Virtualization at CERN – a status report

# Virtualization at CERN – status report

Sebastien Goasguen, Belmiro Rodrigues Moreira, Ewan Roche, Steve Traylen, <u>Ulrich Schwickerath</u>, Romain Wartel

HEPIX2010, Lisbon

### See also related presentations:

- Batch virtualization at CERN, HEPIX autumn meeting 2009
- Virtualization, HEPIX spring meeting 2009
- Virtualization vision, GDB 9/9/2009 and HEPIX
- Batch virtualization at CERN, EGEE09 conference, Barcelona



CERI

Department

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it





#### Virtualization for service consolidation:

- Up to ~few 100 machines (today)
- Typically little CPU usage on these boxes
- Support for live-migration required
- Based on reliable hardware
- Critical services

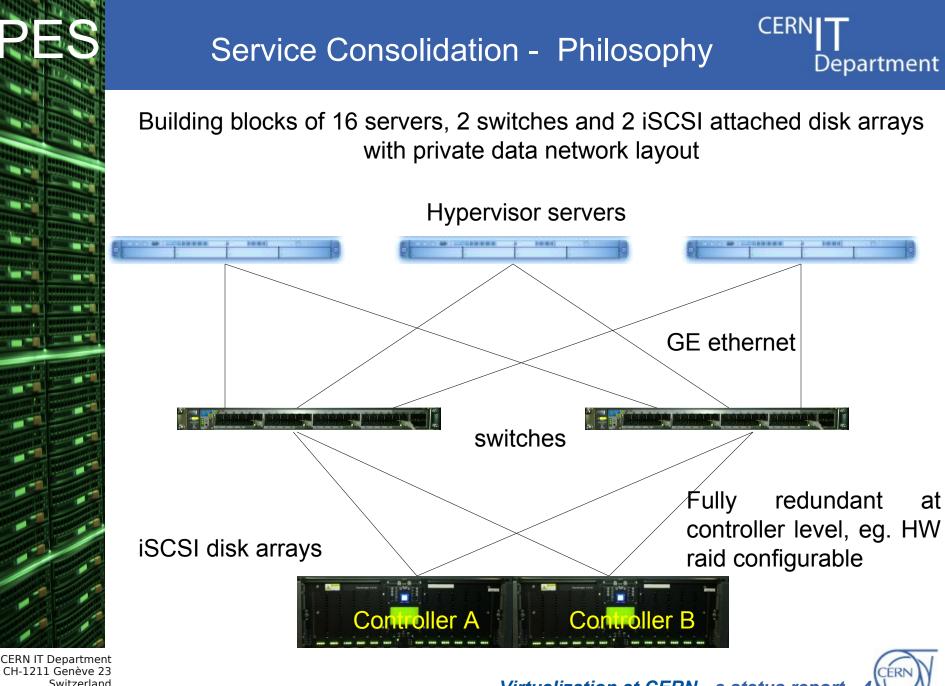
#### Virtualization for **batch** (and similar) applications:

- Large scale, O(several 1000) machines
- High CPU usage, number crunching
- Limited life time is OK!
- Cheap batch hardware is OK!
- Individual machines are not critical
- Option for "cloud" like infrastructure





CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 


# Outline

CERN**IT** Department

- Introduction and overview
- Service consolidation project
  - Philosophy
  - Resources
  - Status
- Batch virtualization
  - Philosophy and layout
  - Building block status:
    - ♦ ISF
    - OpenNebula (ONE)
    - Image distribution/virtualization kiosk

- Use cases so far
  - Development
  - Scalability tests
- Initial performance tests
- Current issues





CH-1211 Genève 23 Switzerland www.cern.ch/it



## 1) Critical machines with little disk space requirements

- 40TB raw disk space per 16 hypervisors
- Full dual UPS coverage and Diesel backup

