

Novel Neutron-Gamma Detectors for Borehole Applications

J Greer, L Thompson, P Stowell

Nuclear Well Logging

- High activity neutron source placed down a borehole
- Neutrons thermalized and captured by formation fluids occupying pore-space in rocks
- The resulting radiation detected can be used to infer information regarding the hydrogen content in the formation
- This work explores possibilities of using **BN:ZnS neutron converter foils coupled to** plastic scintillator for a neutron-gamma tool measuring hydrogen content
- Aim is to design for use with Deuterium-Tritium pulsed neutron generators to encourage adoption of alternatives to radioisotope sources (AmBe or Cf-252)

Initial Prototype Designs

- Typically well-logging detectors look at near-far ratios in geological analysis
- Potential for a segmented detector with the ability to isolate scintillator-foil modules from one another
- Neutron-Gamma sensitivity in same volume Pulse Shape Discrimination required
- Explored potential to do this with fibre readout from individually isolated modules

GEANT4 Optical Simulation

Simulation geometry to explore limitations of fibre readout from foil-wrapped scintillator modules

- Fibre-based design
- EJ200 scintillator coupled to BN:ZnS(Ag) converter foils
- Incident thermal neutron flux captures in foil or on H yielding gammas detected in PS
- First explored simpler case of direct PMT readout
- Then BCF-91A WLS fibres in grooves for optical transport to PMT as shown (left)

GEANT4 Optical Simulation

A simulated neutron capture event in which four fibres transmit light onto a PMT. Photon hits are processed into realistic pulses through a simulated PMT response.

- Fibre-based design
- EJ200 scintillator coupled to BN:ZnS(Ag) converter foils
- Incident thermal neutron flux captures in foil or on H yielding gammas detected in PS
- First explored simpler case of direct PMT readout
- Then BCF-91A WLS fibres in grooves for optical transport to PMT as shown (left)

BN:ZnS(Ag) and PS - Pulse Shape Discrimination

Gamma

Neutron

GEANT4 Optical Simulation - Direct Readout

PSD performance for a PMT directly coupled to the face of a hemicylindrical block of EJ200 wrapped with BN:ZnS converter foils

6

GEANT4 Optical Simulation - Direct Readout

Misclassified events show us a more complete picture of the PSD capability, we are misclassifying around 1.8% of total events

GEANT4 Optical Simulation - Fibre Readout

With reduced light available to use in PSD, we expect and do see some degradation in our PSD capability, distributions smear, some display odd features

8

GEANT4 Optical Simulation - 8 Fibre Readout

There is significant misclassification of neutron events due to degradation of their characteristically large pulses. This causes neutron events to appear as gamma events.

Detector Design Decisions

- Fibre readout unsuitable, detector modules must couple directly to PMTs
- FoM = 1.845 for direct readout with 1.8% misclassification
- Low-cost mixed-field detection
- In-house scintillator casting allows for flexibility in geometry
- Further simulations performed to examine ideal size of scintillator-foil combinations coupled to 5 cm PMTs
- Scintillator cast, coupled to foils for testing
- Casting allows fast prototyping of geometries

Cast scintillator under UV lamp for final detector prototype - before foil wrapping Epoxy based with 1% doping PPO:POPOP

Why Pulsed Neutron Generators?

- We can turn them off reduced operator dose
- If lost downhole, not as much of an issue as radioisotope sources
- If stolen, much more difficult to repurpose for nefarious means
- Timing can provide additional information
- Simulations of test formations with the UoS D-T PNG used to predict hydrogen content in moderator filled boxes

ML models trained on simulated detector response heatmaps to predict hydrogen index. Training heatmaps of 2XN dimensions (2 detectors with N time bins)

D-T Neutron Facility Setup

Preliminary Tests

- Position information simply based on origin detector
- Time information relative to neutron pulse
- This data can be used to make predictions of hydrogen index for surrounding material - significant calibration required dependent upon environment
- Preliminary single detector data prone to pile up at short time after pulse

Time-after-neutron-pulse recorded for all triggers in a single detector module

D-T Neutron Facility - Upcoming Tests

- Sediment with varying water content to be placed in parallel with detector
- Water content varied
- Detector response expected to track hydrogen content from simulations
- Replacement of far end of shielding with sediment filled box
- Examine potential improvements in predictions for analysis including timing information

UoS D-T pulsed neutron generator contained in magnetite concrete castle

Sheffield D-D/D-T generator

- Dedicated lab for fast neutron sensor development at Sheffield.
- Sealed radiation sources and a NSD-Gradel pulsed-neutron generator for neutron activation.
- Short ~6.5us pulse-width.
- Maximum flux = 2x10⁶ n/s.
- Maximum pulse rate = 30Hz.

Summary

- Radioisotope source replacement necessitates development of new D-T based tools
- Testing feasibility of converter foil coupled plastic scintillator as an alternative to commonly used He-3 based systems
- Simulations suggest good prediction of hydrogen index is possible with low RMSE
- Fibre readout based system not possible rules out high segmentation
- Currently building and testing four-detector neutron-gamma sensitive system with directly coupled PMTs
- Will be tested with the UoS D-T neutron generator + mock rock testbed

Questions

Backup Slides - Lithium Foils

Figure 3.18: Relative performance of boron and lithium based foils.

Backup Slides - Converter Foils

