Application of the Berkeley Lab Accelerator Simulation Toolkit BLAST to the Modeling of Plasma Accelerator Experiments

CERN – June 1, 2018

Jean-Luc Vay Lawrence Berkeley National Laboratory

Outline

- Intro & overview of the BLAST toolkit
- Advanced algorithms for plasma accelerator modeling
- BLAST codes for plasma accelerator modeling: Warp, FBPIC, WarpX.
- Examples
- Summary & outlook

Founded in 1931 on Berkeley Campus Moved to Current Site in 1940

Lawrence's Successful Legacy of Team Science

Laboratory Director M.S. Witherell

M.T. BRANDT Deputy Director for Operations **H.D. SIMON** Deputy Director for Research

J.A. Blair, Laboratory Counsel M.K. Dick, Chief of Staff J.D. Elliott, Sustainability Officer A. Flores, Department Head, Internal Audit J. German, Chief Communications Officer D. Medley, Head of Government and Community Relations E. Quaite-Randall, Chief Technology Transfer Officer T. Triplett, Interim Director, Institutional Assurance and Integrity K.P. Williams, Chief Financial Officer

SCIENCE

ALS-U D. ROBIN, ALS-Upgrade Project Director BIOSCIENCES **BIOLOGICAL SYSTEMS &** DOE JOINT GENOME **ENVIRO. GENOMICS** MOLECULAR BIOPHYSICS INSTITUTE & SYSTEMS BIOLOGY & INTEGRATED ENGINEERING BIOIMAGING M.E. MAXON N.L. Glass P.D. Adams B.A. Simmons N.J. Mouncey Associate Laboratory Director **Division Director** Facility Director **Division Director Division Director** COMPUTING SCIENCES COMPUTATIONAL NAT. ENERGY RESEARCH SCIENTIFIC RESEARCH SCIENTIFIC COMPUTING **NETWORKING (ESNET) CENTER (NERSC)** K.A. YELICK D.L. Brown S.S. Dosanjh I.S. Monga **Division Director Division Director** Associate Laboratory Director **Division Director EARTH & ENVIRONMENTAL CLIMATE & ECOSYSTEM** ENERGY GEOSCIENCES SCIENCES SCIENCES W.D. Collins S.S. HUBBARD J.T. Birkholzer Associate Laboratory Director **Division Director Division Director** ENERGY SCIENCES **ADVANCED LIGHT** CHEMICAL SCIENCES MATERIALS SCIENCES MOLECULAR FOUNDRY SOURCE J.B. NEATON S.D. Kevan K. Wilson M. Asta J.B. Neaton Interim Division Director Interim Division Director **Division Director Division Director** Associate Laboratory Director **BUILDING TECHNOLOGY ENERGY ANALYSIS & ENERGY STORAGE &** CYCLOTRON ROAD **ENERGY TECHNOLOGIES** & URBAN SYSTEMS ENVIRONMENTAL DISTRIBUTED RESOURCES IMPACTS **R. RAMESH** M.A. Piette T. Kirchstetter R. Prasher I. Gur Associate Laboratory Director **Division Director Division Director Division Director Division Director** ACCELERATOR TECH ENGINEERING PHYSICS NUCLEAR SCIENCE PHYSICAL SCIENCES & APPLIED PHYSICS. **T.J. SYMONS** W. Leemans H. von der Lippe B.V. Jacak N.A. Roe Associate Laboratory Director **Division Director Division Director Division Director Division Director**

Accelerator Technology and Applied Physics Division

LBNL ATAP Accelerator Modeling Program

mm

BERKELEY LAB

Office of

Science

AMP is home of "BLAST" simulation toolset for conventional & advanced concepts accelerators

State-of-the-art simulation tools*:

- *Multi-physics frameworks*: IMPACT, <u>Warp</u>, <u>WarpX</u>.
- Specialized codes: BeamBeam3D, <u>FBPIC</u>, LW3D, POSINST.
- Library: PICSAR.

Wide set of physics & components:

- beams, plasmas, lasers, structures, beam-beam, e⁻ clouds, ...
- linacs, rings, injectors, traps, ...

