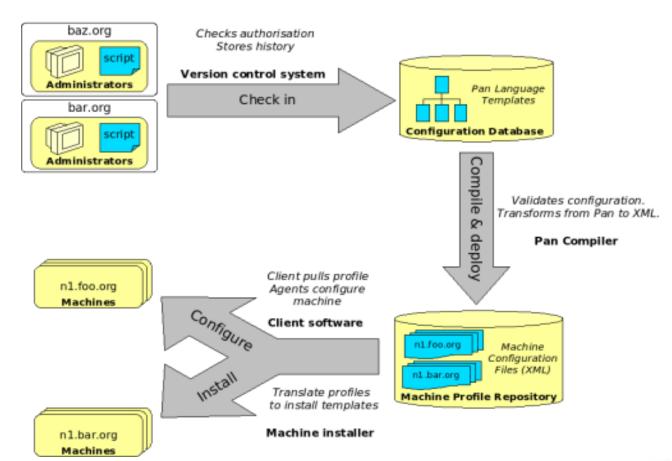


Contents

- Quattor Introduction
- Quattor at RAL Tier 1
 - History
 - Status
 - Benefits
 - Issues
- Quattor Toolkit /QWG Report
- Key Developments
- Outlook

Quattor Toolkit introduction

Overview:


- Systems described by one or more templates (pan language)
- Compiled to produce XML profile for each machine
- Basic system + Quattor client installed by minimal (auto-generated) kickstart
 - All takes care of DHCP and pxeboot just need to boot/reboot target system
- Client then downloads XML profile and carries out rest of software install and system configuration (client configuration modules written in perl)
- When configurations are changed fresh XML profile is downloaded and changes carried out by Quattor client
- Hierarchical template structure
 - Configuration elements shared between machines, machine-types, clusters and sites as appropriate
- Modular can pick and choose components
- Quattor Working Group last 4 years
 - community supported framework sharing gLite (and OS) configuration
 - Used and contributed to by ~50 sites of varying sizes

Quattor Toolkit Introduction

Complete fabric automation toolkit

Specification and management of system (OS and payload) and site configuration

Provisioning of new machines

Ongoing maintenance of software and services

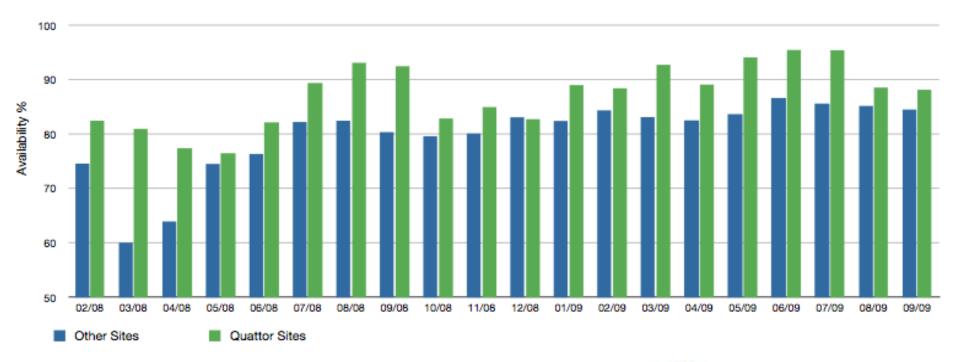
History

- Traditionally, using kickstart + parallel ssh + manual methods
 - Extensive use of Puppet for Castor server config
 - Reaching limits of scalability
- In 2009 began search for management tools for (growing) Tier 1 fabric
- Considered many options including cfengine, wider use of puppet, Platform Manager etc. and Quattor
- Recommendation to try Quattor seemed to meets all requirements
 - Must be proven to scale to >1500 systems
 - Must automate of deployment and ongoing config
 - Single language to describe both stages a benefit
 - Support for gLite (via Quattor Working Group)
 - Open Source strongly preferred
- Began with deployment of new SL5 batch service last August/September very successful

