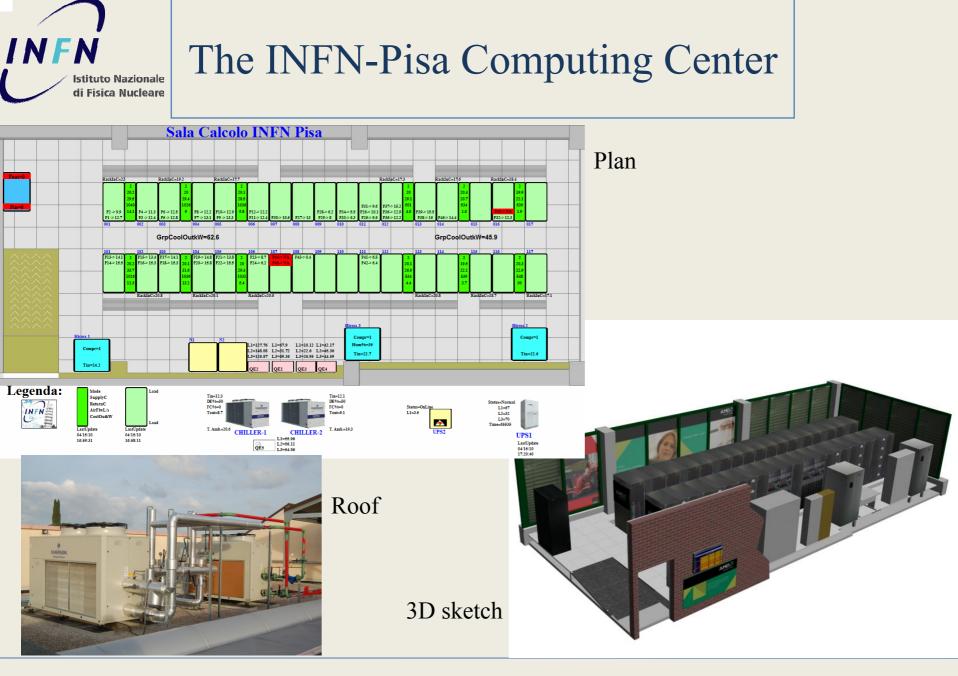

Quantitative Methodologies for the Scientific Computing: An Introductory Sketch

- •Alberto Ciampa, INFN-Pisa
 - alberto.ciampa@pi.infn.it
- Enrico Mazzoni, INFN-Pisa
 - enrico.mazzoni@pi.infn.it

Quantitative Methodologies for the Scientific Computing

- We want to evaluate: activity, efficiency, potentiality
- To account the costs: global costs, costs per Group/Experiment, costs per "produced unity"
- Power costs, investments, operative costs, maintenance, human (FTE) etc.: for this example we'll consider Power costs


- Optimization strategies
- Forecast and scheduling
- New jobs and external work order evaluation

The INFN-Pisa Computing Center

Present situation:

- GRID \approx 1900 production (WN) cores
 - CMS T2: 53%
 - Theophys: 39%
- National INFN Theophys Cluster: 1024 cores (under implementation)
- Services
- Storage $\approx 350 \text{ TB}$

Introduction: A request from our Director

How can we account the various computing costs to the Groups/Experiments?

We started defining the "resources" and trying to define a model for their usage by the Groups/Experiments.

Introduction: The Resources and Production

Resources (examples):

- Rack space
- (production) CPU
- Network port
- Storage space
- Power
- Conditioning

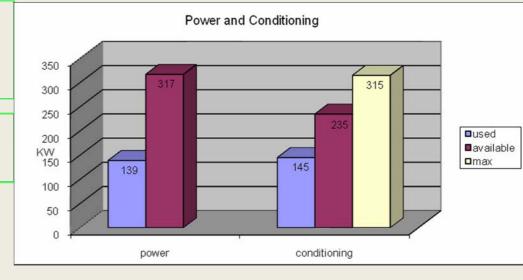
A resource can be statically or dinamically allocated.

Production Model:

- GRID (and local queues): CPU dynamic allocation
- Farm dedicated to Group/Experiment: CPU static allocation

The final activity is the "production" measured (for instance) in day/core.

