

Investigation of an end-to-end neural architecture for image-based source term estimation

Abdullah Abdulaziz¹, Michael Davies², Steven McLaughlin¹, Yoann Altmann¹

¹School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK ²School of Engineering, University of Edinburgh, Edinburgh, UK

> 9th October 2023 NuSec Technical Workshop

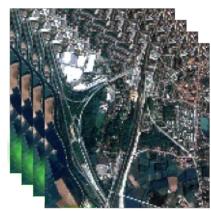
Problem definition

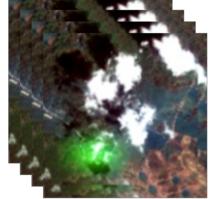
Problem: Increasing threat of hazardous

releases: - Bhopal gas leak

- Fukushima nuclear accident

- Eyjafjallajökull volcanic eruption, ...

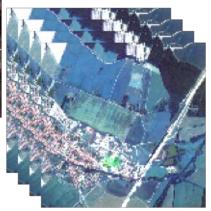




Goal: Determine - location

- time of the release
- release mass
- meteorological data, ...

- Monitoring environment
- Disaster management
- Legal compliance, ...



Atmospheric dispersion simulation (ADS)

Purpose: Predict spread of contaminants for post-emergency assessment.

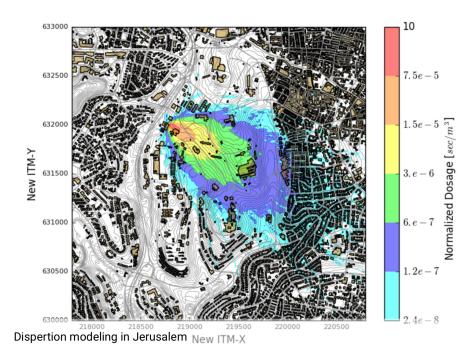
Popular Model: Gaussian Puff and Plume models (simple and efficient).

Forecasting Inputs:

- Meteorological data (local/global sources).
- Release strength and location.

Challenge: Determining unknown strength, location, and timing from sensor data.

Solution: Source term estimation (STE) methods.



Credit: iibr.gov.il

State of the art for STE

Aim: Optimal match between predicted and observed data.

Bayesian Techniques:

- Produces estimates with confidence levels.
- Incorporates prior info through probability distributions.
- Typically computationally expensive.

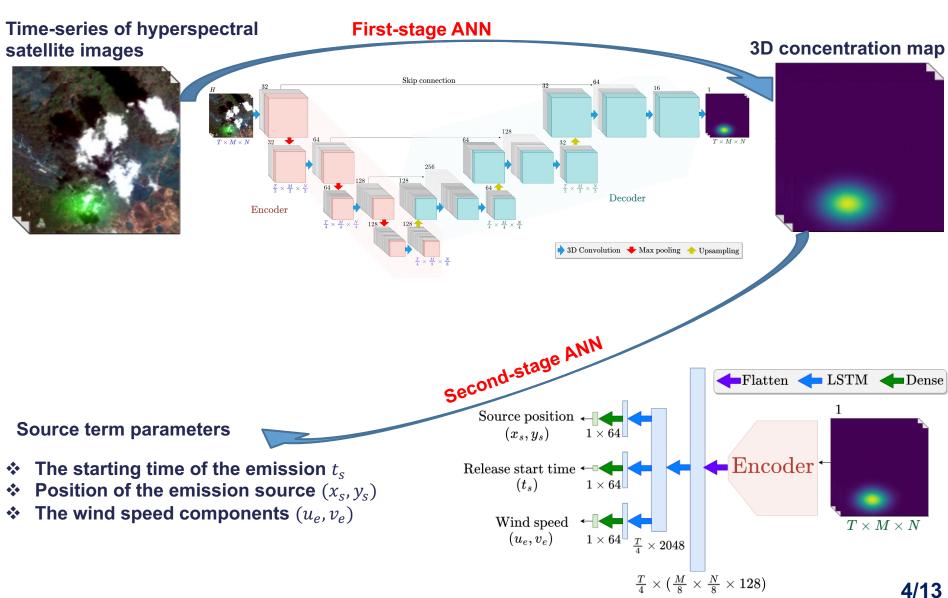
Optimization methods:

- Typically faster, less computationally demanding.
- Limited need for prior info, yet benefits from its availability.
- Generates only point estimates.