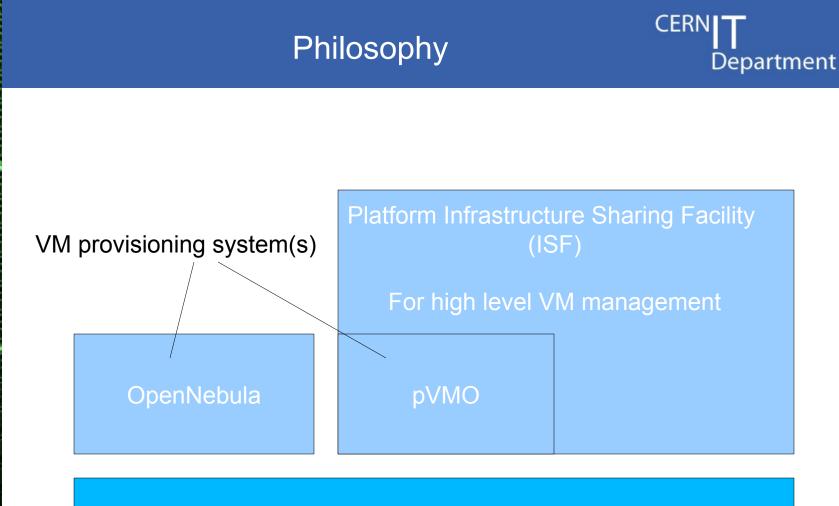
## 2) Less critical machines

- 192TB raw disk spare per 16 hypervisors
- For example for dedicated servers for experiments and similar

## 3) Small disk server consolidation

- 284 TB raw disk space per 16 servers
- Replacement for machines requiring O(2TB) secure storage




Virtualization at CERN - a status report -



- Hardware is installed and tested
- Hypervisor OS installation is proceeding (Windows HyperV)
- Performance testing ongoing, some issue currently under investigation

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it





# Hypervisor cluster (physical resources)



CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 



#### Vision: Transparent resource sharing by

# dynamic re-allocation of automatically freed virtual machine slots

#### Near future:

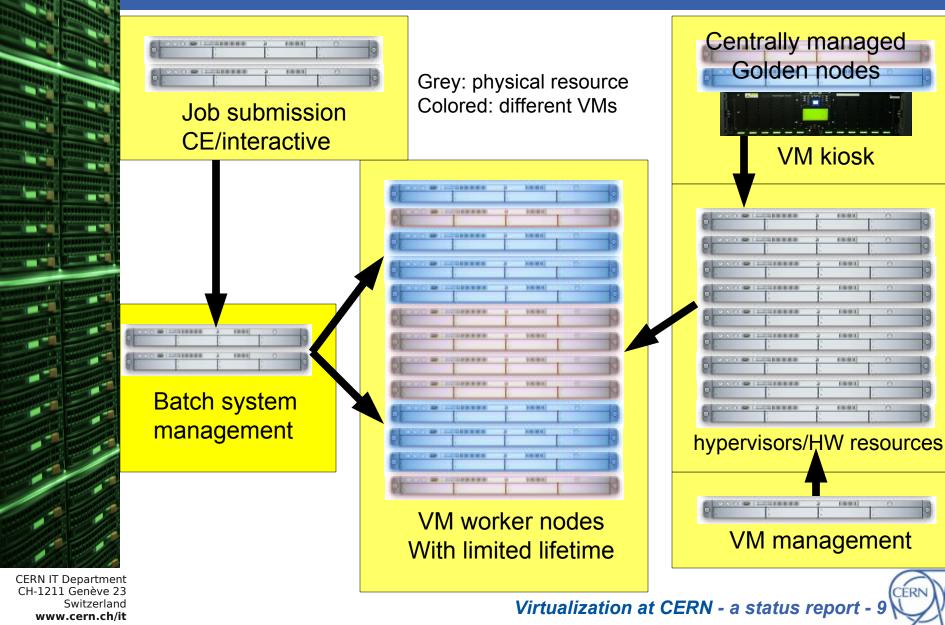
| Batch              |                     |                     |  |  |
|--------------------|---------------------|---------------------|--|--|
| SLC4 WN SLC5 WN    |                     |                     |  |  |
| hypervisor cluster | Physical<br>SLC4 WN | Physical<br>SLC5 WN |  |  |

## (far) Future ?

| Batch          | Т0 | development | other/cloud applications |  |
|----------------|----|-------------|--------------------------|--|
| Internal cloud |    |             |                          |  |

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

.