- The main resource is the computing core
- Some resources are "tailored": the power, air conditioning, network, rack space
- Some resources are naturally statically allocated: storage space


An Example: INFN-Pisa computing Center

RACK space: 34 rack, 33 42U and 1 48U

Available power: 1380A+450A(roof) = 317.4KW + 103.5KW(roof) Used power (mean): 602A + 228A (roof) = 138.5KW + 52.4KW (roof) = 43.6%, 50.6% (roof)

Air Conditioning: 235 KW Used (mean): 145 KW = 61.7% Max potential: 315 KW

LAN: 900 * 1GbE + 40 * 10 GbE WAN: 1 Gb/s GRID + 400 Mb/s Sect.

May 2009 Data

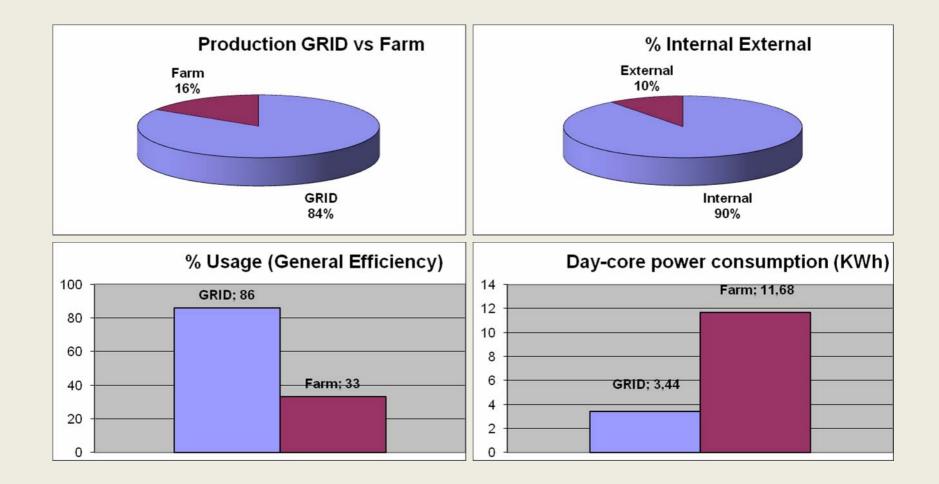
The Model: Some Important Definition

- General Efficiency: % allocated (production) cores
 - GRID: % cores running a job
 - Farm: total of cores
- Specific Efficiency: % of UN cores
 - GRID: *cputime/walltime*
 - Farm: % (UN cores)/(total cores)

State of a core: SIWUN (System, Idle, Wait I/O, User, Nice)

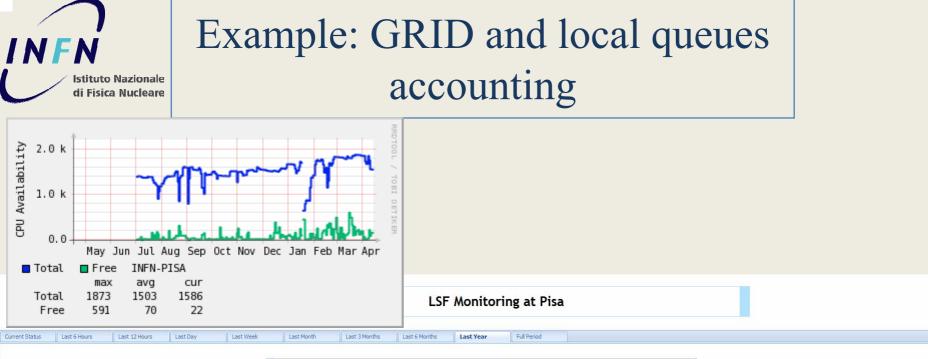
Survey: Scientific Computing, 1/6/08-31/5/09

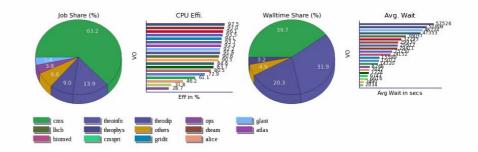
- **Computing Core**: 1567 = 1.332 (GRID) + 235 (Experiment Farm)
- Computing power: 2.35MSI2k (15.000 HepSPEC)
- Non Production Core for Scientific Computing: 98 (GRID+dCache+GPFS)
- Storage Space: 300TB gross
- Max potential: 7.000 core + 1 PB storage (quad core, 1 TB disk)


GRID

- GRID day-core: 350.971, that is 962 year-core.
- Usage %: 86% (general efficiency), 75% (specific eff.)=65% (total)
- Power usage (gross): 148.7 KW
- Power consumption per day-core (gross): 3.44 KWh