At the forefront of computing:

- novel algorithms: boosted frame, particle pushers, etc.
- SciDAC, INCITE, NESAP, DOE Exascale.

*Most codes open source, available at blast.lbl.gov or upon request.

ACCELERATOR TECHNOLOGY & ATAP

Outline

- Intro & overview of the BLAST toolkit
- Advanced algorithms
- BLAST codes for modeling of plasma accelerators: Warp, FBPIC, WarpX.
- Examples
- Summary & outlook

Pushing the state-of-the-art in beam/accelerator modeling → nurturing the development of *new algorithms*

Algorithm/method	Reference	Originated	Adopted by
Integrated Maps for rf cavity dynamics	Ryne, LANL Report 1995 ML/IMPACT D. Abell nonlinear model		D. Abell nonlinear model
Stochastic Leap-Frog for Brownian motion	Qiang & Habib, PRE 2000	IMPACT	
Spectral-finite difference multigrid solver	Qiang & Ryne, CPC 2001/2006	IMPACT	
Improved Perfectly Matched Layers	Vay, JCP 2000/JCP 2002	Warp	Osiris
AMR-PIC electrostatic	Vay et al, LPB 2002 /PoP 2004	Warp	pyPIC, WarpX
PIC w/ shift-Green function method	Qiang et al, PRSTAB 2002/CPC 2004	BBeam3D	
Secondary emission of electrons algorithm	Furman & Pivi, PRST-AB 2003	Posinst	TxPhysics, Warp, spacecraft charging codes
AMR-PIC electromagnetic	Vay et al, CPC 2004	Emi2D	Warp, WarpX
3D Poisson solver with large aspect ratio	Qiang & Gluckstern, CPC 2004	IMPACT	
PIC w/ integrated Green function	Qiang et al, PRSTAB 2006	ML/IMPACT	BB3D, Pyheadtail, Opal
Hybrid Lorentz particle pusher	Cohen et al, NIMA 2007	Warp	PICSAR (UCB)
Lorentz boosted frame	Vay, PRL 2007	Warp	INF&RNO, JPIC, Osiris, V-sim, FBPIC, WarpX
Explicit Lorentz invariant particle pusher	Vay, PoP 2008	Warp	Tristan, QED, PIConGPU, Osiris, Photon-Plasma, etc.
New convolution integral w/ smooth kernel	Qiang, CPC 2010		
	ERGY Science	APPLIE	D PHYSICS DIVISION AIAP

is ongoing

Algorithm/method (cont.)	Reference	Originated	Adopted by
Mixed Particle-Field decomposition method	Qiang & Li, CPC 2010	BBeam3D	
PIC with tunable electromagnetic solver	Vay et al, JCP 2011	Warp	V-sim, Osiris
Efficient digital filter for PIC	Vay et al, JCP 2011	Warp	V-sim, Osiris
Laser launcher from moving antenna	Vay et al, PoP <mark>2011</mark>	Warp	V-sim, Osiris, FBPIC, WarpX
High-precision laser envelope model	Benedetti et al, 2011	Inf&rno	
Domain decomposition for EM spectral solver	Vay et al, JCP 2013	Warp	PICSAR, WarpX
Mitigation of num. Cherenkov instability	Godfrey&Vay, JPC/CPC 2014-15	Warp	Osiris, WarpX
Adaptive unified differential evolution algo.	Qiang & Mitchell, OO dig. 2015		
Spectral solver with azimuthal decomposition	Lehe et al, CPC <mark>2016</mark>	FBPIC	
Galilean PSATD w/wo azimuthal decomp.	Lehe, Kirchen, PRE/PoP 2016	FBPIC/Warp	WarpX
Arbitrary order stencil variations analysis	Vincenti et al, CPC 2016		
Novel algorithm for vectorization	Vincenti et al, CPC 2017	PICSAR	Warp, WarpX, SMILEI
Novel Poisson solvers in pipe with open BC	Qiang, CPC 2017	IMPACT	
Fully symplectic tracking model	Qiang, PRAB 2017	IMPACT	
	ERGY Science	APPLIE	D PHYSICS DIVISION AT A P

Investment into new algorithms

is driven

by physics problems.

