Beam dynamics for LHC upgrades

T. Pugnat ${ }^{1}$

B. Dalena ${ }^{1}$, O. Napoly ${ }^{1}$

L. Bonavantura ${ }^{2}$, A. Simona ${ }^{2}$
R. De Maria ${ }^{3}$, M. Giovannozzi ${ }^{3}$, E. Maclean ${ }^{3}$, J. Molson ${ }^{3}$, S. Roussenschuck ${ }^{3}$, E. Todesco ${ }^{3}$, R. Tomás ${ }^{3}$
${ }^{1}$ CEA -
DRF/Irfu/DACM/LEDA

${ }^{2}$ MOX, Politecnico di Milano, Milano, Italy
${ }^{3}$ CERN

PhD Thesis: 17 April 2018-17 April 2021

Contents

(1) Thesis project
(2) Modeling and Simulation
(3) Test

4 Measurements with the beam
(5) Magnetic Measurements

Contents

(1) Thesis projectModeling and SimulationTestMeasurements with the beamMagnetic Measurements

Thesis project

In order to be able to improve the design and performance of future colliders, models of the magnetic fields non-linearities needs deeper understanding. These non-linearities mainly come from magnet fringe fields and ends connections.

Goals:

- Develop a "realistic" non-linear transfer map for tracking studies.
- Use calculated or measured magnetic field map given by the magnet designers.
- Define observables sensitive to the longitudinal field description.

Contents

Thesis project

(2) Modeling and Simulation

- Hamiltonian and Vector potential representation
- $2^{\text {nd }}$ order Lie Integrator
- Step size in z
- Implementation in SixTrackTestMeasurements with the beamMagnetic Measurements

Hamiltonian and Vector potential representation

E. Forest (Ref. [1]):

8 D equivalent Hamiltonian of a quadrupole $\left(a(x, y, z)=q \frac{A(x, y, z)}{P_{0} c}\right)$:

$$
\begin{gathered}
H\left[x, p_{x}, y, p_{y}, s, \delta, z, p_{z} ; \sigma\right]=-\sqrt{(1+\delta)^{2}-\left(p_{x}-a_{x}\right)^{2}-\left(p_{y}-a_{y}\right)^{2}}+p_{z}-a_{z} \\
\Downarrow \\
K\left[x, p_{x}, y, p_{y}, s, \delta, z, p_{z} ; \sigma\right]=p_{z}-a_{z}-\delta+\frac{\left(p_{x}-a_{x}\right)^{2}}{2(1+\delta)}+\frac{\left(p_{y}-a_{y}\right)^{2}}{2(1+\delta)}
\end{gathered}
$$

A. Simona (Ref. [2]), M. Venturini (Ref. [3]) and A.J. Dragt (Ref. [4]):

Generalized Gradient: $C_{m, *}^{[n]}(z)=\frac{i^{n}}{2^{m} m!} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{k^{m+n+1}}{I_{m}^{\prime}(R k)} \widehat{B}_{m, *}(R, k) e^{i k z} d k$
Vector potential representation: $\quad A(x, y, z)=\sum_{i, j} x^{i} y^{j} c_{i j}(z)$

Gauge:

- AF: $A_{\phi} \equiv 0 \quad$ HFC: $\mathbf{A}=\mathbf{A}^{\prime}+\nabla \lambda$ such that $A_{x} \equiv 0$ with $\nabla \cdot \mathbf{A}=0$

Errors in the gradient reconstruction for $R \geqslant R_{\text {analysis }}$

$2^{\text {nd }}$ order Lie Integrator

For the position $\mathbf{q}=(x, y, \ldots)$ and the momentum $\mathbf{p}=\left(p_{x}, p_{y}, \ldots\right)$:

$2^{\text {nd }}$ order Lie Integrator

For the position $\mathbf{q}=(x, y, \ldots)$ and the momentum $\mathbf{p}=\left(p_{x}, p_{y}, \ldots\right)$:

In the Hard Edge case ($A_{x}=A_{y}=0$).

Step size in z

Procedure:

Use different initial position with different offset ($x_{i n}=p x_{i n}=p y_{i n}=0$) and only use one quadrupole for the tracking. The linear part is subtracted to the final positions and momenta, as a function of the initial coordinate.