Experiment Farm

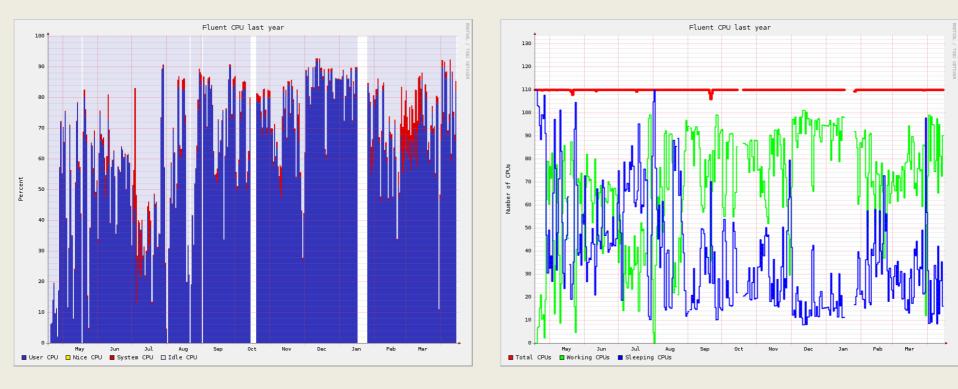

- Experiment Farm day-core: 66.759, that is 185 year core.
- **usage %: 33%** (general + specific efficiency)
- power usage (gross): 29.2 KW
- power consumption per day-core (gross): 11.68 KWh



INFN

Istituto Nazionale di Fisica Nucleare

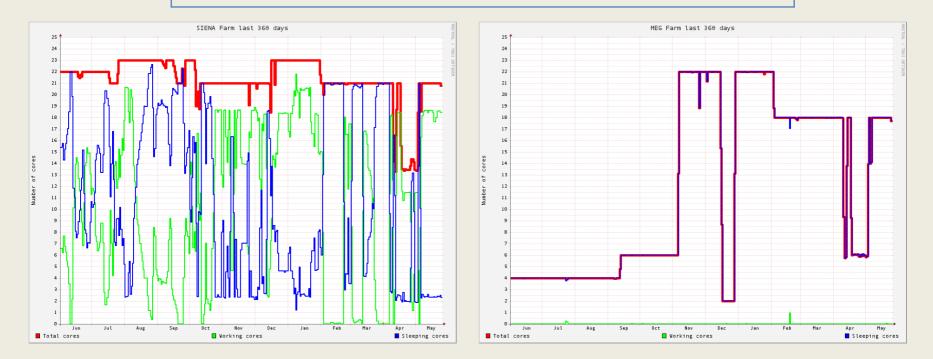
VO/Group	Total Jobs	Succ Jobs	Succ Rate(%)	Walltime (sec)	Jobs completed during the last year				
					CPU Time (sec)	CPU Eff(%)	Walltime Share(%)	Avg Wait (sec)	Job Share (9
cms	1364055	1329695	97. <mark>4</mark> 8	18036835389	11024692448	61.12	39.72	14320	63
theoinfn	299574	286102	95.50	14487513843	13571751551	<mark>93.68</mark>	31.90	57526	
theodip	193372	168052	86.91	9220591721	8463716179	<mark>91.7</mark> 9	20.31	29612	3.8
theophys	22676	21918	96.66	1455340159	1418289564	97.45	3.20	51909	9.0 13.9
glast	73492	72669	98.88	709181 <mark>14</mark> 6	654073145	92.23	1.56	48724	
lhcb	23706	23395	98.69	399296783	361665697	90.58	0.88	36037	
biomed	15770	13840	87.76	255317715	62158397	24.35	0.56	24152	cms Incb
cmsprt	12895	12619	97.86	167513799	16802258	10.03	0.37	6743	biomed
compchem	3058	2935	<mark>95.98</mark>	126532879	122769647	97.03	0.28	29411	
atlas	14874	14463	97.24	110002710	102680419	93.34	0.24	8268	
cdf	1520	1506	99.08	90037999	76154596	84.58	0.20	47353	
superb	2689	2658	98.85	86197670	77986699	90.47	0.19	3490	
gridit	12580	11401	90.63	59160368	5566 <mark>1</mark> 885	94.09	0.13	15599	
theolong	3099	1466	47.31	52727207	50361823	95.51	0.12	25250	
namola	1771	1/72	82 48	/7033275	45214055	04 13	0 10	27705	


