

A HIGH-GRANULARITY TIMING DETECTOR FOR THE PHASE-II UPGRADE OF THE ATLAS CALORIMETER SYSTEM: BEAM TEST RESULTS

Lucía Castillo García

on behalf of the ATLAS Liquid Argon Calorimeter Group

BTTB7 Workshop at CERN 16th January 2019

Motivation

- At the High-Luminosity phase of LHC (HL-LHC)
 - Instantaneous luminosities up to $L\simeq 7.5\times10^{34}~cm^{-2}~s^{-1}~(\times 5~current~L_{inst})$
 - Pile-up: $< \mu > = 200$ interactions per bunch crossing \rightarrow 1.5 vertex/mm on average
 - Vertex reconstruction and physics objects performance will be significantly degraded

in the forward region where compared to the central region

- Liquid Argon based electromagnetic calorimeter has coarser granularity
- Inner tracker has poorer momentum resolution
- A High Granularity Timing Detector (HGTD) is proposed in front of the

Liquid Argon end-cap calorimeters for pile-up mitigation

- Improve performance in the forward region by combining
 - HGTD precise timing
 - ITk (new ATLAS tracker) position information

HGTD requirements

- Detector quite constrained by the space available and the harsh environment
- Time resolution better than 30 ps per track (50 ps per hit in a 2 layer geometry)
 - Recovers electron ID, track & jet reconstruction and b-tagging
- Low Gain Avalanche Detectors (LGAD) technology has been chosen
 - It provides an internal gain good enough while providing a large S/N ratio
- Design optimized for <10% occupancy

Pseudorapidity coverage	$2.4 < \eta < 4.0$
Thickness in z	75 mm (+50 mm moderator)
Position of active layers in z	3435 mm < z < 3485 mm
Radial extension:	
Total	110 mm < R < 1000 mm
Active area	$120 \mathrm{mm} < R < 640 \mathrm{mm}$
Time resolution per track	30 ps
Number of hits per track:	
$2.4 < \eta < 3.1$	2
$3.1 < \eta < 4.0$	3
Pixel size	$1.3 imes1.3 ext{ mm}^2$
Number of channels	3.54M
Active area	6.3 m ²

BTTB7 Workshop at CERN 16th January 2019

Radiation levels in HGTD

- Maximum n_{eq} fluences and dose for HL-LHC
 - R< 32 cm \rightarrow 3.7×10¹⁵ n_{eq}/cm² and 4.1 MGy
 - R> 32 cm \rightarrow 3×10¹⁵ n_{eq}/cm² and 1.6 MGy
 - A safety factor of ~2 and replacement of inner ring at half life time are taken into account
- ~30% sensors and ASIC (R< 32 cm) need to be replaced at half HL-LHC running period because of radiation damage
- Sensors will be operated at -30 °C using a common CO_2 cooling system with the inner detector (ITk)

Detection technology: LGAD

- Low Gain Avalanche Detectors (LGADs) originally developed by CNM
 - n-p silicon planar detector + multiplication layer that amplifies the signal
 - High E field
 - Moderate internal gain (10-50)
 - Typical rise time 0.5ns
 - Excellent time resolution <30 ps before irradiation
- R&D programme to deliver thin sensors to provide the required time resolution (30 ps per track), fine segmentation, radiation hardness
 - New doping materials, substrates and new geometries
 - Prototypes tested from CNM, HPK, BNL, FBK

CNM LGAD for HGTD

HPK LGAD for HGTD

Lucía Castillo García

Contributions to timing

• Landau term <25 ps

$$\sigma_{tot}^2 = \sigma_{Landau}^2 + \left(\frac{t_{rise}}{S/N}\right)^2 + \left(\left[\frac{V_{thr}}{S/t_{rise}}\right]_{RMS}\right)^2 + \left(\frac{\text{TDC}_{bin}}{\sqrt{12}}\right)^2 + \sigma_{clock}^2$$

Vth

- Reduce for thin sensors: 35-50 μm
- Jitter term <15 ps and time walk term <10 ps
 - Low noise and fast signals
- Digitization granularity ~5 ps
- Clock distribution <10 ps

- Time walk corrections on beam test data using the **C**onstant **F**raction **D**iscriminator (CFD) technique
 - Considering the time at a fraction of 50% of the amplitude