- For a dz greater than 40 mm , information due to the longitudinal description of the field is greatly deteriorated (Ref. [2] and [5]).

Implementation in SixTrack

- SixTrack input structure is not changed.
- Need the configFringeField.txt file and file containing the vector potential coefficients and exponents.
- 4D $2^{\text {nd }}$ order Lie integrator.
\rightarrow For the moment in the FFField git branch.
\rightarrow Finalize 6D Tracking.
\rightarrow Test higher order method.
\rightarrow Include skew harmonics.

Contents

Thesis projectModeling and Simulation(3) Test

- Dynamic aperture
- Tune vs Action
- Single Quad TrackingMeasurements with the beam
(5) Magnetic Measurements

Dynamic aperture

Procedure:

- Particles: 30 initials conditions for each interval of 2 sigma (0 to 28) and 5 phase-space angles with $\delta=2.7 e^{-4}$.
- Optic: HLLHCV1.0 with 60 dipole field errors seeds.
- Number of revolution: 10^{4}.
- In SixTrack, systematic $b_{6,10,14}$ only are considered and are scaled for the prototype length.

Dynamic aperture without B2 in the vector potential file

Result:

- Effect of the derivatives small compared to effect due to random field errors and to tracking precision.
- SixTrack method is robust against full tracking.

Dynamic aperture with B2 in the vector potential file

Tune vs Action

Procedure:

- Particles: 120 initials conditions with amplitude between 0.033333 mm to 4.000000 mm , the ratio between emittance in the two planes equal to 0.19281 and $\delta=0$.
- Optic: HLLHCV1.0 with only one of the 60 dipole field errors seeds.
- Number of turns: 1000.

Result:

- Small systematic between SixTrack and the Lie2 method.
- Same result for all seeds but covered by random field errors.

- The small systematic (angle 15°) is not influencing DA result (see previous slide).
\rightarrow Test different angles.
\rightarrow Comparison with $\mathrm{dz}=2 \mathrm{~cm}$.

Single Quad Tracking

Procedure:

- Particles: Initial conditions on a circle for different radius and no transverse momenta.
- Optic: Only one quadrupole with a symmetric field. The tracking method is the Lie integrator (TS) with and without derivatives and the SixTrack multipole (MT) with and without subdivision of the thin matrix.
- Plot: DFT of the momenta at the end of the Quadrupole.

Result:

- An $b_{4,8,12}$ effect appear in the multipole case when the thin matrix is subdivided.
- This effect increase with the number of subdivision.
- When derivatives are included, the b_{4} change sign.
- The additional b_{4} increases with the radius.
\rightarrow Test with $\mathrm{dz}=2 \mathrm{~cm}$.

Single Quad Tracking

Procedure:

- Particles: Initial conditions on a circle for different radius and no transverse momenta.
- Optic: Only one quadrupole with a symmetric field. The tracking method is the Lie integrator (TS) with and without derivatives and the SixTrack multipole (MT) with and without subdivision of the thin matrix.
- Plot: DFT of the momenta at the end of the Quadrupole.

Result:

- An $b_{4,8,12}$ effect appear in the multipole case when the thin matrix is subdivided.
- This effect increase with the number of subdivision.
- When derivatives are included, the b_{4} change sign.
- The additional b_{4} increases with the radius.
\rightarrow Test with $\mathrm{dz}=2 \mathrm{~cm}$.

Contents

Thesis projectModeling and SimulationTest
4 Measurements with the beamMagnetic Measurements

Measurements with the beam

Goal:

Search for the signature of non-linear effects in the LHC not described by the present model.
\checkmark July 2017: LHC IR non-linearities studies (E. Maclean, MD 2158)

- Several measurements and techniques used in LHC to evaluate non linear fields in the IR, using the beams.
- Measurements of $1^{s t}$ and $2^{\text {nd }}$ order detuning with amplitude.
\checkmark September 2017: LHC IR non-linearites studies (E. Maclean)
- Measurement of short term DA with AC-dipole.
- Measurement of long term DA with ADT blow-up.
\rightarrow Analyse data from the previous MD ($1^{s t}$ and $2^{n d}$ order detunning with amplitudes, ...).
\rightarrow 2018: Non-linear MDs.
- We are particularly interested in the b_{6} effects of inner triplet.

