Test Beam Results of Irradiated Silicon Sensors with Modified Pixel Layout

7th BTTB Workshop 2019

Valerie Vanessa Hohm

Silke Altenheiner, Andreas Gisen, Kevin Kröninger, Mareike Weers, Jens Weingarten
DO-B03 and DO-B04

- Bias grid variations
- Pixel size: 250µm x 50µm (same as IBL)
- V0 is the standard ATLAS IBL pixel layout
- n^+-in-n wafer process
- Sensor thickness: 285µm

Blue: n^+
Grey: metal
Orange: bump bond openings
All designs on one sensor
 - Grouped in eight structures
 - 10 columns and 340 rows for each design
 - Each design on the left and right side
 - Readout: FE-I4B
Test Beam at CERN

May 2018

- 120GeV Pions
- ACONITE Telescope (resolution ~4µm)
- DUTs cooled to -40°C
- DO-B03: irradiated to $5.5 \times 10^{15} n_{eq}/cm^2$
- DO-B04: irradiated to $1.6 \times 10^{16} n_{eq}/cm^2$
- Different positions, tunings, voltages

with neutrons at SANDIA
- Interested in in-pixel efficiency maps
- Red line marks the expected middle of the pixel layout

Efficiency Pixel Map DUT 22 Design V1

Efficiency Pixel Map DUT 22 Design V2

DO-B03, 5.5×10^{15} n$_{eq}$/cm2
400V, 3200e, 6ToT@20ke
The axis of symmetry derived from the pixel layouts shifts with sensor x position

- Observed for DO-B03 and DO-B04

Analysis with TBMon2

DO-B04, $1.6 \times 10^{16} n_{eq}/cm^2$

400V, 3200e, 6ToT@20ke
Rotation of the sensor not corrected by TBMon2

Implemented rotations around all three axes

- In EuBuildTrack.cc
Rotations in TBMon2

- Expected axis of symmetry is not shifted anymore, stable around 33µm

DO-B04, $1.6 \times 10^{16} \text{ n}_{\text{eq}}/\text{cm}^2$

400V, 3200e, 6ToT@20ke
Asymmetric In-pixel Maps

- In-pixel efficiency maps are not symmetric in y-direction
- Symmetry axis expected around 25µm, seen around 33µm

→ Compare tracks and hits:

DO-B04, $1.6 \times 10^{16} n_{eq}/cm^2$
400V, 3200e, 6ToT@20ke
Asymmetric In-pixel Maps

- Hit distribution results in asymmetric residuals
- Residuals cause the failure of the alignment step

DO-B04, $1.6 \times 10^{16} \text{ } n_{eq} / \text{cm}^2$
400V, 3200e, 6ToT@20ke
Asymmetric In-pixel Maps

- Peak heights differ by a factor of ~3
- Peaks not symmetric around zero
- Special treatment for these sensors in CheckAlign.cc
 → Find highest value in the two peaks, define fit range
 → Fit gaussian distribution around these bins
 → Calculate the distance between their means
 → Shift all trackY positions to lower values
Asymmetric In-pixel Maps

- Symmetry axis is closer to the centre of the y-axis (before 33µm, now 27µm)

Efficiency Pixel Map DUT 23 Design V1

Efficiency Pixel Map DUT 23 Design V2

Efficiency Pixel Map DUT 23 Design V3

Efficiency Pixel Map DUT 23 Design V0

DO-B04, $1.6 \times 10^{16} \text{n}_{eq}/\text{cm}^2$

400V, 3200e, 6ToT@20keV
Conclusion and Outlook

- Implemented rotations around all three axes for TBMon2
- Special treatment for these sensors to avoid asymmetric in-pixel efficiency maps

- Investigate why the efficiency distribution is not symmetric within the pixel (caused by the sensor?)

Efficiency Pixel Map DUT 22 Design V1

Efficiency Pixel Map DUT 23 Design V1