E.g. plasma-based colliders.

Plasma-based acceleration has the potential to make accelerators small (again), and cut cost dramatically

Tens of plasma accelerator stages needed for a 1 TeV e^-e^+ collider.

BUT: simulations in 2-D can take days for 1 stage (even at insufficient resolution for collider beam quality).

→ Full 3-D modeling of tens of stages needs advanced algorithms + Petascale to Exascale computing.

Plasma accelerators are challenging to model

For a 10 GeV LPA scale stage:

Short driver/wake propagates through long plasma

→ Many time steps.

Advanced algorithms are essential to reach goal

Lower # time steps:

• optimal Lorentz boosted frame (alternate to quasistatic)

Specialized output needed to reconstruct data in lab frame

Care needed to ensure frame-independent initial conditions

Initial conditions known in lab frame:

- **1. Lorentz transform in boosted frame**
- 2. perform injection of particle & laser beams through a moving plane

J.-L. Vay, W.M. Fawley, C.G.R. Geddes, E. Cormier-Michel, D.P. Grote, *Proc. PAC 2009*, paper TU1PBI04 J.-L. Vay, C. Geddes, E. Cormier-Michel, D. Grote, *Phys. Plasmas* **18**, 123103 (2011)

Advanced algorithms are essential to reach goal

Lower # time steps:

optimal Lorentz boosted frame

Higher accuracy:

Adaptive Mesh Refinement

Mesh refinement requires special care

- 1. J.-L. Vay, P Colella, P Mccorquodale, B Van Straalen, A Friedman, and D. P. Grote. Laser & Particle Beams 20, 569–575, (2002).
- 2. J.-L. Vay, J.-C. Adam, A. Héron, Computer Physics Comm. 164, 171-177 (2004).
- 3. J.-L. Vay, D. P. Grote, R. H. Cohen, & A. Friedman, Computational Science & Discovery 5, 014019 (2012).

Advanced algorithms are essential to reach goal

Lower # time steps:

optimal Lorentz boosted frame

Higher accuracy:

- Adaptive Mesh Refinement
- Ultrahigh-orders spectral Maxwell solvers

Arbitrary-order Maxwell solver offers flexibility in accuracy

(on centered or staggered grids)

nalytical integration in Fourier space offers infinite order

Pseudo-Spectral Analytical Time-Domain¹ (PSATD)

$$B_{z}^{n+1} = \mathcal{F}^{1}(C\mathcal{F}(B_{z}^{n})) + \mathcal{F}^{1}(iSk_{y} \mathcal{F}(E_{x})) - \mathcal{F}^{1}(iSk_{x} \mathcal{F}(E_{y}))$$

with $C = \cos(kc\Delta t); \quad S = \sin(kc\Delta t); \quad k = \sqrt{k_{x}^{2} + k_{y}^{2}}$
PSATD c $\Delta t/\Delta x=50$

Easy to implement arbitrary-order *n* with PSATD ($k=k^{\circ\circ} \rightarrow k^n$).

Both arbitrary order FDTD and PSATD to be implemented in WarpX.

¹I. Haber, R. Lee, H. Klein & J. Boris, *Proc. Sixth Conf. on Num. Sim. Plasma*, Berkeley, CA, 46-48 (1973) 25

Advanced algorithms are essential to reach goal

PSATD also enables integration in Galilean frame

Galilean PSATD is stable for uniform relativistic flow

Advanced algorithms are essential to reach goal

Spectral solvers involve global operations → harder to scale to large # of cores

VS

Spectral

global "costly"

communications

Finite Difference (FDTD)

local "cheap"

communications

0	0	0	0	0
0	0	8	0	0
0	G	*	8	0
0	0	8	0	0
0	0	0	0	0

Harder to scale

Easier to scale

Finite-order stencil offers scalable ultra-high order solver

Truncation error analysis \rightarrow ultra-high order possible with much improved stability

Enabled demonstration of novel spectral solver with local FFTs scaling to ~1M cores

H. Vincenti et al., Comput. Phys. Comm. 200, 147 (2016).

Applied successfully to modeling of LPAs at DESY¹ and plasma mirrors at CEA Saclay^{2,3} in cases where standard second-order FDTD solvers fail.

