The CMS ECAL Upgrade for Precision Crystal Calorimetry and Timing at the HL-LHC

Simone Pigazzini
on behalf of the CMS Collaboration.

BTTB2019 @ CERN
January 16th, 2019
HL-LHC and CMS upgrades

- **HL-LHC goal**: \(\times 10 \) integrated luminosity delivered to the experiments (ATLAS, CMS):

<table>
<thead>
<tr>
<th>(\mathcal{L}_{\text{inst}} , (\text{cm}^{-2}\text{s}^{-1}))</th>
<th>(\text{PU} , (n_{\text{vtxs}}))</th>
<th>LHC</th>
<th>HL-LHC baseline</th>
<th>HL-LHC ultimate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \times 10^{34})</td>
<td>40-60</td>
<td>(5 \times 10^{34})</td>
<td>140</td>
<td>(7.5 \times 10^{34})</td>
</tr>
</tbody>
</table>

*unexpected at the time of original ECAL TDR.

- **CMS upgrade**
 - Greater tracker (\(|\eta| = 4 \)) and muon spectrometer (\(|\eta| = 2.8 \)) acceptances.
 - Higher first level trigger (L1) rate: \(100 \text{kHz} \rightarrow 750 \text{kHz} \).
 - Tracking information at L1.
 - Detector upgrades to cope with larger radiation levels and higher pile-up.
HL-LHC and CMS upgrades

- **HL-LHC goal**: 10× integrated luminosity delivered to the experiments (ATLAS, CMS):

<table>
<thead>
<tr>
<th></th>
<th>LHC</th>
<th>HL-LHC baseline</th>
<th>HL-LHC ultimate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{inst} ($\text{cm}^{-2}\text{s}^{-1}$)</td>
<td>2×10^{34}</td>
<td>5×10^{34}</td>
<td>7.5×10^{34}</td>
</tr>
<tr>
<td>PU (n_{vtxs})</td>
<td>40-60</td>
<td>140</td>
<td>200</td>
</tr>
</tbody>
</table>

*unexpected at the time of original ECAL TDR.

- **CMS upgrade**
 - Greater tracker ($|\eta| = 4$) and muon spectrometer ($|\eta| = 2.8$) acceptances.
 - **Higher first level trigger (L1) rate**: 100kHz → 750kHz.
 - Tracking information at L1.
 - Detector upgrades to cope with larger radiation levels and higher pile-up.
CMS calorimeters at HL-LHC

- **Endcaps**: complete replacement of current calorimeters to cope with expected radiation flux.
 - High granularity, silicon based, sampling calorimeter (HGCAL).
- **Barrel**:
 - **ECAL**: retain crystals+APD \rightarrow upgraded readout electronics.
 - **HCAL**: Brass/plastic scintillator + SiPM.

Test with irradiated crystals in H4:

$$1 - L_{\text{loss}} = e^{-\mu_{\text{ind}} L}$$

Barrel crystals will retain 30-50% of the light output after 3000 fb$^{-1}$.

Limited degradation of energy resolution.
ECAL APD performance

- ECAL barrel photo-sensors will continue to operate during HL-LHC:
 - Increase in APD leakage current due to radiation damage → APD noise will dominate HL-LHC energy resolution.

 - Mitigation:
 - Lower ECAL operation temperature $6 - 9^\circ C$ (now $18^\circ C$).
 - Shorter pre-amplifier shaping time (reduce PU impact, better S/N).
ECAL trigger

- **Improved Level-1 trigger capabilities needed at HL-LHC:**
 - Larger trigger rates (x 7.5) and trigger latency (12.5 µs) mandatory to exploit increased luminosity and implement Level-1 track-trigger.

- **Improved rejection of ECAL APD anomalous signals required.**
 - “Spike” from direct hadron ionization in APD volume.
 - Large isolated signals.
 - Faster signal than scintillation.
 - Will dominate L1 trigger at HL-LHC if unsuppressed.
ECAL upgrade key aspects

- **Replace off-detector electronics:**
 - To cope with higher output bandwidth from FE and upgraded CMS L1 trigger.

- **Replace on-detector electronics** (VFE and FE):
 - New amplifier + ADC running at 160MHz.
 - Spike rejection, pileup and noise mitigation.
 - Precise time measurement.

- **Run Colder:**
 - mitigrate increase in radiation induced APD noise.

The upgrade will allow to exploit the full potential of the CMS ECAL during HL-LHC.
TDR design choices

- **Pre-amplifier:** Trans Impedance Amplifier (TIA) architecture:
 - matches the requirements for noise, pileup mitigation and CMS-wide effort for hermetic precision timing.
- **ADC designed chosen:** 12 bit, 160MHz sampling frequency.
 - Custom chip designed by external company + data compression system.
 - 2 TeV dynamic range, two gain ranges (G1, G10) with 50, 500 MeV LSB.
- **FE card design:**
 - Fast optical links to stream crystal data off-detector through CERN lpGBT/VL+ chip.
- **Off-detector electronics (OD):**
 - FPGA based. Will provide single crystal information to L1 trigger (750 kHz, 12.5 µs latency).
Beam configuration at the CERN SPS North Area

- Series of tests performed at the H4/H2 beam lines:
 - **H4**: very pure electron beam $\Delta p/p = 0.5\%$ with $20 < p < 250$ GeV.
 - Beam time in H2 exploited to collect sample of APD direct hadronic ionization signals using pion beam.