Readout electronics: ALTIROC ASIC

- ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)
 - Minimize noise and power consumption
 - Provide Time Of Arrival (TOA) and Time Over Threshold (TOT) measurements
 - Target time resolution <25 ps
 - Developed in various phases
 - ALTIROC0: single-pixel analog readout (pre-amplifier + discriminator)
 - Test bench measurements satisfactory
 - Beam tests \rightarrow see next slides
 - ALTIROCI: full single-pixel analog readout (analog + digital) in 5×5 arrays
 - Test bench measurements on-going
 - Irradiation campaigns and beam tests in Q1 2019
 - ALTIROC2: final 15×15 version
 - Submission expected end of 2019

Beam test campaigns

- CERN North Area SPS H6A & B beamlines (120 GeV pion beam)
 - ACONITE telescope in H6A and AIDA telescope in H6B

Un-irradiated and irradiated CNM sensors •Single pads and arrays

Un-irradiated HPK sensors

2018

Un-irradiated

sensors

2016

Un-irradiated CNM, HPK, BNL

2017

Neutron vs Proton irradiated •Boron implanted CNM sensors •Carbon diffused CNM sensors •Gallium implanted CNM sensors •HPK sensors

2×2 array sensors with ALTIROC0_v2

Arrays with different inter-pad gaps

SLAC beam tests → See talk "<u>HGTD testbeam at the SLAC beamline</u>" by S. Mazza

Sensor + Readout board

Timing reference system

- 4 quartz bars
 - UVFS window
 - 3×3×10 mm³
 - 6 side-polished
- Translucent optical grease
- 4 single channel SIPMs from sensL
 - 4×4 mm² base
 - 0.7 mm thickness
- 4 SIPM readout and amplification boards
 - Shielding for amplification circuitry
- 3D printed quartz light-tight enclosure
 - Main cover and top plate
 - Holes for pins, screws, bar and SIPM

Bottom View

	Pin Assignments
Pin #	C Series
1	Anode
2	Fast Output
3	Cathode
4	PCB Ground
5	Jumper to PCB Ground (0 Ohm)

Lucía Castillo García

SIPM detects Cherenkov

photons generated by charged pions in quartz

Beam test equipment

- L-shape support mechanics for sensors ightarrow easy installation and good board alignment
- Cooling box for sensors and light-tight boxes for timing reference system
- Chillers
 - I for sensors in H6A
 - 2 room temperature for SIPMs
 - Cooling loops
- Pl x-y translation stages
- Low (HMP4040) and high voltage (Keithley 2410) power supplies
- Agilent Infinium (10 Gs/s @ 5 GHz) series and Lecroy WaveRunner oscilloscopes
- Trigger pulse converter (TTL to NIM)
- SPS cycle USB catcher
- Storage array \rightarrow Lacie RAID array with 4×2 TB Seagate hybrid drives

Beam test software and running conditions

LGAD safety and stability talk by V. Gkougkousis

- Software:
 - DAQ script compatible with all versions of Agilent and Lecroy oscilloscopes
 - Low voltage and SIPM high voltage controls LabVIEW based
 - Continuous monitoring
 - Compliance and voltage adjustment
 - ISEG control for LGADs bias voltage
 - Run EUDAQ for combined data taking (RunControl, STcontrol)
 - Use standalone dataMonitor.py and EUDAQ OnlineMon.exe for data sanity checks
- Running conditions:
 - IV measurements performed in the laboratory before sensor on-board assembly
 - Select highest operating voltages using IV derivative method (8 std. dev. from stable region)
 - 4 operating voltages IM events
 - Highest operating voltage 3M events for efficiency maps
 - Run at -20 °C and -30 °C

HGTD beam test DAQ and trigger system

- Definition ROI mask in FE-I4 → only accept tracks passing through small area covering all LGADs
- Use inverted signal from HitOr

 $(\mathsf{TTL} \rightarrow \mathsf{NIM})$

- Delay (~100 ns) scintillator NIM signal to match in TLU trigger window with HitOr signal
- 5 ns trigger window in TLU → triggers
 oscilloscope, MIMOSA readout, MMC3/USBpix
- A track on LGAD \rightarrow look back in time and a waveform is recorded
- Data are saved in two separated files (oscilloscope, MIMOSA + FE-I4)