[1] S. Jalas, I. Dornmair, R. Lehe, H. Vincenti, J.-L. Vay, M. Kirchen, A. R. Maier, Phys. Plasmas 24, 033115 (2017).

[2] G. Blaclard, H. Vincenti, R. Lehe, J. L. Vay, Phys. Rev. E 96, 033305 (2017)

[3] A. Leblanc, S. Monchoce, H. Vincenti, S. Kahaly, J-L. Vay, F.Quere, Phys. Rev. Lett. 119, 155001 (2017)

|--|--|--|

Outline

- Intro & overview of the BLAST toolkit
- Advanced algorithms
- BLAST codes for modeling of plasma accelerators: Warp, FBPIC, WarpX.
- Examples
- Summary & outlook

BLAST codes for modeling plasma acceleration

	Warp	FBPIC	WarpX	[] = in/future development
Geometries				RZ = axisymmetric
Processors				RZ ⁺⁺ = RZ + Fourier
Maxwell solvers				$\cos(m\theta)+i\sin(m\theta)$
Adaptive mesh refinement				
Particle pushers				
Ionization				
Run modes				
Conventional accelerators				
Internal surfaces/volumes				
Particle emission				
Usage				
	ENERGY Science	of ACCELEI Ce APPLIED) 33

Warp

open source: http://warp.lbl.gov

History

- 1989: code started by A. Friedman; electrostatic PIC with 3D Poisson solver in square pipe using sine transforms
 - with inputs and contributions from I. Haber.
 - name Warp chosen to denote speed, later also denotes "warped" Fresnet-Serret coordinates used in bends.
- **1991**: **D. Grote** joins and becomes main developer, contributing more general 3D Poisson solver and beam loading module, followed by countless contributions since.
- **1995**: **S. Lund** start contributing, in particular beam loading module using various distributions, such as waterbag, Gaussian, and thermal.
- Late 1990's: R. Kishek begins using Warp to model experiment at UMD, and in undergraduate and graduate classes. He contributes some code, including various diagnostics used at UMD and UMER, and standardized machine description for UMER.
- **2000**: **D. Grote** develops Forthon, transitioning Warp from Basis to Python, and parallelizes Warp using MPI (replacing previous PVM parallelization).
- **2000**: J.-L. Vay joins the development team and contributes the EM solver, ES and EM AMR, boosted frame, Lorentz invariant particle pusher, quasistatic solver, etc.
- 2013: Warp becomes Open Source (BSD license)
- **2015**: **R**. **Lehe** joins the development team and contributes the EM Circ solver, OpenPMD and hdf5 IO, mpi4py; also develops spectral EM circ stand-alone module that became FBPIC (original coupling to Warp on standby).
- 2016: RadiaSoft's open source Docker and Vagrant containers make WARP available in the cloud
 -> available via http://beta.sirepo.com/warp

History

- Other contributors include:
 - Ron Cohen: drift-Lorentz mover, other fixes.
 - Bill Sharp: Circe module.
 - Michiel deHoon: Hermes module.
 - Sven Chilton: generalized KV envelope solver (with S. Lund).
 - Arun Persaud: making Warp PEP8 compliant, various fixes and updates, also adding capability to download parameters and diagnostic output from NDCX-II run database, automatically run Warp, and overlay results with experimental data, thereby facilitating machine optimization.
 - Henri Vincenti: fixes to Circ, OpenPMD, and EM solver; development of optimized PICSAR kernel with tiling, OpenMP and advanced vectorization.
 - Manuel Kirchen: mpi4py interface, boosted particle diagnostics, development of FBPIC module.
 - Patrick Lee: boosted particle diagnostics, other fixes.
 - Irene Dornmair: EM initialization for relativistic beams.
 - Mathieu Lobet: optimization of PICSAR kernel.
 - Mathieu Blaclard: generalized laser antenna.
 - Maxence Thevenet: various fixes.
 - Haithem Kallala: Warp+PXR improvements.

