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Motivation

• At the High-Luminosity phase of LHC (HL-LHC)

• Instantaneous luminosities up to L ≃ 7.5×1034 cm−2 s-1 (×5 current Linst)

• Pile-up: < 𝜇 > = 200 interactions per bunch crossing  1.5 vertex/mm on average

• Vertex reconstruction and physics objects performance will be significantly degraded 

in the forward region where compared to the central region

• Liquid Argon based electromagnetic calorimeter has coarser granularity 

• Inner tracker has poorer momentum resolution

• A High Granularity Timing Detector (HGTD) is proposed in front of the 

Liquid Argon end-cap calorimeters for pile-up mitigation

• Improve performance in the forward region by combining 

• HGTD precise timing 

• ITk (new ATLAS tracker) position information
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HGTD requirements

• Detector quite constrained by the space available and the harsh environment 

• Time resolution better than 30 ps per track (50 ps per hit in a 2 layer geometry) 

• Recovers electron ID, track & jet reconstruction and b-tagging 

• Low Gain Avalanche Detectors (LGAD) technology has been chosen

• It provides an internal gain good enough while providing a large S/N ratio

• Design optimized for <10% occupancy
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Radiation levels in HGTD

• Maximum neq fluences and dose for HL-LHC

• R< 32 cm  3.7×1015 neq/cm2 and 4.1 MGy

• R> 32 cm  3×1015 neq/cm2 and 1.6 MGy

• A safety factor of ~2 and replacement of inner ring

at half life time are taken into account

• ~30% sensors and ASIC (R< 32 cm) need to be 

replaced at half HL-LHC running period because of 

radiation damage

• Sensors will be operated at -30 ºC using a common 

CO2 cooling system with the inner detector (ITk)
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Detection technology: LGAD

• Low Gain Avalanche Detectors (LGADs) originally developed by CNM

• n-p silicon planar detector + multiplication layer that amplifies the signal

• High E field 

• Moderate internal gain (10-50)

• Typical rise time 0.5ns

• Excellent time resolution <30 ps before irradiation

• R&D programme to deliver thin sensors to provide the required time 

resolution (30 ps per track), fine segmentation, radiation hardness

• New doping materials, substrates and new geometries

• Prototypes tested from CNM, HPK, BNL, FBK
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Contributions to timing

• Landau term <25 ps

• Reduce for thin sensors: 35-50 𝜇m

• Jitter term <15 ps and time walk term <10 ps

• Low noise and fast signals

• Digitization granularity ~5 ps

• Clock distribution <10 ps

• Time walk corrections on beam test data using the Constant Fraction Discriminator (CFD)

technique

• Considering the time at a fraction of 50% of the amplitude
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Readout electronics: ALTIROC ASIC

• ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)

• Minimize noise and power consumption

• Provide Time Of Arrival (TOA) and Time Over Threshold (TOT) measurements

• Target time resolution <25 ps

• Developed in various phases

• ALTIROC0: single-pixel analog readout (pre-amplifier + discriminator)

• Test bench measurements satisfactory

• Beam tests  see next slides

• ALTIROC1: full single-pixel analog readout (analog + digital) in 5×5 arrays

• Test bench measurements on-going

• Irradiation campaigns and beam tests in Q1 2019

• ALTIROC2: final 15×15 version

• Submission expected end of 2019

7



Beam test campaigns

• CERN North Area SPS H6A & B beamlines (120 GeV pion beam)

• ACONITE telescope in H6A and AIDA telescope in H6B

• SLAC beam tests  See talk “HGTD testbeam at the SLAC beamline” by S. Mazza
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SiPMs
DUTs

ACONITE telescope (6 MIMOSA planes)

