Thesis project

# Beam dynamics for LHC upgrades

T. Pugnat<sup>1</sup>

B. Dalena<sup>1</sup>, O. Napoly<sup>1</sup>

L. Bonavantura<sup>2</sup>. A. Simona<sup>2</sup>

R. De Maria<sup>3</sup>, M. Giovannozzi<sup>3</sup>, E. Maclean<sup>3</sup>, J. Molson<sup>3</sup>, S. Roussenschuck<sup>3</sup>, E. Todesco<sup>3</sup>, R. Tomás<sup>3</sup>

<sup>1</sup>CEA -DRF/Irfu/DACM/LEDA



<sup>2</sup>MOX, Politecnico di Milano, Milano, Italy



3CERN





PhD Thesis: 17 April 2018 - 17 April 2021

- Thesis project
- Modeling and Simulation
- Test
- Measurements with the beam
- Magnetic Measurements

Thesis project

- Thesis project
- Modeling and Simulation
- 3 Tes
- Measurements with the beam
- Magnetic Measurements

# Thesis project

Thesis project

In order to be able to improve the design and performance of future colliders. models of the magnetic fields non-linearities needs deeper understanding. These non-linearities mainly come from magnet fringe fields and ends connections.





### Goals:

- Develop a "realistic" non-linear transfer map for tracking studies.
- Use calculated or measured magnetic field map given by the magnet designers.
- Define observables sensitive to the longitudinal field description.

- - Modeling and Simulation
    - Hamiltonian and Vector potential representation
    - 2<sup>nd</sup> order Lie Integrator
    - Step size in z
    - Implementation in SixTrack

# Hamiltonian and Vector potential representation

## E. Forest (Ref. [1]):

8 D equivalent Hamiltonian of a quadrupole ( $a(x,y,z) = q \frac{A(x,y,z)}{P_{0}c}$ ):

$$H[x, p_x, y, p_y, s, \delta, z, p_z; \sigma] = -\sqrt{(1+\delta)^2 - (p_x - a_x)^2 - (p_y - a_y)^2} + p_z - a_z$$

$$\Downarrow$$

$$K[x, p_x, y, p_y, s, \delta, z, p_z; \sigma] = p_z - a_z - \delta + \frac{(p_x - a_x)^2}{2(1+\delta)} + \frac{(p_y - a_y)^2}{2(1+\delta)}$$

# A. Simona (Ref. [2]), M. Venturini (Ref. [3]) and A.J. Dragt (Ref. [4]):

Generalized Gradient:  $C_{m,*}^{[n]}(z) = \frac{i^n}{2^m m!} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{k^{m+n+1}}{I_m'(Rk)} \widehat{B}_{m,*}(R,k) e^{ikz} dk$  Vector potential representation:  $A(x,y,z) = \sum_{i,j} x^i y^j c_{ij}(z)$ 

## Gauge:

• AF: 
$$A_{\phi} \equiv 0$$

• **HFC:** 
$$\mathbf{A} = \mathbf{A}' + \nabla \lambda$$
 such that  $A_x \equiv 0$  with  $\nabla \cdot \mathbf{A} = 0$ 

Errors in the gradient reconstruction for  $R \geqslant R_{analysis}$ 

# 2<sup>nd</sup> order Lie Integrator

Thesis project

# For the position $\mathbf{q} = (x, y, ...)$ and the momentum $\mathbf{p} = (p_x, p_y, ...)$ :

0.

# 2<sup>nd</sup> order Lie Integrator

Thesis project

## For the position $\mathbf{q} = (x, y, ...)$ and the momentum $\mathbf{p} = (p_x, p_y, ...)$ :

In the Hard Edge case  $(A_x = A_y = 0)$ .

# Step size in z

Thesis project

#### Procedure:

Use different initial position with different offset  $(x_{in} = px_{in} = py_{in} = 0)$  and only use one quadrupole for the tracking. The linear part is subtracted to the final positions and momenta, as a function of the initial coordinate.





• For a dz greater than 40 mm, information due to the longitudinal description of the field is greatly deteriorated (Ref. [2] and [5]).