• ...
Warp: A Particle-In-Cell framework for accelerator modeling

Versatile conductor generator accommodates complicated structures

Automatic meshing $\frac{\widehat{E}}{2}$ around ion beam source emitter

Z (m)

- Fully electromagnetic Yee/nodal mesh, arbitrary order, spectral, PML, MR
- Accelerator lattice: general; non-paraxial; can read MAD files
 - solenoids, dipoles, quads, sextupoles, linear maps, arbitrary fields, acceleration.
- Particle emission & collisions
 - Particle emission: space charge limited, thermionic, hybrid, arbitrary.
 - Secondary e- emission (Posinst), ion-impact electron emission (Txphysics) & gas emission.
 - Monte Carlo collisions: ionization, capture, charge exchange.

Warp is parallel, combining modern and efficient programming languages

*http://hifweb.lbl.gov/Forthon (wrapper supports FORTRAN90 derived types) - dpgrote@lbl.gov

Warp's versatile programmability enables great adaptability

FBPIC

open source: https://github.com/fbpic

developed since 2015 by

Rémi Lehe – Berkeley Lab, USA Manuel Kirchen & Soeren Jalas – CFEL, Hamburg, Germany

Spectral EM-PIC in Cyl. RZ^{mθ} geometry for fast simulations

• The fields are decomposed into azimuthal modes

$$F(r,z,\theta) = Re\left[\sum_{m=0}^{N_m-1} \hat{F}_m(r,z)e^{im\theta}\right]$$

m=0: purely cylindrical mode m=1: dipole mode m=2: quadrupole mode

• Each azimuthal mode is represented by complex 2D r-z grids

4

Derivatives in Maxwell equations evaluated in Fourier space

- FFT transforms in Z
- Hankel transforms in R

ACCELERATOR TECHNOLOGY & ATAP

Cylindrical (RZ^{mθ}) geometry: faster simulations

Key advantage

For many physical problems, **only a few modes** are needed. Using only a few modes (2D grids) requires **vastly less computational time**

& memory than a full 3D Cartesian grid.

- Beam-driven plasma acceleration with <u>cylindrical</u> driver beam m=0
- Beam hosing <u>in the weakly-perturbed regime</u> m=0 (unperturbed beam) and m=1 (first-order perturbation)
- Laser-driven plasma acceleration with <u>cylindrical</u> laser m=0 (for the wakefield) and m=1 (for the laser)

GPU acceleration

In $RZ^{m\theta}$ geometry, many simulations can often fit on a **single GPU**

Whole PIC loop was ported to GPU (to avoid CPU-GPU transfer)

Acceleration of ~3x-10x compared to the multi-threaded CPU version (for large simulations)

WarpX

open source release: fall 2018.

(pre-release available to collaborators)

- As part of the National Strategic Computing initiative, ECP was established to accelerate delivery of a capable exascale computing system that integrates hardware and software capability to deliver approximately 50 times more performance than today's 20-petaflops machines on mission critical applications.
 - DOE is a lead agency within NSCI, along with DoD and NSF
 - Deployment agencies: NASA, FBI, NIH, DHS, NOAA
- ECP's work encompasses
 - applications,
 - system software,
 - hardware technologies and architectures, and
 - workforce development to meet scientific and national security mission needs.

Capable Exascale System Applications Will Deliver Broad Coverage of 6 Strategic Pillars

Scientific discovery National security **Energy security** Economic security Earth system Health care Stockpile Turbine wind plant Additive Cosmological probe Accurate regional Accelerate stewardship manufacturing of the standard model efficiency impact assessments and translate of qualifiable of particle physics in Earth system cancer research Design and metal parts models Validate fundamental commercialization laws of nature Stress-resistant crop of SMRs Urban planning analysis and catalytic Plasma wakefield Nuclear fission Reliable and conversion efficient planning accelerator design and fusion reactor of biomass-derived of the power grid materials design Light source-enabled alcohols Seismic hazard analysis of protein Subsurface use Metagenomics risk assessment and molecular for carbon capture. for analysis of structure and design petro extraction, biogeochemical waste disposal Find, predict, cycles, climate and control materials High-efficiency. change, and properties low-emission environmental combustion engine remediation Predict and control and gas turbine stable ITER design operational performance Carbon capture and sequestration scaleup Demystify origin of **Biofuel catalyst** chemical elements design 10 Exascale Computing Project BERKELEY LAB

To deliver simulation tools for plasma-based collider design by 2035-2040 – in sync with recent community roadmaps.