# Batch virtualization: architecture



CERN



## Some additional explanations ...

#### "Golden node":

A centrally managed (i.e. Quattor controlled) standard worker node which

- Is a virtual machine
- Does not accept jobs
- Receives regular updates

Purpose: creation of VM images

## "Virtual machine worker node":

- A virtual machine derived from a golden node
- Not updated during their life time
- Dynamically adds itself to the batch farm
- Accepts jobs for only 24h
- Runs only one user job at a time
- Destroys itself when empty



Virtualization at CERN - a status report

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 



# No change in job submission schema:

- Interactive job submission from lxplus and/or VOBoxes
- GRID integration via LCG and CREAM CEs
- Transparent for the users, WN look a bit different
- Initially, VMs will be put behind special queues for testing

# Job processing:

- One job slot per VM only
- Stable software configuration during VM life time
- Limited VM life time allows for flexible reallocation of resources

# Remarks:

- Submission hosts could become VM as well in the future
- Resource sharing via the internal cloud allows in principle a split of the batch farm into independent instances without loss of flexibility





Some Definitions and clarifications

#### **Quattor managed:**

- Full integration into Quattor toolkit
- Centrally managed and updated
- State management implemented (maintenance, production etc)

## Lemon monitored:

- Monitoring sensors are present and configured
- Exceptions are configured were applicable
- The node can raise operator alarms

## Auto registration:

- Hypervisors become visible and active to the provisioning system
- Batch nodes get automatically included in the batch farm

## Central maintenance:

- Installation and deployment like any other box
- Procedures to handle alarms and exceptions are in place

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it



# Status of individual building blocks



CERN

|                     | Hypervisor<br>cluster | SLC5 virtual batch nodes | SLC4 virtual batch nodes |
|---------------------|-----------------------|--------------------------|--------------------------|
| Quattor<br>managed  | OK                    | OK, via golden<br>node   | OK, via golden<br>node   |
| Lemon<br>monitored  | OK                    | NO                       | NO                       |
| Auto-registration   | OK                    | OK, in LSF               | OK, in LSF               |
| Central maintenance | OK, some bits missing | Not required             | Not required             |
| ISF support         | OK, testing           | OK, testing              | NO                       |
| ONE support         | OK                    | OK                       | NO                       |

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it



# VM management systems - status

|                    | ISF server           | ONE server           | ISF Agent                          | ONE client            |
|--------------------|----------------------|----------------------|------------------------------------|-----------------------|
| Quattorized        | Work in progress     | NO                   | YES                                | Not (yet)<br>relevant |
| Lemon<br>monitored | Only OS and hardware | Only OS and hardware | Service is<br>not yet<br>monitored | Not (yet)<br>relevant |

ISF: still work in progress OpenNebula (ONE): used for scalability tests

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 



CERN

## Image distribution constraints for CERN:

- Network infrastructure with a single 1GE connection
- No dedicated fast network for transfers that could be used (eg 10GE, IB or similar)

Image distribution with scp:

~1h for 7GB to 500 nodes

## Using *rtorrent:* under test now

- .torrent files are created centrally and then distributed
- One central tracker (using opentracker), option to remove it later on
- Compliant with current JSPG security policy draft for image distribution

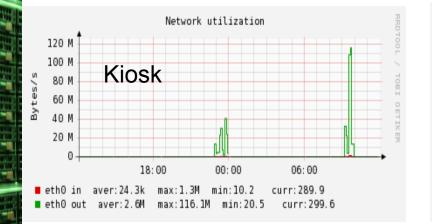
CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

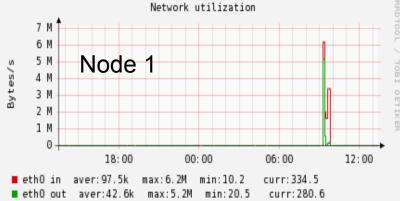
Virtualization at CERN - a status report - 15



|                                       | Repository<br>server    | Image reception              | Image<br>deployment |
|---------------------------------------|-------------------------|------------------------------|---------------------|
| Initial<br>development and<br>testing | OK                      | OK                           | OK                  |
| Quattorization                        | OK                      | OK                           | OK                  |
| Lemon<br>monitoring                   | Hardware and<br>OS only | Process not<br>monitored yet | NO                  |

