
EUDAQ2 and AIDA TLU tutorial
Or: Using Upgrades for EUDET-type telescopes

and other telescopes
17th January 2019 at BTTB7, CERN

Mengqing Wu, Yi Liu, David Cussans, Jan Dreyling-Eschweiler

Goals of this tutorial
● for you: the integration strategy of EUDET-type telescopes
● for you: Learn the usage of EUDAQ2
● for you: Learn the usage of AIDA TLU
● for you: Learn the new potential at test beam setups
● from you: Feedback for further optimizations

→ also later possible: https://github.com/eudaq/eudaq/issues

Track #0: EUDAQ2 Installation and Example
Track #1: Moving from 1 to 2
Track #2: Python Interface
Track #3: AIDA TLU

https://github.com/eudaq/eudaq/issues

DAQ system: EUDAQ1 and EUDET TLU
Historically developed for EUDET-type telescopes
→ robust and flexible user device integration

● EUDAQ (Software level):
○ synchronisation at event-level

→ one central data collector
● TLU (Hardware level)

○ Trigger-Busy Logic (opt. Trigger ID)
→ trigger/event rate limited by the slowest device
→ limited time information for multiple tracks

Ressources:

● https://eudaq.github.io/
● https://telescopes.desy.de/User_manual#Running_with_EUDAQ_1

https://eudaq.github.io/
https://telescopes.desy.de/User_manual#Running_with_EUDAQ_1

EUDAQ1 and EUDET TLU

EUDAQ2 and AIDA TLU

EUDAQ comparison
EUDAQ 1 – robust

● No AIDA TLU implementation
● Centralized Data Taking with EUDET TLU

○ One Data Collector
○ Synchronisation by (sub-) event

number
● Versions

○ Latest release v1.8.0, April 2018
○ Development Branch: v1.x-dev

● Code structure
○ One library
○ Each producer an executable
○ Component-based Structure

EUDAQ 2 – more flexible

● EUDET TLU is implemented
● Decentralized Data Taking with AIDA TLU

○ Multiple Data Collector (and connections)
○ Online or offline synchronsiation by

event number, Trigger ID or timestamps
● Versions

○ Latest release v2.1.0, Nov. 2017
○ Development branch: master

● Code improvements
○ Core Library, Converter Library, …
○ Producer abstraction (modules)
○ User-based file/folder structure

Data Taking Modes for EUDET-type telescopes

For newcomers: What to do for integration?
● Hardware

○ TLU communication with your Sensor-DAQ

● Software
○ EUDAQ producer on your DAQ-PC for your Sensor-DAQ

■ Init/Conf/Start/Stop/Reset/Terminate commands and data flow
○ EUDAQ data converter, if needed for your analysis

■ Raw to Standard Event for OnlineMonitor/StdMonitor
■ Raw to LCIO Event for EUtelescope
■ …

Track #0: EUDAQ2 Installation
First installation:

● Get git, cmake
● Get further prerequisites:

https://telescopes.desy.de/EUDAQ#Out_of_box_on_Ubuntu_18
● Follow the instructions:

https://github.com/eudaq/eudaq/blob/master/README.md#quick-installa
tion-for-unix

(Try to change files and Re-Compiling or Reset ‘make_clean.sh’ and compiling).

https://telescopes.desy.de/EUDAQ#Out_of_box_on_Ubuntu_18
https://github.com/eudaq/eudaq/blob/master/README.md#quick-installation-for-unix
https://github.com/eudaq/eudaq/blob/master/README.md#quick-installation-for-unix

Track #0: EUDAQ2 example execution
Follow the instructions:

https://github.com/eudaq/eudaq/blob/master/README.md#execution

Check the data file with (in bin, -h option for man page)
euCliReader -i FILE
euCliReader -i FILE -e 0 -E 2
and similar with
euCliTeleReader

Change ini/conf file for saving data/log in a different location.

https://github.com/eudaq/eudaq/blob/master/README.md#execution

Track #1: Moving from EUDAQ 1 to 2
● Change the folder structure

→ from component-based to user-based folder structure
● Copy/Adjust CMake files

→ have a look at user/eudet/... for example
● Update your Producer

○ Apply the module structure
○ Rename functions: OnInitialise → DoInitialise , etc.

● Update your Converter
○ Apply the module structure and the id-name

● Try (and error) it

Track #2: Integrate a Python based-DAQ
● Condition:

○ you have checked out and successfully compile the usual EUDAQ2
○ Python3

● Re-compile with extra option:
○ EUDAQ_BUILD_PYTHON=ON
○ or use $cmake-gui ..

● Setup python run environment:
○ cd ${EUDAQ2}/user/example/python
○ source setup_eudaq.sh

Hands-On: Run the python example
● Run the example with Ex0.ini/Ex0.conf:

○ ${EUDAQ2}/bin/euRun &
○ python3 ExamplePyProducer.py
○ python3 ExamplePyDataCollector.py

● Exercises:
○ Change the Producer/DataCollector to change/add configurable variables;
○ Change the Producer to change the output event structure;

■ Check with command line tools in ${EUDAQ2}/bin , see Slide 10: Track #0: EUDAQ2
example execution;

○ NB: yes you do not need re-compilation if you modify your user py modules!