Un-irradiated 
sensors

2016
Un-irradiated and irradiated CNM sensors

•Single pads and arrays

Un-irradiated HPK sensors

2017

Un-irradiated CNM, HPK, BNL

Neutron vs Proton irradiated 

•Boron implanted CNM sensors

•Carbon diffused CNM sensors

•Gallium implanted CNM sensors

•HPK sensors

2×2 array sensors with ALTIROC0_v2

Arrays with different inter-pad gaps

2018

https://indico.cern.ch/event/731649/contributions/3237255/


Sensor + Readout board

• 50 sensors (un-irradiated, p- and n-irradiated) tested so far

• LGAD readout boards with trans-impedance first stage amplifier

• Voltage second stage amplifiers with hermetic E/B cover design
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• Sensor attached to board using 

double-sided conductive tape

• Amplifier input coupled to 

metallization layer via wire bonds

• Guard ring grounded

• Gain of ~10

• 2 GHz Bandwidth 

LV input

Amplifier output

CALIB input

HV input

Second stage 

amplifier 

output to 

oscilloscope

single pad readout board



Timing reference system

• 4 quartz bars 

• UVFS window

• 3×3×10 mm3

• 6 side-polished

• Translucent optical grease

• 4 single channel SIPMs from sensL

• 4×4 mm2 base

• 0.7 mm thickness

• 4 SIPM readout and amplification boards

• Shielding for amplification circuitry

• 3D printed quartz light-tight enclosure

• Main cover and top plate

• Holes for pins, screws, bar and SIPM
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SIPM detects Cherenkov 

photons generated by 

charged pions in quartz



Beam test equipment

• L-shape support mechanics for sensors  easy installation and good board alignment

• Cooling box for sensors and light-tight boxes for timing reference system

• Chillers

• 1 for sensors in H6A

• 2 room temperature for SIPMs

• Cooling loops

• PI x-y translation stages

• Low (HMP4040) and high voltage (Keithley 2410) power supplies

• Agilent Infinium (10 Gs/s @ 5 GHz) series and Lecroy WaveRunner oscilloscopes

• Trigger pulse converter (TTL to NIM)

• SPS cycle USB catcher

• Storage array  Lacie RAID array with 4×2 TB Seagate hybrid drives
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Beam test software and running conditions

• Software:

• DAQ script compatible with all versions of Agilent and Lecroy oscilloscopes

• Low voltage and SIPM high voltage controls LabVIEW based

• Continuous monitoring

• Compliance and voltage adjustment

• ISEG control for LGADs bias voltage

• Run EUDAQ for combined data taking (RunControl, STcontrol)

• Use standalone dataMonitor.py and EUDAQ OnlineMon.exe for data sanity checks

• Running conditions:

• IV measurements performed in the laboratory before sensor on-board assembly

• Select highest operating voltages using IV derivative method (8 std. dev. from stable region)

• 4 operating voltages 1M events

• Highest operating voltage 3M events for efficiency maps

• Run at -20 ºC and -30 ºC
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LGAD safety and stability talk by V. Gkougkousis

https://indico.cern.ch/event/655695/contributions/3036548/attachments/1669820/2678268/Vagelis_HGTD_18June_Senosrs.pdf


HGTD beam test DAQ and trigger system

• Definition ROI mask in FE-I4  only 

accept tracks passing through small area 

covering all LGADs

• Use inverted signal from HitOr

(TTL  NIM)

• Delay (~100 ns) scintillator NIM signal to

match in TLU trigger window with HitOr signal

• 5 ns trigger window in TLU  triggers 

oscilloscope, MIMOSA readout, MMC3/USBpix

• A track on LGAD  look back in 

time and a waveform is recorded

• Data are saved in two separated files

(oscilloscope, MIMOSA + FE-I4)
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Results from 2017 campaigns

• Comparison between un-irradiated and irradiated at fluence 6×1014 neq/cm2

arrays of four LGAD sensors of 1.1×1.1 mm2 each
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Eff iciency using standalone tracking software

• Standalone tracking software developed to reconstruct tracks in raw data from telescope and match event 

information with oscilloscope data 

• Efficiency is obtained as 
𝑡𝑟𝑎𝑐𝑘𝑠 𝑜𝑛 𝐿𝐺𝐴𝐷𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 𝑎 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠 𝑜𝑛 𝐿𝐺𝐴𝐷𝑠

• Efficiency in the bulk is larger than 98-99%
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Efficiency vs threshold

• Signal amplitude in the bulk of LGAD pads 

• Signal efficiency in the bulk of LGAD pads as a function of the voltage threshold