Artificial neural networks (ANNs):

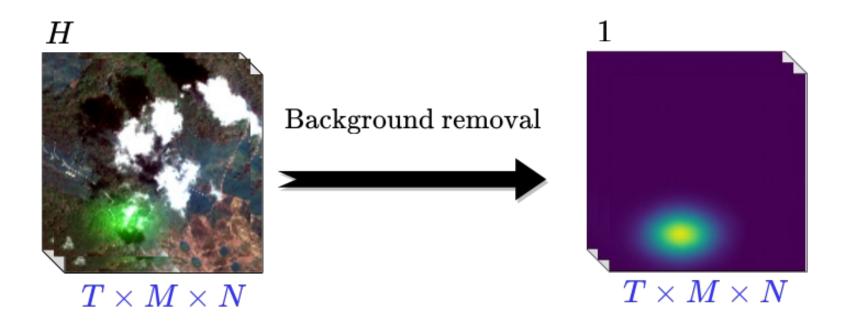
- Suitable for STE's nonlinearities.
- Enhanced by large training datasets and hardware accelerators.
- Existing ANNs focus on specific parameters.
- Often lack confidence intervals.

Proposal



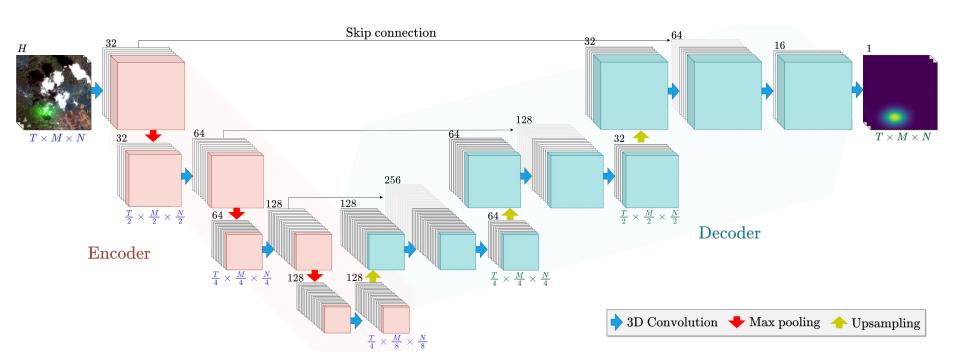
First-stage ANN: Background removal

Extracts the 3D concentration map from the time-series multi/hyperspectral satellite images.



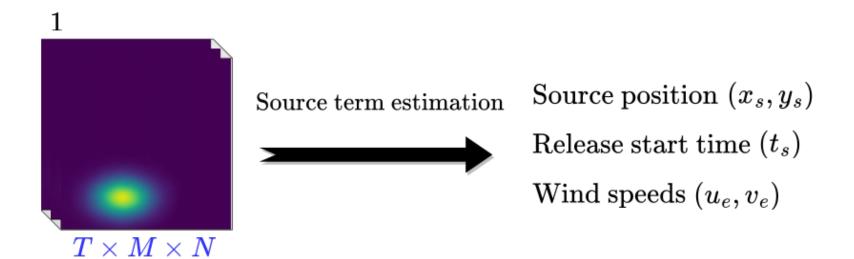
First-stage ANN: Architecture

❖ 3D U-net architecture: This design integrates both an encoder and a decoder, connected by skip connections.



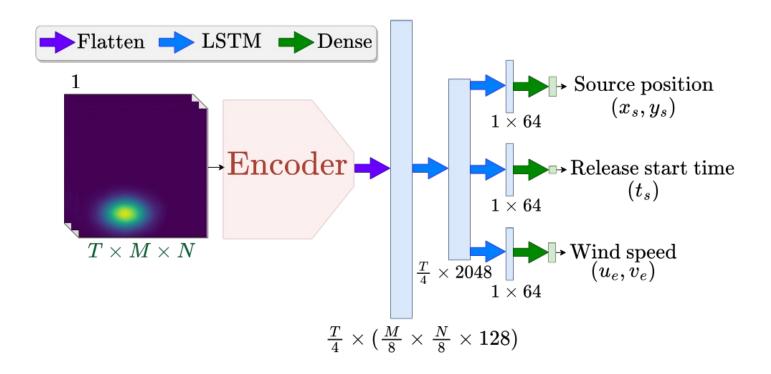
Second-stage ANN: STE

Estimates the source term parameters from the extracted 3D concentration map.



