actual dimensions are not given in the datasheet

Charge Distribution

- Tracking data are used to calculate the spatial distribution of the mean signal charge
- The distibution gives information of the actual photocathode and Cherenkov window dimensions
- Even reflected light from the border of the window is generating a signal

3.2 mm

- Based on the charge
 distribution observations,
 three ROIs of the MCP-PMT
 signals can be defined:
 - The full Cherenkov cone is projected on the photocathode
 - 2. The Chernekov cone is partially projected onto the photocathode
 - Only (diffus) reflected
 light is reaching the
 photocathode

Time Resolution of the ROIs

Lukas SOHL

Number of Photoelectrons

 The time resolution can be estimated with the transit time spread (TTS) for a single photoelectron and the number of photoelectrons given by the Cherenkov light:

$$\sigma_{\rm MCP} \approx \frac{\sigma_{\rm TTS}}{\sqrt{N_{\rm p.e.}}}$$

- TTS is given with 25 ps which results in 44 ± 2 p.e.
 in the centre of the MCP-PMT
- The time resolution based on the N.p.e. has been calculated geometrically
- The trend of the model shows an agreement with the data
- Especially in the outer parts the high contribution of the reflected light is not included in the model

Conclusion

- A time resolution of up to 3.75 ± 0.14 ps has been measured with R3809U-50 MCP-PMTs operating at 2800 V
- The full active area (Ø 11 mm, as given by the manufacturer) can be used as a time reference with a time resolution < 10 ps
- Several conclusions can be made for fast timing photodetectors with a Cherenkov window (like the PICOSEC Micromegas):
 - The initial number of photoelectrons shows in general a 1/sqrt dependancy on the time resolution
 - The geometry of the photocathode in relation to the projection of the Cherenkov cone is important to define the active area of the detector

Conclusion

- A time resolution of up to 3.75 ± 0.14 ps has been measured with R3809U-50 MCP-PMTs operating at 2800 V
- The full active area (Ø 11 mm, as given by the manufacturer) can be used as a time reference with a time resolution < 10 ps
- Several conclusions can be made for fast timing photodetectors with a Cherenkov window (like the PICOSEC Micromegas):
 - The initial number of photoelectrons shows in general a 1/sqrt dependancy on the time resolution
 - The geometry of the photocathode in relation to the projection of the Cherenkov cone is important to define the active area of the detector

Thanks for your attention & Stay Tuned

Backup

Beam Telescope @ CERN SPS H4

Detector Position in the Beam Telescope

Trigger Configuration

Hardware trigger selection from the Control Room

PICOSEC Time Resolution

- Bulk Micromegas with:
 3 mm MgF2 window and 5.5 nm Cr + 18 nm CsI Photocathode
- COMPASS Gas mixture: 0.8 Ne + 0.1 iC4H10 + 0.1 CF4
- Optimal operation point at: Amplification +275 V, Drift -475 V
- Mean number of photoelectrons: 10.4 ± 0.4
- Time resolution for 150 GeV Muons: 24.0 ± 0.3 ps

To calculate the combined time resolution of several pads the exact position and gain of each participating pads needs to be evaluated

Mean charge

Pad 1

Pad 1

0.1206/6

Radius [mm]

0.0515/6

Radius [mm]

0.1435/6

5.266 ± 0.867

6.257 ± 0.945

8.538 ± 1.104

Pad alignment

Radius [mm]

PICOSEC Outlook

- Analysis of large Multipad datasets with four Pads
- Continuing measurements with different photocathode materials
- Ageing studies of promising photocathode samples
- Development of a resistive multipad Picosec chamber
- (Embedded) electronic necessary for segmented readout
- Comprehensive simulation and analysis at AUTH
- DLC and S.E. Production at USTC and CEA
- New cosmic muons bench at Saclay
- Asset photocathode test chamber at CERN
- At least 6 weeks of Laser time at Saclay
- Participation at MIP beam tests all over Europe