● Bonus: how to integrate a python-based DAQ to EUDAQ?

Track #3: AIDA TLU
● Communication with TLU over Gbit/s Ethernet (UDP/IP)

○ Uses IPBus (developed for CMS, now used by Atlas and many other HEP experiments)

● Installation:
○ Instruction: https://github.com/eudaq/eudaq/blob/master/user/tlu/README.md
○ IPBus/Cactus: https://ipbus.web.cern.ch/ipbus/doc/user/html/software/install/compile.html#instructions

○ cmake .. and Re-compile

https://github.com/eudaq/eudaq/blob/master/user/tlu/README.md
https://ipbus.web.cern.ch/ipbus/doc/user/html/software/install/compile.html#instructions

Hands-On: Trigger and Data Collection options
Perform a ...

● Autotrigger run
● External trigger run
● Multiple DirectDataCollectors
● (Synchronisation by Events)
● (Synchronisation by Trigger Number)

Check the data with euCliReader or euCliTriggerReader

AIDA TLU Configuration
● TLU “hardware manual” currently at

https://github.com/PaoloGB/firmware_AIDA/raw/master/Documentation/
Latex/Main_TLU.pdf (will be moved at some point)

● TLU configuration in INI and CONF files, in [Producer.aida_tlu] sections
○ INI file describes

■ TLU hardware parameters (different in miniTLU)
■ IPBus link to TLU over IPBus (connection file)
■ clock configuration (frequency, input/output, clock source).

● Clock configuration only need to be done once after start up. Can be repeated
if desired but clock will stop during reconfiguration.

○ CONF file describes triggering, PMT bias, DUT connection,

https://github.com/PaoloGB/firmware_AIDA/raw/master/Documentation/Latex/Main_TLU.pdf
https://github.com/PaoloGB/firmware_AIDA/raw/master/Documentation/Latex/Main_TLU.pdf

Triggering
● TLU has six Lemo 00 coaxial connectors that can be used as trigger inputs

○ Fixed 50𝛺 termination
○ Threshold variable between +/- 1.2V

■ Minimum reliable pulse size ~ 5mV
■ Maximum pulse size +/- 5V

○ Currently (version 0x14) triggers on falling edge (high voltage → low voltage transition)
ie. leading edge of NIM, scintillator pulses. Will be made configurable in later firmware
versions.

● Which combination of inputs produces a trigger is set by trigger mask.
○ See chapter-5 of TLU hardware manual
○ Each of the 64 (26) bits in the trigger mask controls if that combinations of inputs

produces a trigger.
■ Divided into high and low trigger words
■ e.g. high , low triggers words 0xFFFFFFFF , 0xFFFFFFFE trigger on any combination of

inputs except for 0,0,0,0,0,0

Triggering (continued)
● Triggering is edge sensitive (i.e. does not depend on width of input pulse)

○ Can adjust the internal width of triggers
■ units of 1/160MHz , up to 32
■ inX_STR parameter in CONF file

● e.g in0_STR=5 produces pulse of 5/160MHz = 31.25ns for every transition on
input 0

○ … can also delay each input by up to 32 cycles of 160MHz

● Can also use a fixed frequency internal trigger

Data Recorded by TLU
● One data record written for each trigger

○ This is inefficient, likely to move to multiple triggers in each record.
○ Saves much of the information as text “tags” this is very inefficient.

● Data recorded:
○ Event number and timestamp (number of 40MHz clock cycles since start of run)
○ Which inputs fired

■ even the ones that aren’t demanded by trigger mask. Can be used for e.g. tagging
events with threshold Cherenkov detector information

○ “Fine grained” timestamp of last hit on each of the trigger inputs
■ time bins currently 1.56ns wide (hope to improve to 781ps)

● Fixed threshold discriminators limits time resolution to ~ 1ns

● Data can be decoded into CSV with the euCliTluReader command line
program

TLU Information in Run Control
● TLU producer reports some status information to run control

○ Number of triggers processed
○ Number of possible triggers (particles).

■ Particles can be vetoed by
● run status (i.e. run stopped)
● DUT busy
● shutter cycle
●

Shutter
● One of DUT signals is a “shutter” which indicated when triggers are active

○ Will be used by AIDA-2020 Silicon Strip tracker to synchronize data taking with accelerator
cycle

● Shutter sequence can be controlled by a signal on one of the trigger
inputs
○ N.B. Remember to disable this input from the trigger mask …..
○ Can also be controlled by internal counter

Tutorial With TLU
● Connect TLU Ethernet link and check network configuration

○ Should respond to “ping 192.168.200.30 ”

● Execute the 01_aida_tlu_local script in
user/eudet/misc/starting_scripts
○ This version assumes that all processes are running on localhost, rather than distributed

according to standard telescope network configuration
○ Make sure that eudaq/bin is in your PATH:

export PATH=$PATH:/path/to/eudaq/bin

● Edit CONF file for desired trigger configuration. You can start from
user/tlu/misc/aida_tlu/aida_tlu_test.conf

● (Re-)conf and re-start...