Second-stage ANN: Architecture

❖ A deterministic ANN with an encoder-like structure for parameter estimation.



Two-stage ANN Training

Sequential Training:

- Train first-stage ANN.
- 2. Train second-stage ANN with frozen first-stage.

Training Details:

- Duration: 100 epochs.
- Optimizer: Adam.
- Learning Rate: 10⁻³.
- Batch Size: 30.

Loss Function: Mean Squared Error (MSE).

- First branch: MSE between true and predicted concentration cloud.
- Second branch: MSE between true and predicted source term parameters.

Simulations

Data Collection:

- Source: Pleiades ESA archive.
- Total Images: 3200 (from 320 high-resolution satellite images).
- Image Dimensions: 128x128x3.

Gas Release Simulation:

- Method: Gaussian puff model:

$$c(x,y,t) = \frac{q_S}{4\pi\sqrt{\sigma_x\sigma_y}} \exp\left[-\frac{0.25}{(t-t_S)} \left(\frac{\left(x-x_S-u_e(t-t_S)\right)^2}{\sigma_x} + \frac{\left(y-y_S-v_e(t-t_S)\right)^2}{\sigma_y}\right)\right]$$

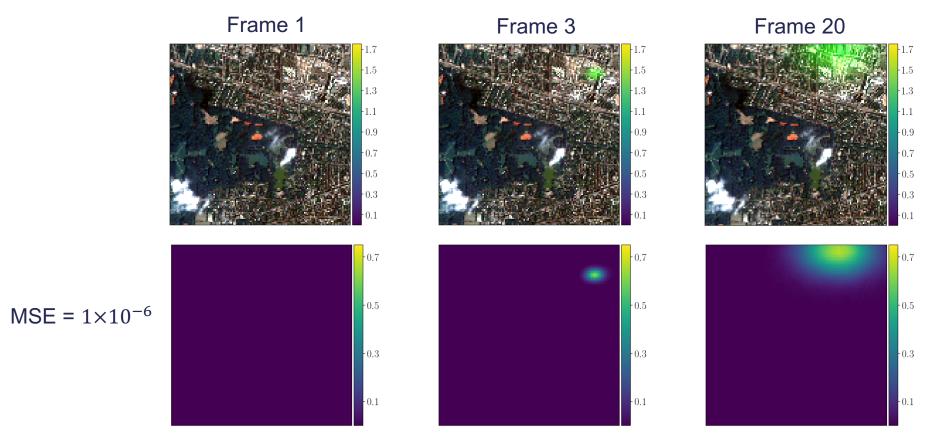
- Resultant Data: 4D cubes of 20x128x128x3 (20 time frames).

Dataset Sizes:

- Training: 3000x20x128x128x3.
- Testing: 200x20x128x128x3.

First-stage ANN: Results

❖ Estimated concentration maps maps over time (second row) obtained from the corresponding satellite images (first row) using the 3D U-net. Displayed from left to right are the results for frames 1, 3, and 20.



Second-stage ANN: Results

Average MSE results between the predicted emission parameters, obtained using the second-stage ANN, and the true values for the testing dataset comprising 200 emission scenarios.

source term parameter	MSE
x_s	1.16 ± 2.04 (pixels)
y_s	$0.99 \pm 1.67 \text{ (pixels)}$
t_s	0.09 ± 0.15 (frames)
u_e	0.4 ± 1.52 (pixels)
v_e	0.42 ± 1.65 (pixels)

Conclusions & Future Work

Findings:

- Introduced a two-stage ANN pipeline for STE using multispectral satellite imagery.
- Addressed STE's non-linearity.
- Offers rapid and precise hazard release estimation.

Future Directions:

- Need for comparison with other STE methods.
- Conduct an uncertainty analysis.
- Refine architecture: Explore VAE integration.
- Enhance real-world applicability: Address irregular timings and faint cloud detection.
- Re-evaluate training: Consider end-to-end training or single network approach.

Thank you for your attention!