• Dashed line shows the default threshold corresponding to 3 times the noise
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LGAD timing performance

• Time resolution as a function of the X and Y coordinates (in mm)

• The time resolution is larger in the guard rings around the pads where there is no multiplication of the charge

• The fluctuations are dominated by statistical fluctuations since very small bins are used in order to show the 

structure around the pad
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Inter-pad studies

• Signal efficiency in the inter-pad region as a function of X (in mm) for 3 different voltage thresholds
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Preliminary results from 2018 campaigns

• First efficiency results using EUTelescope tracking software

• ALTIROC preliminary results
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• Motivation using EUTelescope software

• Crosscheck results with standalone tracking software 

• Algorithm providing better resolution and to be used for analysis of future DESY beam test data

• Reconstruction procedure using iLCsoftware v01-19-02, EUTelescope version master, EUDAQ version branch/1.x-dev

• Match event information between oscilloscope and telescope ntuples

• Fit track x-z and y-z points on all MIMOSA planes and extrapolate to 

LGADs z position

• Conditions to calculate the efficiency:

• Select tracks passing through FE-I4 within the defined ROI mask 

• Have a hit on LGAD (waveform is recorded in oscilloscope)

• LGAD signal amplitude > threshold

Eff iciency using EUTelescope tracking software
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Native data from 

telescope

Geometry in gear file:

6 MIMOSA + 1 FE-I4

EUTelescope jobtasks:

converter, clustering, 

hitmaker, align, fitter

Ntuple containing track 

info at MIMOSA and 

FE-I4 planes

FE-I4 mask

Eff. in bulk 95-100%

Work in progress



ALTIROC preliminary results

• ALTIROC0v2 bump bonded to a un-irradiated CNM 2×2 LGAD array 

• TOA of signal corrected for time walk effects

• TOA vs amplitude of pre-amplifier probe

• Black points correspond to profile of 2D distribution

• Red line corresponds to polynomial fit use to correct for time walk effects

• Best achieved time resolution 35 ps after time walk correction

• Time resolution vs discriminator threshold (in DAC units) before and after

time walk correction

• Amplitude of pre-amplifier probe use to correct for time walk 

• 30% improvement

• A SIPM is used as time reference where its 40 ps contribution is subtracted 
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Summary and perspectives

• The HGTD is proposed to mitigate pile-up effects and improve the performance in the ATLAS forward region

• Challenging requirements

• Technical proposal was approved 

• After a fluence 6×1014 neq/cm2 (test-beam 2017)

• Efficiency in the bulk is still ~100%

• Time resolution of 40-50 ps is achieved

• More results published on HGTD testbeam paper

• A 4 period test-beam campaign in 2018 is complete

• An extensive list of LGAD prototypes have been tested from different technologies and manufacturers 

• First efficiency results using EUTelescope software are presented

• ALTIROC results look promising

• Lots of data recorded and analysis is on-going

• A paper with 2018 beam test results is in preparation

• Next beam tests at DESY are scheduled in March and May 2019

• Investigate the integration of LGAD and ALTIROC readouts in EUDAQ
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[link to HGTD Technical Proposal]

[link to HGTD beam test paper]

http://cdsweb.cern.ch/record/2623663
http://iopscience.iop.org/article/10.1088/1748-0221/13/06/P06017/meta


BACKUP SLIDES
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HGTD module and stave

• 7984 modules:

• 2 15×15 pixels ALTIROC ASIC (2×2 cm2)

• 1 15×30 pixels LGAD with 1.3×1.3 mm2 pads (2×4 cm2)

• Schematic drawing of two adjacent modules

• Double sided layer with a cooling plate in between

• Modules mounted on thin support plates  up to 18 on a stave

• Wire bonded to flex cables going to peripheral electronics

• Layout:

• For R< 32 cm  stave designed to have 3 hits with a 80% module overlap 

• For R> 32 cm  stave designed to have 2 hits with a 20% module overlap 
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Timeline
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Summary

• The HGTD group is working hard to deliver TDR by 5th April 2019

• LGAD from CNM, HPK,FBK up to 15×15 channels (½ final size) 

• Complete 2018 test beam campaigns 

• Performance with final detector layout and full simulation

• ASIC-ALTIROC1 up to 5×5 channels w/ analog+dig. part

• (ASIC+ LGAD +flex cable): 5×5 results in lab and bump bonding R&D

• Peripheral electronics and BE electronics: design/concept and components tests

• Services layout and mock-up in surface

• Develop path for construction/tests of a demonstrator (cooling plate+stave+

flex+peripheral elect.)