Contents

Thesis projectModeling and SimulationTestMeasurements with the beam
(5) Magnetic Measurements

Magnetic Measurements

Goal:

Use computed or measured data for the Tracking and understand the limit of applicability of our model to measured data (filters of noise, measurements precision, etc...).

- Collaboration with the CERN: Brief Report of the discussions
- Toy-train measures harmonics in step of micro-meter and provides integrated values on mm longitudinal steps (using a 6 order polynomial) (S. Roussenschuck).
- Consider up to 6 derivatives of the Generalized Gradients in the longitudinal harmonics calculation/measurements (S. Roussenschuck).

- Both integral and "point-like" in z measurements of harmonics (b_{n} and a_{n}) can reach a relative resolution of 10^{-6} (S. Roussenschuck).
- For the moment, the prototypes are not representative of the HL-LHC production (E. Todesco).
The possibility to use measurements is not given for the time of the thesis.
- Collaboration with Fermilab: ?

Bibliography

[1] Explicit symplectic integrator for s-dependent static magnetic field Y. K. Wu, E. Forest and D. S. Robin, in Phys. Rev. E, vol. 68, pp. 046502, Oct. 2003.
[2] High order time integrators for the simulation of charged particle motion in magnetic quadrupoles
A. Simona, L. Bonaventura, T. Pugnat, B. Dalena,
in arXiv:1802.08157, submitted for publication.
[3] Accurate computation of transfer maps from magnetic field data M. Venturini, A. J. Dragt, in Nucl. Instr. Meth., vol. 427, pp. 387-392, May 1999.
[4] Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics A. J. Dragt,

University of Maryland, MD, USA, 1997.
[5] Calcul d'une "carte de transport" réaliste pour particules chargées T. Pugnat, B. Dalena, Technical report. pdf
[6] Accurate and Efficient Tracking in Electromagnetic Quadrupoles,
T. Pugnat et al., in Proc. IPAC'18, Vancouver, Canada, paper THPAK004
[7] Fringe Fields Modeling for the High Luminosity LHC Large Aperture quadripôle,
B. Dalena et al., in Proc. IPAC'14, Dresden, Germany, paper TUPRO002, pp. 993-996. pdf
[8] Construction of higher order symplectic integrators H. Yoshida, in Phys. Lett. A, vol. 150, no. 5, pp. 262-268, 1990.

Comparison between Integrator (2,4,6th-Gauss, 4th-RK, 2,4,6th-Lie)

- Lie methods profit more from the change of gauge than the other methods.
- Lie methods are faster with respect to other symplectic methods. The explicit, non-symplectic Runge-Kutta method is the fastest.
- All the methods display the same low accuracy for step size bigger than 4 cm for the realistic field considered.

Table: Vector potential evaluation's cost (A. Simona).

	ND=2		ND=16	
	Normal	Skew	Normal	Skew
AF	80	68	352	330
HFC	64	52	251	225
HFC/AF	0.80	0.76	0.72	0.68

Tube Oscillation

Procedure:

- Particles: 2 initials conditions with amplitude respectively 0.1993 mm and 0.4599 mm , the ratio between emittance in the two planes equal to 0.19281 . In the left plot, $\delta=0$ and on the right $\delta=2.7 e-4$.
- Optic: HLLHCV1.0 with only 1 dipole field errors seed.
- Number of turns: 10^{3}.

Tune vs Action

Procedure:

- Particles: 120 initials conditions with amplitude between 0.033333 mm to 4.000000 mm , the ratio between emittance in the two planes equal to 0.19281 and $\delta=0$.
- Optic: HLLHCV1.0 with the 60 dipole field errors seeds.
- Number of turns: 1000.

Result:

- Small systematic between SixTrack and the Lie2 method.
- Same result for all seeds but covered by random field errors.
- The small systematic (angle 15°) is not influencing DA result (see previous slide).
\rightarrow Test different angles.
\rightarrow Comparison with $\mathrm{dz}=2 \mathrm{~cm}$.