Slot originally assigned to CMS-HCAL. Shared with CMS-iTK

- Excellent support from SPS team (in particular N. Charitonidis and B. Rae) allowed us to take high quality data efficiently.

Trigger only selection. $e^-_{\text{beam in H4.}}$

EM-shower shape with $e^-_{\text{beam in H4.}}$.

Pion beam in H2

π (120 GeV), crystal matrix, 160 MHz

Beam energy cutoff all seeds

Simone Pigazzini | 16/01/2019
Test beam setup infrastructure

- On the H4 line setup hosted in the CMS-ECAL air-conditioned experimental area (18 °C).
- **Remote controlled cooling unit and movable table easily operated through DAQ GUI** (also for different setups: CMS-MTD, AIDA2020, ...).
- **Trigger counters and reference detectors installed just upstream of R&D setup.**

→ Plastic fiber hodoscopes for position measurement.
→ A pair of **Micro channel plates devices** (1.2 cm diameter, thickness < 1X₀) provide a **precise reference time**. MCP signals sampled by a DRS4 chip (CAEN V1742 board, 5 GS/s) [1].

[Diagram of beam setup with labels: HODO 1 2, MCP 1 2, CRYSTAL (5 x 5 MATRIX), APD, custom-made FE, custom-made ADC, VFE ADAPTER, BEAM, DIGITIZER, VFE commercial ADC, HODO 1 2, MCP 1 2, CRYSTAL (5 x 5 MATRIX)].

Custom DAQ, see Giacomo’s talk
One ECAL tower reproduced in R&D box:

- Same noise condition of CMS can be achieved with HL-LHC prototypes.
- Cooling available: 9 - 18 °C.
- Bare APDs also installed to study direct ionization signals.
Reference time reconstruction

- DRS4 ([2]) and ECAL readout synchronized by reading out the ECAL clock with the same DRS4 chip used for the MCPs.
- Dedicated DRS4 calibration to achieve best time resolution with the MCPs:
 - ADC calibration.
 - Cell-to-cell time delay calibration.

MCP and ECAL sync

MCP time performance

![Amplitude vs Time Graph]

![MCP time resolution Graph]

Simone Pigazzini | 16/01/2019
Impact of ADC sampling frequency

- Setup: PbWO$_4$ + APD + discrete component TIA + DRS4 readout. **Noise different from real detector.**
- Different ADC sampling frequency emulated offline by sampling the 5 GS/s signal from the DRS4:
 - Results prove that 160 MHz sampling is optimal to achieve the best time resolution.
 - Lower sampling frequencies performance depends on relative phase between APD signal and ADC clock.

![Graph showing resolution as a function of normalized amplitude](image)
First results with ASIC prototype

- One ECAL tower (25 channels) equipped with first prototype of HL-LHC ASIC amplification chip and 160 MHz commercial ADC.
- Electron beam, 25-250 GeV energy range. Setup kept at 18 °C.
- Preliminary results:
 - Energy resolution performance matches LHC legacy electronics.
 - Excellent time resolution, $\sigma_t < 40$ ps:
 - $E_{EM-shower} > 30$ GeV (HL-LHC start).
 - $E_{EM-shower} > 75$ GeV (HL-LHC end).

\[\begin{align*}
\text{Normalized amplitude (A/} &\text{E)} \times 10 \text{\%} \\
\text{Time resolution (ps)} &\times 10 \text{\%} \\
\text{Time resolution (ps)} &\times 10 \text{\%}
\end{align*} \]

\[\begin{align*}
C = (3.7 \pm 0.4) \times 10^3 \\
S = (2.9 \pm 0.6) \times 10^{-2}
\end{align*} \]

\[\begin{align*}
N = 0.51 \text{ (fixed)} \\
N = 10.7 \pm 0.4 \text{ ns} \\
C = 20.0 \pm 0.7 \text{ ps}
\end{align*} \]
ECAL upgrade impact on trigger

- Spike suppression target: 1kHz @ L1 trigger ($E_T > 5$ GeV).

Phase-I (CMS in-situ)

Phase-II (π/e TBs)

Example of signal shape discriminant (TDR simulation)
Plans for test beams in Run 3

- **Test with spare supermodule:**
 - Test full HL-LHC electronics chain: VFE + FE + DAQ.

- **CMS-ECAL area in H4 upgrade LS2:**
 - Supermodule support table refurbishment.
 - Room and SM cooling upgrade to run at 9 °C.
 - Tracking telescope and reference detectors upgrade.

Spare SM (1700 channels)

SM support table

Tracking and triggering

Beam
Summary

- HL-LHC demands a general upgrade of the CMS detector in order to provide required performance:
 - The CMS ECAL barrel electronics will be upgraded:
 - Mitigate noise and pile-up impact.
 - Improve trigger capabilities.
 - Add precise time information to the event reconstruction.
 - Series of test with electron and pions beams performed during Run 2:
 - TBs have been crucial to test new electronics design.
 - New electronics maintains excellent energy resolution and provides signal shape analysis and precise time reconstruction capabilities.