Length of the File

1.080

# Implementation in SixTrack

0000

Modeling and Simulation



- SixTrack input structure is not changed.
- Need the configFringeField.txt file and file containing the vector potential coefficients and exponents.
- 4D 2<sup>nd</sup> order Lie integrator.
- → For the moment in the FFField git branch.
- → Finalize 6D Tracking.
- Test higher order method.
  - Include skew harmonics.

- 1 Thesis project
- 2 Modeling and Simulation
- Test
  - Dynamic aperture
  - Tune vs Action
  - Single Quad Tracking
- Measurements with the beam
- Magnetic Measurements

Test • o o

# Dynamic aperture

#### Procedure:

- Particles: 30 initials conditions for each interval of 2 sigma (0 to 28) and 5 phase-space angles with δ = 2.7e<sup>-4</sup>.
- Optic: HLLHCV1.0 with 60 dipole field errors seeds.
- Number of revolution: 10<sup>4</sup>
- In SixTrack, systematic b<sub>6,10,14</sub> only are considered and are scaled for the prototype length.

# Dynamic aperture without B2 in the vector potential file



#### Result:

- Effect of the derivatives small compared to effect due to random field errors and to tracking precision.
- SixTrack method is robust against full tracking.

# Dynamic aperture with B2 in the vector potential file



Test 000

## Tune vs Action

Thesis project

#### Procedure:

- Particles: 120 initials conditions with amplitude between 0.033333 mm to 4.000000 mm, the ratio between emittance in the two planes equal to 0.19281 and  $\delta = 0$ .
- Optic: HLLHCV1.0 with only one of the 60 dipole field errors seeds.

0.33 ≈ 0.328 0.326

0.324

0.322 0.32

Number of turns: 1000.

## Result:

- Small systematic between SixTrack and the Lie2 method
- Same result for all seeds but covered by random field errors.
- The small systematic (angle) 15°) is not influencing DA result (see previous slide).
- Test different angles.
- Comparison with dz=2cm.



0.01

Jy [um]

0.015

0.005

0.02

# Single Quad Tracking

#### **Procedure:**

- Particles: Initial conditions on a circle for different radius and no transverse momenta.
- Optic: Only one quadrupole with a symmetric field. The tracking method is the Lie integrator (TS) with and without derivatives and the SixTrack multipole (MT) with and without subdivision of the thin matrix.
- Plot: DFT of the momenta at the end of the Quadrupole.

#### Result:

- An b<sub>4,8,12</sub> effect appear in the multipole case when the thin matrix is subdivided.
- This effect increase with the number of subdivision.
- When derivatives are included, the b<sub>4</sub> change sign.
- The additional b<sub>4</sub> increases with the radius
- → Test with dz=2cm.



# Single Quad Tracking

#### Procedure:

Thesis project

- Particles: Initial conditions on a circle for different radius and no transverse momenta.
- Optic: Only one quadrupole with a symmetric field. The tracking method is the Lie integrator (TS) with and without derivatives and the SixTrack multipole (MT) with and without subdivision of the thin matrix.
- Plot: DFT of the momenta at the end of the Quadrupole.

## Result:

- An b<sub>4,8,12</sub> effect appear in the multipole case when the thin matrix is subdivided.
- This effect increase with the number of subdivision.
- When derivatives are included, the b<sub>4</sub> change sign.
- The additional b<sub>4</sub> increases with the radius.
- → Test with dz=2cm.



- 1 Thesis project
- Modeling and Simulation
- Tes
- Measurements with the beam
- Magnetic Measurements

# Measurements with the beam

#### Goal:

Thesis project

Search for the signature of non-linear effects in the LHC not described by the present model.

- ✓ July 2017: LHC IR non-linearities studies (E. Maclean, MD 2158)
  - Several measurements and techniques used in LHC to evaluate non linear fields in the IR, using the beams.
  - Measurements of  $1^{st}$  and  $2^{nd}$  order detuning with amplitude.
- ✓ September 2017: LHC IR non-linearites studies (E. Maclean)
  - Measurement of short term DA with AC-dipole.
  - Measurement of long term DA with ADT blow-up.
- → Analyse data from the previous MD (1<sup>st</sup> and 2<sup>nd</sup> order detunning with amplitudes, ...).
- → 2018: Non-linear MDs.
  - We are particularly interested in the b<sub>6</sub> effects of inner triplet.