U.S. DEPARTMENT OF
 Office of
 Science

ECP Project WarpX: "Exascale Modeling of Advanced Particle Accelerators"

Goal (4 years): Convergence study in 3-D of 10 consecutive multi-GeV stages in linear and bubble regime, for laser-& beam-driven plasma accelerators.

How: → Combination of most advanced algorithms

➔ Coupling of Warp+AMReX+PICSAR

→ Port to emerging architectures (Intel KNL, GPU, ...)

NIS ENERGY Office of Science

Team: LBNL (accelerators + computing science divisions) + SLAC + LLNL

Ultimate goal: enable modeling of 100 stages by 2025 for 1 TeV collider design!

WarpX code structure

PICSAR created as part of NERSC Exascale Applications Program (NESAP)

NESAP Codes

NERSC

Plan for Exascale project WarpX for existing ECP project & beyond

From initial code coupling to ensemble of 100 GeV-scale stages

Outline

- Intro & overview of the BLAST toolkit
- Advanced algorithms
- BLAST codes for modeling of plasma accelerators: Warp, FBPIC, WarpX.
- Examples
- Summary & outlook

Warp example simulations of plasma accelerators

Boosted frame

Laser/beam plane injection enabled convergence for all γ boost

Parameters $-a_0=1$, $n_0=10^{19}$ cm⁻³ (~100 MeV) scaled to 10^{17} cm⁻³ (~10 GeV).

Convergence demonstrated recently with self-injection

Longitudinal electric field

Self-injected beam moments

P. Lee, J.-L. Vay, arxiv 1803.01890 (2018)

Predicting injection in laser-plasma accelerators with FBPIC

Depending on the parameters (gas density, laser intensity, ...) injection may or may not happen.

Illusttration with FBPIC of E+VxB cancelation with spectral EM PIC

- In finite-difference codes, E and B are usually staggered in time and space.
- This makes it difficult to accurately capture the physical cancelation between E and v x B
- This does not happen in **centered** spectral codes.

ACCELERATOR TECHNOLOGY & ATAP

WarpX - first simulations of plasma accelerators with mesh refinement

Movies by Maxence Thevenet

ACCELERATOR TECHNOLOGY & ATAP

Mesh refinement focuses resolution only where needed

J.-L. Vay, et al, Nucl. Inst. Meth. A in press (2018)

Outline

- Intro & overview of the BLAST toolkit
- Advanced algorithms
- BLAST codes for modeling of plasma accelerators: Warp, FBPIC, WarpX.
- Examples
- Summary & outlook

BLAST codes for modeling plasma acceleration

	Warp	FBPIC	WarpX	[] = in/future
Geometries	3D, 2D-XZ/XY, RZ ^{mθ}	RZ ^{mθ}	3D, 2D-XZ, RZ, $[RZ^{m\theta}]$	RZ = axisym
Processors	CPU	CPU, GPU	CPU, [GPU]	RZ ⁺⁺ = RZ + azimuthal de cos(mθ)+ <i>i</i> si
Maxwell solvers	Finite-difference, spectral (arbitrary order: 2→∞)	Spectral Fourier-Bessel (arbitrary order: 2→∞)	Finite-difference, spectral (arbitrary order: 2→∞)	
Adaptive mesh refinement	Some support	N/A	[Full support]	
Particle pushers	Boris, Vay, Drift-Lorentz, [Higuera-Cary]	Vay	Boris, Vay	
Ionization	ADK, impact ionization, capture, charge exchange	ADK	[ADK, impact]	
Run modes	Full PIC, quasistatic, e-gun	full PIC	Full PIC	
Conventional accelerators	linacs, rings, injectors	N/A	[inherit from Warp]	
Internal surfaces/volumes	conductors, dielectrics	N/A	N/A	
Particle emission	space charge limited, thermionic, arbitrary	N/A	N/A	
Usage	Most general for multiphysics simulations	Fastest for quasi-cylindrical geometries	Large scale simulations or ensembles	

development

nmetric

Fourier ecomposition $in(m\theta)$

The three codes support laboratory, moving window and Boosted frames of reference, numerical Cherenkov suppression, I/O boosted-lab frames.

