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Outline of Method
Step 1

Apply FOCuS algorithm to data and identify anomalies

Step 2
Determine regions of spectra responsible for anomalies using SPCA on 
spectra within local neighbourhood of anomaly

Step 3
Compare similarity between detected anomalies by analysing the loadings

Step 4
Analyse all anomalies found using non-negative matrix factorisation (NMF) 
and compare with SPCA (ongoing).

Future work
Convert between spectrometer channel and energy bin and treat data as 
functional rather than finite dimensional. Will enable comparison across 
the detector types. Compare loadings with Gamma spectra templates of 
radioisotopes.

Results from steps 1 to 3
Detecting anomalies
FOCuS was applied to the observed gamma counts for a detector against a 
prediction of the background count from an exponential smooth of 
preceding gamma counts. Anomalies needed filtering from the data used 
to estimate the background otherwise they would influence the smooth of 
the data and reduce the limit of detection in the neighbourhood of large 
anomalies. This was done using a rolling window filter. An example of 
anomalies detected for a single detector and a single day are shown in 
Figure 1 and the comparison between the raw gamma counts and FOCuS
response are given in Figure 2.

Overview

This poster presents the application of the fast change point detection algorithm FOCuS [1] and a computationally efficient implementation of Sparse-Principal Component Analysis (SPCA) [2] to the SIGMA data.   The 
purpose of this is to detect anomalies in the Gamma Counts data and attribute the detected anomalies to specific regions in the spectra through analysis of loadings. Application of FOCuS to the SIGMA gamma counts data 
was undertaken using Python [3] and the matrix factorisation of SIGMA gamma spectra data was completed with R [4].

Appendix
Sparse Principal component analysis
SPCA can be formulated as minimizing the following objective function for 
a given (n,p) data matrix X, orthogonal matrix A and sparse loadings 
matrix B:

Figure 3 Top row of figure 
shows the raw counts vs 
channel number. Red trace is 
the mean intensity of the 
anomaly, the blue trace is the 
mean intensity of the 
background. Bottom row shows 
the primary SPCA loadings 
where SPCA is penalized heavily 
to ensure a high degree of 
sparsity.

Figure 4 Heatmap showing 
the cosine similarity between 
the loadings of all identified 
anomalies. No clear structure 
in the loadings was found for 
Anomaly 2 and this was 
subsequently deemed to not 
be an anomaly. 

SPCA of the gamma spectra
The Gamma spectra for all time-points for a FOCuS anomaly and an 
adjacent time-period of 2 minutes (containing background data) were 
analysed using SPCA. The spectra and SPCA loadings for data in this 
interval around an anomaly are shown in Figure 3.

Figure 2 Anomaly 6 
from Figure 1. Shown 
are the raw gamma 
counts, the filtered 
gamma counts, 
smoothed gamma 
counts and the FOCuS
response.

For the example above, the interval of spectral data subject to SPCA 
resulted in a data matrix (n,p) of approximate dimension n = 130 and p = 
1024. This was due to the anomalies during this time-period being 
relatively short lived lasting <10s.  The primary principal component 
explained ~25% of the variance for most of the anomalies and the 
loadings were strictly positive upon correction for orientation. In Figure 3 
the loadings are equivalent to the first column of the matrix B defined in 
the Appendix. Analysis of higher order loadings and scores determined 
that the first sparse principal component was sufficient to distinguish the 
anomaly from the background using the scores.

Comparison between the SPCA loadings
To determine if the detected anomalies were related the primary 
loadings were compared. The SPCA for each anomaly were subject to 
the same sparsity constraints and were approximately the same 
dimension data-matrices. The level of sparsity between the primary 
component varied approximately between 60 non-zero loadings and 
170 non-zero loadings for each anomaly.  

Here ψ denotes a sparsity inducing regularizer such as the LASSO or 
elastic net. The principal components Z are formed as follows

Figure 1 All anomalies detected by FOCuS for detector digiBASE-RH 
17004119 on date 24/09/2018. 

Visual analysis of the loadings for each anomaly suggested Anomaly 2 
was a false-positive since the spectra was indistinguishable from the 
background signal albeit slightly elevated, uniformly across the 
channels.  The loadings for all anomalies were compared using the 
cosine similarity metric (Figure 4).  This showed a high level of 
similarity between all anomalies apart from anomaly 2, further 
reinforcing that this may be a false positive.

Further methods to reduce false-positives
• SPCA was not sufficient to reduce the anomaly set alone. Work is 

ongoing using NMF to refine FOCuS further.
• It is expected that a move to functional data analysis will be 

required to compare signals between detectors
• Refining using expert judgements of standard radioisotope signals 

should also improve specificity.