- 1 Thesis project
- 2 Modeling and Simulation
- Tes
- Measurements with the bean
- Magnetic Measurements

# Magnetic Measurements

#### Goal:

Thesis project

Use computed or measured data for the Tracking and understand the limit of applicability of our model to measured data (filters of noise, measurements precision, etc...).

#### Collaboration with the CERN: Brief Report of the discussions

- Toy-train measures harmonics in step of micro-meter and provides integrated values on mm longitudinal steps (using a 6 order polynomial) (S. Roussenschuck).
- Consider up to 6 derivatives of the Generalized Gradients in the longitudinal harmonics calculation/measurements (S. Roussenschuck).



Bibliography

- Both integral and "point-like" in z measurements of harmonics ( $b_n$  and  $a_n$ ) can reach a relative resolution of  $10^{-6}$  (S. Roussenschuck).
- For the moment, the prototypes are not representative of the HL-LHC production (E. Todesco).
   The possibility to use measurements is not given for the time of the thesis.
- Collaboration with Fermilab: ?

Measurements with the beam

# Bibliography

Thesis project

- [1] Explicit symplectic integrator for s-dependent static magnetic field Y. K. Wu, E. Forest and D. S. Robin, in Phys. Rev. E, vol. 68, pp. 046502, Oct. 2003.
- [2] High order time integrators for the simulation of charged particle motion in magnetic quadrupoles A. Simona, L. Bonaventura, T. Pugnat, B. Dalena. in arXiv:1802.08157, submitted for publication.
- [3] Accurate computation of transfer maps from magnetic field data M. Venturini, A. J. Dragt, in *Nucl. Instr. Meth.*, vol. 427, pp. 387-392, May 1999.
- [4] Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics A. J. Dragt, University of Maryland, MD, USA, 1997.

- [5] Calcul d'une "carte de transport" réaliste pour particules chargées T. Pugnat, B. Dalena, Technical report. pdf
- [6] Accurate and Efficient Tracking in Electromagnetic Quadrupoles, T. Pugnat et al., in Proc. IPAC'18. Vancouver. Canada. paper THPAK004
- [7] Fringe Fields Modeling for the High Luminosity LHC Large Aperture auadripôle. B. Dalena et al., in Proc. IPAC'14, Dresden, Germany, paper TUPRO002, pp. 993-996. pdf
  - [8] Construction of higher order symplectic integrators H. Yoshida. in *Phys. Lett. A*, vol. 150, no. 5, pp. 262-268, 1990,

Thesis project

# Comparison between Integrator (2,4,6th-Gauss, 4th-RK, 2,4,6th-Lie)

- Lie methods profit more from the change of gauge than the other methods.
- Lie methods are faster with respect to other symplectic methods. The explicit, non-symplectic Runge-Kutta method is the fastest.
- All the methods display the same low accuracy for step size bigger than 4 cm for the realistic field considered.

Table: Vector potential evaluation's cost (A. Simona).

|        | ND=2   |      | ND=16  |      |
|--------|--------|------|--------|------|
|        | Normal | Skew | Normal | Skew |
| AF     | 80     | 68   | 352    | 330  |
| HFC    | 64     | 52   | 251    | 225  |
| HFC/AF | 0.80   | 0.76 | 0.72   | 0.68 |

## **Tube Oscillation**

#### Procedure:

- Particles: 2 initials conditions with amplitude respectively 0.1993 mm and 0.4599 mm, the ratio between emittance in the two planes equal to 0.19281. In the left plot,  $\delta=0$  and on the right  $\delta=2.7e-4$ .
- Optic: HLLHCV1.0 with only 1 dipole field errors seed.
- Number of turns:  $10^3$ .



### Tune vs Action

Thesis project

#### Procedure:

- Particles: 120 initials conditions with amplitude between 0.033333 mm to 4.000000 mm, the ratio between emittance in the two planes equal to 0.19281 and  $\delta=0$ .
- Optic: HLLHCV1.0 with the 60 dipole field errors seeds.

• Number of turns: 1000.

## Result:

- Small systematic between SixTrack and the Lie2 method.
- Same result for all seeds but covered by random field errors.
- The small systematic (angle 15°) is not influencing DA result (see previous slide).
- → Test different angles.
- → Comparison with dz=2cm.



Delta=0 1000turns