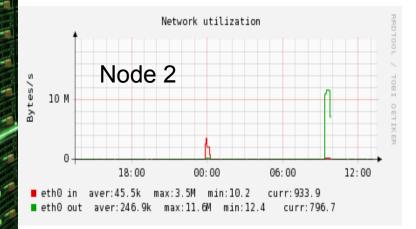
Images deployment: create logical volume and dd image into it

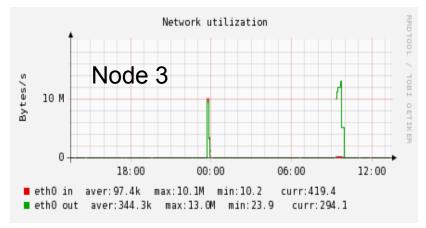

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 


Virtualization at CERN - a status report - 16

CERN







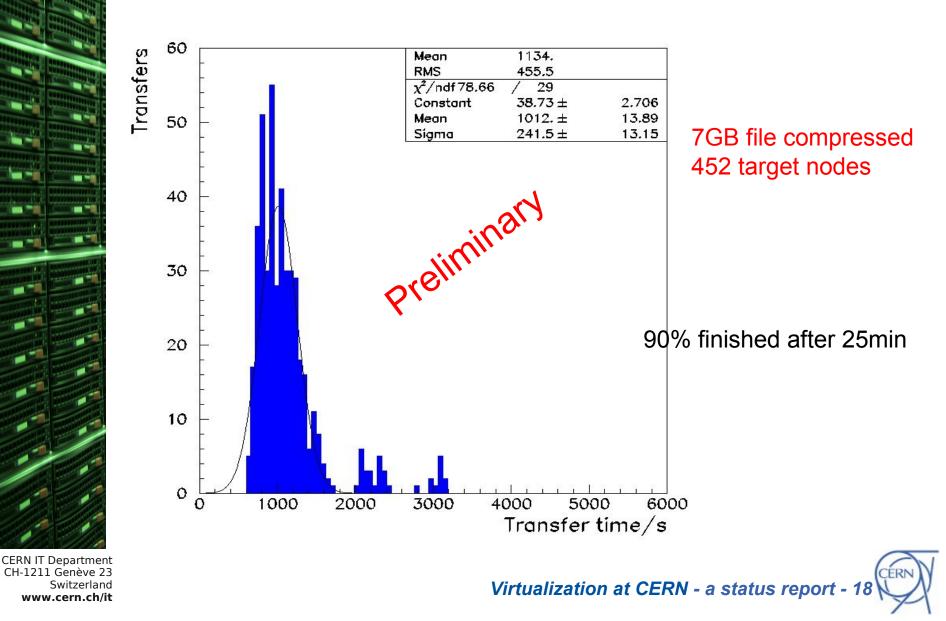

CERN

Department





CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it


-

-

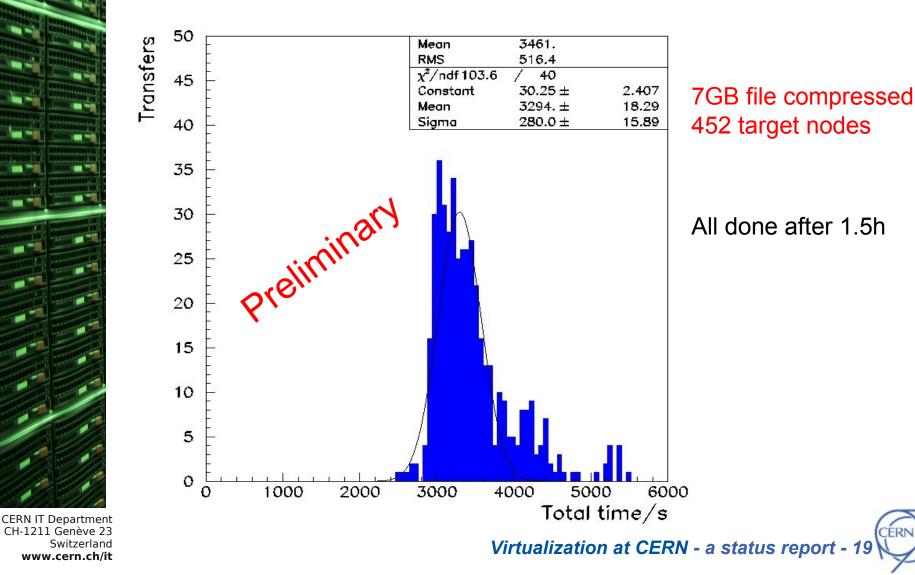
Virtualization at CERN - a status report - 17



