

CsPbBr₃ Nanocrystals based Plastic Scintillator for lonizing Radiation Detection

J. Ghosh, S.S. Alghamdi, S. Alanazi, I. J. D. Jayarathne, C. Crean, P.J. Sellin University of Surrey

Outline

- Introduction of metal halide perovskites
- Mechanochemical synthesis of CsPbBr₃ nanocrystals for plastic scintillators
- CsPbBr₃ polycrystalline direct X-ray detector
- Conclusion
- ** Acknowledgements

Metal halide perovskite

- Halide perovskites with formula ABX₃, where A is a large cation, B is a metal cation, and X is halide anion (CI, Br or I))
- Simple fabrication
- Tunable bandgap
- Excellent performance in solar cell (PCE>23%), photodetector, LEDs
- Promising in radiation detection

Halide Perovskite for Radiation Detection

Metal halide perovskite for radiation detection

- Large absorption coefficient
- High μτ product and large resistivity
- Tunable bandgap and high PLQYs
- Low-cost, simple solution processable fabrication.

Gram Scale Solid-state Synthesis of CsPbBr₃ nanocrystals

- ❖ Gram scale CsPbBr₃ nanocrystals (NCs) was synthesized by nearly solvent free two-step surfactant (Oleylamine) assisted ball milling method.
- ❖ The surfactant (OAM) concentration was varied to tune the optical properties of the NCs.
- The surfactant reduces the aggregation of the NCs in plastic scintillator.

Morphology with Different OAM Concentration

TEM imaging

- Cubic shaped morphology with high crystalline quality of CsPbBr₃ NCs.
- ❖ Particle size decreased with the increase of OAM concentration.
- ❖ XRD confirms proper crystalline phase of CsPbBr₃.

XRD pattern

Optical Properties of Perovskite NCs Dispersed in Toluene

PL & Absorbance

- ❖ Highest PL quantum yield was observed for 0.2 ml of OAM.
- ❖ Blue shift in PL peak particle size decreased with the increase of OAM concentration.

Optical Properties of Perovskite NCs in PMMA plastic

Perovskite PMMA disc PL of Perovskite@PMMA

- Different concentration of CsPbBr₃ NCs were loaded in PMMA polymer.
- ❖ PMMA disc with 0.4 OAM shows highest PL emission which may be due to the less aggregation.
- The nanocomposite scintillator exhibits high stability.

Storage stability of the nanocomposite in water

Radioluminescence Properties

The CsPbBr₃/PMMA nanocomposite disc shows a highly intense RL emission peak at 536 nm with FWHM ~ 16 nm with a fast RL decay time of 29.4 ns.

X-ray imaging

X-ray imaging set up

Resolution

X-ray imaging

- ❖ PMMA disc with 10% perovskite loading shows good performance in X-ray imaging with high resolution.
- ❖ High X-ray imaging resolution of ~8 lp/mm.

Neutron response of the scintillator

- ❖ The NuSec NNSA grant has allowed us to start a new collaboration with Prof Anna Erickson at Georgia Tech.
- The neutron response of the CsPbBr₃ plastic scintillator was tested using a DD neutron generation in DD neutron generator during the visit to the Georgia Institute of Technology.

Fabrication steps of the CsPbBr₃ polycrystalline direct X-ray detector

Characterization

I-V characteristics of the polycrystalline detector under dark and illumination of a LED.

The Hecht plot using the photocurrent of the device. High $\mu\tau$ value of $1.0x10^{\text{--}3}\,\text{cm}^2\text{V}^{\text{--}1}$ was obtained.

X-ray sensitivity measurement

X-ray current density vs dose rate

High X-ray sensitivity of 3040 μ CGy⁻¹cm⁻² was obtained under 10 V of applied bias.

Conclusions

- Highly luminescent CsPbBr₃ NCs were synthesized by ball milling method.
- **X-ray and neutron response of CsPbBr**₃ **plastic scintillators were studied.**
- * Polycrystalline CsPbBr $_3$ X-ray detectors were fabricated by using ball milled CsPbBr $_3$ powder.
- * The optimized X-ray detector exhibits sensitivity of 3040 μCGy⁻¹cm⁻² under 10 V of applied bias.
- * We are further optimizing the device performance by different additive and passivation technique.

Acknowledgements

We acknowledge support from the DTRA 'IIRM' University Research Alliance and NuSec, UK.

Thank you