• Strategy for installation and maintenance

• Update CORE and manpower evaluation for construction
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Time walk correction

• ALTIROC ASIC will provide Time Of Arrival (TOA) and Time Over Threshold (TOT) measurements

• TOA of signal corrected for time walk effects using TOT technique

• Charge injection tests with an estimated input capacitance of 4.3 pF

• Two different pre-amplifiers

• Voltage 

• Trans-impedance (shorter TOT)

• After correction <10 ps contribution

• Other techniques as the Constant Fraction Discriminator 

(CFD) can be used to correct for time walk
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Beam test campaigns in 2018

• CERN North Area SPS H6A & B beamlines (120 GeV pion beam)

• ACONITE telescope in H6A and AIDA telescope in H6B

• April – May 2018

• Neutron vs Proton irradiated Boron implanted CNM sensors

• June – July 2018

• Proton irradiated Carbon diffused CNM sensors

• Un-irradiated Gallium implanted HPK sensors

• 2×2 array sensors with ALTIROC0_v2

• September 2018

• Neutron irradiated Carbon diffused CNM sensors

• Proton irradiated Gallium sensors

• October 2018

• Neutron irradiated Gallium sensors

• Arrays with different inter pad gaps

• ALTIROC

• SLAC beam tests  See talk “HGTD testbeam at the SLAC beamline” by S. Mazza
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SiPMs
DUTs

ACONITE telescope (6 MIMOSA planes)

https://indico.cern.ch/event/731649/contributions/3237255/


S/N, charge and gain from 2016
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[link to HGTD beam test paper]

http://iopscience.iop.org/article/10.1088/1748-0221/13/06/P06017/meta


HGTD beam test layout

• North Area SPS H6A line 

• Telescope with 6 MIMOSA planes 

• FE-I4 used as reference plane

• HGTD DUTs: 6 LGADs

• Time reference system: quartz bars + SIPMs

• Trigger: FE-I4 + scintillator after MIMOSA 6
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Tracking using EUTelescope software

• Using iLCsoftware v01-19-02, EUTelescope version master, EUDAQ version branch/1.x-dev

• Start point: native data from telescope (September 2018)

• Steps:

• Implement test beam geometry (6 MIMOSA planes + 1 FE-I4 plane) in gear file

• Fill run list in a .csv file

• Prepare steering and configuration files including required processors, parameters and variables

• Submit EUTelescope jobtasks: converter, clustering, hitmaker, align, fitter

• Resulting ntuple contains track information on FE-I4 plane / MIMOSA planes

• Develop analysis to combine data from oscilloscope and telescope files (same number of events)
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Eff iciency using EUTelescope tracking software

• Reconstruction procedure

• Using iLCsoftware v01-19-02, EUTelescope version master, EUDAQ version branch/1.x-dev

• Match event information between oscilloscope and telescope ntuples (same number of events)

• Fit track x-z and y-z points on all MIMOSA planes and extrapolate to 

LGADs z position

• Conditions to calculate the efficiency:

• Select tracks passing through FE-I4 within the defined ROI mask 

• Have a hit on LGAD (waveform is recorded in oscilloscope)

• LGAD signal amplitude > threshold
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Native data from 

telescope

Geometry in gear file:

6 MIMOSA + 1 FE-I4

EUTelescope jobtasks:

converter, clustering, 

hitmaker, align, fitter

Ntuple containing track 

info at MIMOSA and 

FE-I4 planes

LGADs z position



MIMOSA and FE-I4 hit maps

• FE-I4 plane is rotated 90 degrees

• ROI mask containing LGADs and SIPMs is clearly seen

• Z in log scale to see FE-I4 mask on MIMOSA planes
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