Last updated on 2010-04-15 18:31:08

Developed by: S. Taneja, S. Sarkar - INFN

Example: Farm Accounting

Example of a farm dedicated to an external user



Raw data from Ganglia

Corrected data from Ganglia

INFN Istituto Nazionale di Fisica Nucleare

Example of farm utilization

21 core 3.741 d/core, 49% 18 core 3 d/core, 0%

Data derived from Ganglia

Notes on the Methodology

- Scientific Computing as a Production Activity
 - It is not important, in general, the single production item, but the production flow
 - The quality of the system is measured as the production level (quantity) and the production efficiency:
 - General Efficiency = % of infrastructure usage
 - Specific Efficiency = % of usage efficiency
 - Excepted for specific cases we don't matter on what is produced, but how is produced: how much and how the systems are used
 - It is possible to, and we have to, measure the production costs, globally and for each "production line" (group or experiment): *Power*, investments, consumables, maintenance, FTE
 - It is possible, and we have to be ready to accept other job order, both internal (from our institute, mandatory) and external
 - We do not pretend to cover everything (interactive, T3, some farms)

Scientific Computing

- The Context
 - GRID (wn, middleware, SRM), Group/Experiment Farm and cluster
 - Storage for the above mentioned activities(+ disk server, SAN, Switch FC ecc.)
 - Data Center LAN (for SC), WAN dedicated to SC
- Usage Paradigms
 - GRID: only batch (LSF), resources shared among the VO, dynamic allocation following the requests ("fair-share"), accounting on usage (general efficiency). Including local queues.
 - Group/Experiment Farm/Cluster: the owner can freely access, reserved resources, accounting with static allocation non on usage base
- Users
 - GRID: all the VO accepted by INFN-GRID, "welcome" fair-share ", support (success job, efficiency)
 - Farm/Cluster: need good motivation, accounting including services (rack, network, high speed network, etc.), hosting

Quantitative Methodologies

- Resources
 - Global (%: SC and Service): space, power, conditioning, network, services*
 - * Shared Services (DNS, DHCP, Auth*, shared storage, etc.)
 - SC: Server, Storage
- Data: LSFMON (GRID), Ganglia (Farm)
- Measures:
 - LSFMON: (#core, #job, #queued) only mean, ∀ VO (#job, walltime, CPUtime) only Σ, #CPU
 - Integrals?
 - Ganglia: \forall Farm (\forall Server (#core, %SIWUN)) with mean
 - Integral evaluation: not trivial
 - $CPUPower = (RoomPower + Roof) / \Sigma(CPUProd + CPUServ)$
 - Power vs Performance CPU vs Core

Methodologies: GRID

Account core-time allocated to a specific VO (walltime), regardless exit status, no account if empty jobslot, account core-time SIW+UN (not considering specific efficiency)

- General Efficiency: 100(1-∫*freecore* / ∫*core*) ≈ 100(1mean(*freecore*)/mean(*core*))
- *GRIDPower* = *CPUPower*·∫*CPUGRID* ≈ *CPUPower*·mean(*CPUGRID*) ≈ *CPUPower*·mean(*coreGRID*)·k
- Power/Day-Core = GRIDPower/∫(core-freecore) ≈ GRIDPower/(mean(core) – mean(freecore))
- Efficiency = (General Efficiency) · (Specific Efficiency*)

- * *CPUtime/Walltime*, both global and per VO

Methodologies: Farm

Total cost independent from usage level (no specific efficiency= resources always allocated)

- General Efficiency: 100($\int coreUN / \int core$)
- $FarmPower = CPUPower \cdot \int CPUFarm$
- *Power/Day-Core = FarmPower/\CoreFarmUN*
- Efficiency = (day-core working)/(day-core allocated) = ∫(#core·%UN)/∫#core *
 - * both global and per Farm

Further Info

- <u>http://web.infn.it/CCR/index.php/note-interne-ccr/69-note-interne-ccr-2009/271-ccr-332009p-calcolo-scientifico-prime-metodologie-quantitative-per-un-ambiente-di-produzione</u> sorry, in italian, but for any question you can contact:
 - Me (alberto.ciampa@pi.infn.it)
 - Enrico Mazzoni (enrico.mazzoni@pi.infn.it)