

Test beam measurements of irradiated CVD diamond

7th Beam Telescopes and Test Beams Workshop, 14-18 January 2019, CERN

<u>Tiina Naaranoja</u>, Laurent Forthomme, Francisco Garcia, Kenneth Österberg

Outline

- ✓ Time resolution
- ✓ Radiation damage in diamond
- ✓ Set-up at the test beam
- ✓ Results

Motivation: CMS Precision Proton Spectrometer (PPS)

Measures forward protons, joint project between CMS and TOTEM

In each arm:

2 stations of tracking detectors: Precise measurement of proton trajectory

1 timing station: Time-of-Flight of proton

Vertex measurement by timing eg.: σ_t =10ps $\rightarrow \sigma_v$ =2mm

Needed time resolution depends on magnitude of pile-up,

Depending on beam optics needed resolution ranging from 10ps to 50ps

Note: Requirements for time precision are for detector package. Current timing detector package consists of 4 planes.

[LHCC-2014-021; TOTEM-TDR-003; CMS-TDR-13]

HELSINKI INSTITUTE OF PHYSICS

Time resolution

- $\checkmark \sigma_t$ SNR/ t_{rise}
- ✓ Stochastic signal generation-> Initial charge distribution
- √ Stochastics in signal transport
- ✓ Direct measurement not possible-> SNR & rise time characteristics

Radiation damage in high purity single crystal diamond

✓ Ideal pure diamond

Single charge carrier traversing trough crystal

Several charge carriers from MIP

Radiation damage in high purity single crystal diamond

✓ Radiation damage: Mono vacancies & interstitials -> deep level traps

Single charge carrier traversing trough crystal

Several charge carriers from MIP

Induced current

> Reduced charge collection, faster signal

Radiation damage in high purity single crystal diamond: polarization

✓ Uneven charge density caused by trapped charge

Trapping in bulk

And interfaces

- > Results in lower E-field
- Longer signals

Set-up at SPS Northern experimental area

- ✓ Irradiated single crystal chemical vapor deposited (scCVD) diamonds
 - ✓ @ IRRAD, 24 GeV protons
- ✓ Fluence 0 p/cm², 10¹⁴ p/cm², 5*10¹⁵ p/cm²
- ✓ Sensor size 4.5x4.5x0.5 mm³

Set-up at SPS Northern experimental area

- ✓ Sensor mounted on TOTEM hybrid [2]
- ✓ Three stage amplification chain
- ✓ Signal readout with fast oscilloscope (Agilent DSO9254A, LeCroy WaveRunner8104)
- ✓ Signal processed offline using ROOT

Contact by pressure

- Piece of copper tape soldered directly to pre-amplifier leg (thank you Georgui!!)
- Surface leakage stop with kapton tape, contact pad raised with copper tape stack
- Pressure applied with pieces of rubber and recycled plexiglass
- In practice:
 - Single channel works as well as bonding
 - several channels -> increased noise (pick off)

Signals attributes: Signal amplitude, Signal rise time

Signal rise time

Signals attributes: Noise RMS

Amplitude

RMS before signal

= noise RMS

Raw amplitude spectrum of proton irradiated diamonds under pion beam

HV=1000V

Signal rise time spectrum of proton irradiated diamonds under pion beam

HV=1000V

Signals attributes: Signal duration

Signal FWHM duration

Signals in amplitude-signal duration plane, separation using signal shape

Signals in amplitude-signal duration plane, separation using signal shape

Non-irradiated reference

Su) uoitemp WHM duration of the first of the

2D-gaussian fit: Amplitude = 322 ± 1 mV Duration = 3.144 ± 0.001 ns

Irradiated to 10¹⁴ p/cm²

2D-gaussian fit Amplitude = $288 \pm 1 \text{ mV}$ Duration = $3.048 \pm 0.008 \text{ ns}$

Signals in amplitude-signal duration plane, separation using signal shape

Non-irradiated reference

Su) uoitemp WHM duration of the first of the

2D-gaussian fit: Amplitude = 322 ± 1 mV Duration = 3.144 ± 0.001 ns

Irradiated to 5*10¹⁵ p/cm²

2D-gaussian fit: Amplitude ≤ 100 mV Duration = 1.761 ± 0.006 ns

Signal amplitude with different bias voltages

Signal FWHM duration vs bias voltages

Conclusions

- ✓ Basic signal attributes from 180 GeV pions was investigated
- ✓ Signal amplitude reduced with radiation damage
- ✓ Signal duration & rise time reduced as well
 - ✓ Helps with time resolution

Acknowledgements

- ✓ HUGE thanks to the IRRAD team, Precision Proton Spectrometer community and my "home experiment" TOTEM
- ✓ A. Gädda and J. Ott in Helsinki CMS upgrade group for processing the reference diamond
- ✓ Funding:
 - Magnus Ehrnrooth Foundation
 - H2020 project AIDA-2020, GA no. 654168
 - Svenska kulturfonden
 - Academy of Finland
 - Waldemar von Frenckell foundation