## Image distribution: transfer speed



CERN


# Image distribution: total distribution speed

CERN

Department

#### $\rightarrow$ Unpacking is very expensive !

-





# Use cases (so far)



# Development for production services

- Testing and debugging of new worker node releases
- Testing and debugging of the glExec worker node
- Testing and debugging of CREAM

# Scalability tests (ongoing)

- Testing Platform LSF in terms of number of nodes
- Testing OpenNebula (and ISF)
- Insertion and deletion of entries in LANDB at large scale

Still too early for true production !

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 

# Why large scale scalability tests ?

- Context of batch virtualization
- Need to know the limits of the production system as well!

CERN batch farm in numbers:

- ~2600 physical nodes known to a single LSF instance right now
- 1500 new nodes are on the floor and almost ready to go

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Virtualization at CERN - a status report - 21

CERI

Department

ERN



# Scalability tests



### "borrow" new batch resources before they enter production

### About 500 recent worker nodes (10 racks)

- SuperMicro twin2 systems
- Dual Intel XEON 5520 based ("Nehalem") running at 2.27GHz
- 2-3 TB local disk space
- 24 GB RAM (few nodes with up to 48GB)

## About 10,000 registered virtual machine slots

On average 19 private IP adresses per hypervisor

## Dedicated LSF test instance

- Master setup clones of production masters
- Nodes join this cluster dynamically
- Expected scalability limit : O(5k) machines





# Scalability tests: launching VMs ...

# OpenNebula:

Close collaboration with developers, addressing issues as they turn up

Virtualization at CERN - a status report - 23

CERI

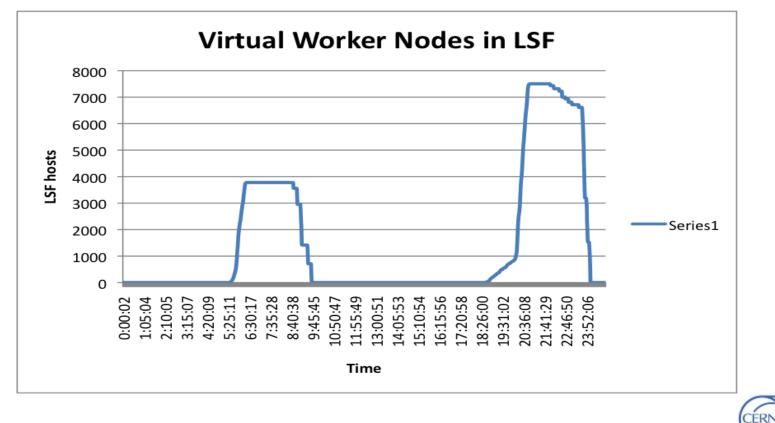
Department

ERM

Up to 7,000 VMs started

# ISF/pVMO:

- Initial deployment issues
- Equivalent tests are in preparation






## CERN**IT** <u>Department</u>

#### One shot test with OpenNebula:

- Inject virtual machine requests
- And let them die
- Record the number of alive machines seen by LSF every 30s



CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

CH-1211 Genève 23

Switzerland www.cern.ch/it

# Summary



## Virtualization efforts at CERN are proceeding. Still some work to be done.

Main challenges include

- Scalability of provisioning system(s)
- Batch system scalability
- Networking (public IPs)
- Performance of image distribution and VMs
- Seamless integration into the existing infrastructure
- Monitoring

## Plan:

make production quality VMs available to our customers within the next months