Results from 2017 campaigns

 Comparison between un-irradiated and irradiated at fluence 6×10¹⁴ n_{eq}/cm² arrays of four LGAD sensors of 1.1×1.1 mm² each

Efficiency using standalone tracking software

- Standalone tracking software developed to reconstruct tracks in raw data from telescope and match event information with oscilloscope data
- Efficiency is obtained as $\frac{tracks on LGADs with signals larger than a threshold}{all reconstructed tracks on LGADs}$
- Efficiency in the bulk is larger than 98-99%

BTTB7 Workshop at CERN 16th January 2019

Efficiency vs threshold

- Signal amplitude in the bulk of LGAD pads
- Signal efficiency in the bulk of LGAD pads as a function of the voltage threshold
- Dashed line shows the default threshold corresponding to 3 times the noise

LGAD timing performance

- Time resolution as a function of the X and Y coordinates (in mm)
- The time resolution is larger in the guard rings around the pads where there is no multiplication of the charge
- The fluctuations are dominated by statistical fluctuations since very small bins are used in order to show the structure around the pad

Inter-pad studies

• Signal efficiency in the inter-pad region as a function of X (in mm) for 3 different voltage thresholds

Preliminary results from 2018 campaigns

- First efficiency results using EUTelescope tracking software
- ALTIROC preliminary results

Efficiency using EUTelescope tracking software

- Motivation using EUTelescope software
 - Crosscheck results with standalone tracking software
 - Algorithm providing better resolution and to be used for analysis of future DESY beam test data
- Reconstruction procedure using iLCsoftware v01-19-02, EUTelescope version master, EUDAQ version branch/1.x-dev

- Match event information between oscilloscope and telescope ntuples
- Fit track x-z and y-z points on all MIMOSA planes and extrapolate to LGADs z position
- Conditions to calculate the efficiency:
 - Select tracks passing through FE-I4 within the defined ROI mask
 - Have a hit on LGAD (waveform is recorded in oscilloscope)
 - LGAD signal amplitude > threshold

BTTB7 Workshop at CERN 16th January 2019

ALTIROC preliminary results

- ALTIROC0v2 bump bonded to a un-irradiated CNM 2×2 LGAD array
- TOA of signal corrected for time walk effects
 - TOA vs amplitude of pre-amplifier probe
 - Black points correspond to profile of 2D distribution
 - Red line corresponds to polynomial fit use to correct for time walk effects
- Best achieved time resolution 35 ps after time walk correction
 - Time resolution vs discriminator threshold (in DAC units) **before** and **after** time walk correction
 - Amplitude of pre-amplifier probe use to correct for time walk
 - 30% improvement
 - A SIPM is used as time reference where its 40 ps contribution is subtracted

Summary and perspectives

- The HGTD is proposed to mitigate pile-up effects and improve the performance in the ATLAS forward region
 - Challenging requirements
 - Technical proposal was approved [link to HGTD Technical Proposal]
- After a fluence $6 \times 10^{14} n_{eq}/cm^2$ (test-beam 2017)
 - Efficiency in the bulk is still ~100%
 - Time resolution of 40-50 ps is achieved
 - More results published on HGTD testbeam paper [link to HGTD beam test paper]
- A 4 period test-beam campaign in 2018 is complete
 - An extensive list of LGAD prototypes have been tested from different technologies and manufacturers
 - First efficiency results using EUTelescope software are presented
 - ALTIROC results look promising
 - Lots of data recorded and analysis is on-going
 - A paper with 2018 beam test results is in preparation
- Next beam tests at DESY are scheduled in March and May 2019
 - Investigate the integration of LGAD and ALTIROC readouts in EUDAQ

BACKUP SLIDES

HGTD module and stave

bump

r=320 mm

16 mm

80% module overlap

20 mm

20% module

verlap

- 7984 modules:
 - 2 15×15 pixels ALTIROC ASIC (2×2 cm²)
 - I I5×30 pixels LGAD with I.3×I.3 mm² pads (2×4 cm²)
 bonded together
 - Schematic drawing of two adjacent modules
 - Double sided layer with a cooling plate in between
 - Modules mounted on thin support plates \rightarrow up to 18 on a stave
 - Wire bonded to flex cables going to peripheral electronics