Analyzing/visualizing the output of the code

 Codes output use the openPMD format Standardized layout for HDF5 files, adopted/in adoption by several codes: ACE3P, BeamBeam3D, FBPIC, Impact, Osiris, PIConGPU, QuickPIC, Smilei, Synergia, Warp.

Can leverage open-source visualization tools

Plugins for Paraview, Vislt, Yt: github.com/openPMD/openPMD-visit-plugin

Beta PySide GUI: ecp-warpx.github.io/visualization/ pyside.html

Initiated &

led by Axel Huebl

(HZDR

Germany

open

openpmd.org

Common input/output standards to ease usage of multiple codes

- Up to now, each code has own input script & output format
 - → user needs 1 input script/code & different data reader or software

- In the process of defining standard for common input
 - → translate to individual code "language"
 - PICMI: Particle-In-Cell Modeling Interface
 - AMI: Accelerator Modeling Interface (aim to compatibility with MAD8/MAD-X)

Goal is to develop BLAST as integrated ecosystem with interoperability with other codes in the community

Where BLAST simulation tools:

- *Multi-physics frameworks*: IMPACT, Warp, WarpX.
- Specialized codes: BeamBeam3D, FBPIC, LW3D, POSINST.
- Libraries: PICSAR.

Share common Python interface & I/O formats

- Enabling integrated multi-physics simulations
- Mixed conventional/plasma accelerator elements
- Unified interfacing, data analysis & viz. tools

Consortium for Advanced Modeling of Particle Acc.

- Collaboration between LBNL, SLAC, FNAL, UCLA is setting foundations for interoperability of larger pool of codes
- CAMPA
 Also collaborating with CEA Saclay, U. Dresden & Cornell U.
 Other collaborators welcome

Thank you

65

Extras

Standard would prescribe 4 steps & syntax for setting runs

```
Run parameters - can be in separate file
.....
Laser waist = 5.e-6 # The waist of the laser (in meters)
.....
Physics part - can be in separate file
import PICMI
laser = PICMI.Gaussian_laser(waist = Laser_waist, ...
.....
Numerics part - can be in separate file
.....
nx = 64
...
.....
PICMI input script (for codes with script-based front-end
.....
sim.step(max_step)
                       Office of
    Science
    BERKELEY LAB
```

Separation in files enables sharing of sections, similarly to sharing mad files for lattices for example.

ACCELERATOR TECHNOLOGY & ATAP

Optimal Lorentz boosted frame approach

With high γ , orders of magnitude speedups are possible.

ENERGY Office of Science

ACCELERATOR TECHNOLOGY & ATAP

Relativistic plasmas PIC subject to "numerical Cherenkov"

B. B. Godfrey, "Numerical Cherenkov instabilities in electromagnetic particle codes", J. Comput. Phys. 15 (1974)

Numerical dispersion leads to crossing of EM field and plasma modes -> instability.

Space/time discretization aliases -> more crossings in 2/3-D

Space/time discretization aliases -> more crossings in 2/3-D

Local FFT example on single pulse – part 1

Local FFT example on single pulse – part 2

Truncation errors may lead to instabilities that needed to be studied.

Warp's standard PIC loop

- + external forces (accelerator lattice elements),
- + absorption/emission (injection, loss at walls, secondary emission, ionization, etc),
- + filtering (charge, currents and/or potential, fields).

Arbitrary number and type of particle species.

- Predefined types: periodic table, electron, positron, proton, anti-proton, muon, anti-muon, neutron, photon.
- user can define additional types.