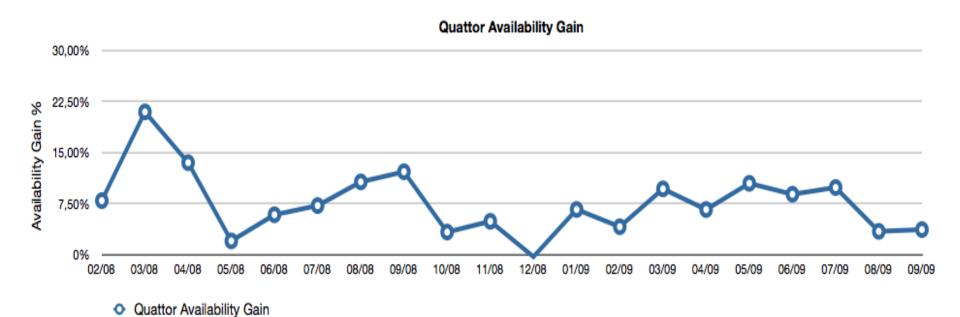
Status

- 680 SL5 WNs managed by Quattor
- 130 Castor disk servers being deployed now
- This years new deployments:
 - 160+ WNs and 130 disk servers deployed from scratch with Quattor
- gLite servers
 - Batch server, bdiis, vobox, ui, wms, Ifc
 - Others in progress
- Non-gLite:
 - nis servers, nagios servers, repository servers, license servers...
- Starting work on Castor core servers
 - Castor information provider (CIP), SRM and tape servers currently testing
- Sindes (secure information distribution) ready to deploy
- 'Fed' by hardware tracking database

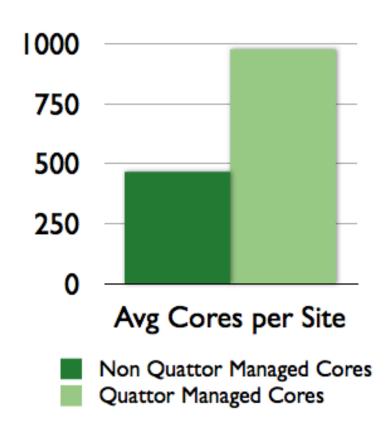
- Benefits
 - Consistency good
 - Security and other updates easier
 - Biggest single saving so is time managing (increasing numbers of) WNs
 - Repository of XML profiles tell us how systems are configured
- Used for deploying latest hardware to acceptance testing (just complete)
 - Much quicker and easier than traditional (kickstart based) methods
 - Currently repurposing machines for production before we would have rekickstarted.


Issues

- Quattor Working Group framework sometimes needs adapting
 - We are (currently) only Tier 1 using QWG
- Castor systems currently managed by puppet
 - Interface between methods will need some care
- It is still significant work to get new (to us) machine types set up
 - But OS changes easier
- Of course some admins find the different approach challenging
 - Even so we have 9 active admins + 5 or 6 occasional



 There is a positive relationship between sites using Quattor and their availability – based on LCG statistics


The percentage gain in availability:

RAL Tier1 Quattor experience

and Quattor outlook

- Quattor managed sites tend to be larger
- In fact Quattor
 managed sites
 accounting for
 15% of the cores
 in WLCG

- Move to sourceforge more or less complete
 - But documentation consolidated at LAL awaiting trac features on SF
- Deployments growing
 - One commercial site manages over 20000 servers (using Aquilon configuration database)
 - Plus 1200 ESX servers with 1700 ESX nodes
 - RAL already one of larger QWG/SCDB sites (CERN of course larger again using CDB)
- FP7 funding bid was unsuccessful
 - Preparation did help set development proprieties
 - Reflected in actions

Quattor Developments

- Automated monitoring configuration (nagios) active area
 - Several different approaches currently
- OS Errata structure in QWG now very granular can 'pin' errata to specific date/versions and specify kernels on a system or cluster basis
 - Modular so can easily be used by non-QWG sites
- StratusLab project will use Quattor for managing virtualised cloud resources
- Action highlights
 - Monthly development meetings
 - Convergence of automated nagios configurations
 - RAL about to start 'porting' Aquilon to non-MS environment
 - Set up automated build and test infrastructure
 - IPV6
 - Investigate non-RPM package management

Conclusions and Outlook - RAL

- RAL Tier 1 now fully committed to Quattor
 - (And mostly happy about it!)
- It is still true that getting started with Quattor takes effort
 - Community support was vital at RAL
- At RAL we are seeing real benefits:
 - In consistency
 - In speed of deployment and updates
- Sindes will allow all sensitive info in quattor profile
- Aquilon configuration database will aid scalability
- Roadmap and monthly meetings will focus community effort

Outlook - Quattor

- Roadmap and monthly meetings will focus community effort
- Increased sharing of e.g OS templates
- Automated nagios configuration would be big benefit again not just in QWG
- Aquilon configuration database option should aid large sites