- For R< 32 cm \rightarrow stave designed to have 3 hits with a 80% module overlap
- For R> 32 cm \rightarrow stave designed to have 2 hits with a 20% module overlap

Summary

- The HGTD group is working hard to deliver TDR by 5th April 2019
 - LGAD from CNM, HPK, FBK up to 15×15 channels (1/2 final size)
 - Complete 2018 test beam campaigns
 - Performance with final detector layout and full simulation
 - ASIC-ALTIROCI up to 5×5 channels w/ analog+dig. part
 - (ASIC+ LGAD +flex cable): 5×5 results in lab and bump bonding R&D
 - Peripheral electronics and BE electronics: design/concept and components tests
 - Services layout and mock-up in surface
 - Develop path for construction/tests of a demonstrator (cooling plate+stave+ flex+peripheral elect.)
 - Strategy for installation and maintenance
 - Update CORE and manpower evaluation for construction

ATLAS	
Technical Design Report: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade	
	The ATLAS Collaboration
Draft version: Created: Prepared by :	0.0 26th September 2018 – 18:24 The ATLAS Collaboration

Time walk correction

- ALTIROC ASIC will provide Time Of Arrival (TOA) and Time Over Threshold (TOT) measurements
- TOA of signal corrected for time walk effects using TOT technique
 - Charge injection tests with an estimated input capacitance of 4.3 pF
 - Two different pre-amplifiers
 - Voltage
 - Trans-impedance (shorter TOT)
 - After correction <10 ps contribution
- Other techniques as the Constant Fraction Discriminator
 (CFD) can be used to correct for time walk

Beam test campaigns in 2018

- CERN North Area SPS H6A & B beamlines (120 GeV pion beam)
 - ACONITE telescope in H6A and AIDA telescope in H6B
 - April May 2018
 - Neutron vs Proton irradiated Boron implanted CNM sensors
 - June July 2018
 - Proton irradiated Carbon diffused CNM sensors
 - Un-irradiated Gallium implanted HPK sensors
 - 2×2 array sensors with ALTIROC0_v2
 - September 2018
 - Neutron irradiated Carbon diffused CNM sensors
 - Proton irradiated Gallium sensors
 - October 2018
 - Neutron irradiated Gallium sensors
 - Arrays with different inter pad gaps
 - ALTIROC
- SLAC beam tests → See talk "<u>HGTD testbeam at the SLAC beamline</u>" by S. Mazza

Lucía Castillo García

S/N, charge and gain from 2016

Figure 9: Signal-to-noise ratio (a) and charge and gain (b) as a function of the bias voltage for single-pad sensors and arrays. Statistical uncertainties are negligible and smaller than the marker size. [link to HGTD beam test paper]

HGTD beam test layout

- North Area SPS H6A line
- Telescope with 6 MIMOSA planes
- FE-I4 used as reference plane

- HGTD DUTs: 6 LGADs
- Time reference system: quartz bars + SIPMs

Tracking using EUTelescope software

- Using iLCsoftware v01-19-02, EUTelescope version master, EUDAQ version branch/1.x-dev
- Start point: native data from telescope (September 2018)
- Steps:
 - Implement test beam geometry (6 MIMOSA planes + 1 FE-I4 plane) in gear file
 - Fill run list in a .csv file
 - Prepare steering and configuration files including required processors, parameters and variables
 - Submit EUTelescope jobtasks: converter, clustering, hitmaker, align, fitter
 - Resulting ntuple contains track information on FE-I4 plane / MIMOSA planes
 - Develop analysis to combine data from oscilloscope and telescope files (same number of events)

Efficiency using EUTelescope tracking software

- Reconstruction procedure
 - Using iLCsoftware v01-19-02, EUTelescope version master, EUDAQ version branch/1.x-dev

- Match event information between oscilloscope and telescope ntuples (same number of events)
- Fit track x-z and y-z points on all MIMOSA planes and extrapolate to

LGADs z position

- Conditions to calculate the efficiency:
 - Select tracks passing through FE-I4 within the defined ROI mask
 - Have a hit on LGAD (waveform is recorded in oscilloscope)
 - LGAD signal amplitude > threshold

MIMOSA and FE-I4 hit maps

- FE-I4 plane is rotated 90 degrees
- ROI mask containing LGADs and SIPMs is clearly seen
- Z in log scale to see FE-I4 mask on MIMOSA planes

