Overview of Particle Physics

7th ENHEP School on High Energy Physics

Ain Shams University, Cairo, January 26-31, 2019

Ulrich Husemann, Institute of Experimental Particle Physics, Karlsruhe Institute of Technology

Outline

Introduction

Foundations of Particle Physics

The Standard Model of Particle Physics

Particle Physics Today

What Is Particle Physics?

- We have theories at hand for the largest and the smallest:
- Standard model of particle physics: six quarks and six leptons
- Standard model of cosmology: cold dark matter, dark energy, ...
- Guiding principle: start from symmetries
- Particle physics means experiments - with and without accelerators:
- Highest energy: cosmic rays, Large Hadron Collider, ...
- Highest precision: B factories, measurement of neutrino masses and mixing, Dark Matter searches, ...
- Advanced technology: detectors, statistical data analysis, ...

Recommended Reading

- Experimental textbooks:
- M. Thomson: Modern Particle Physics, Cambridge UP (2013)
D. Griffith: Introduction to Elementary Particles, Wiley (2008)
- A. Bettini: Introduction to Elementary Particle Physics, Cambridge UP (2008)
- R. Cahn, G. Goldhaber:

The Experimental Foundations of Particle Physics, Cambridge UP (2009)

Introduction to Elementary Particles

Recommended Reading

- Theory textbooks:
- F. Halzen, A. D. Martin: Quarks \& Leptons, Wiley (1984)
- W. N. Cottingham, D. A. Greenwood: An Introduction to the Standard Model of Particle Physics, Cambridge UP (2007)
- M. D. Schwartz: Quantum Field Theory and the Standard Model, Cambridge UP (2013)
- M. E. Peskin, D. V. Schroeder:

An Introduction to Quantum Field Theory, Westview (1995)

Francis Heben

Alan D. Martin

Looking up Particle Properties

- The Review of Particle Physics:
- PDG - the "holy book" of particle physics: particle properties, overview articles for experts
- Current printed version: M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018).
- Online version: http://pdglive.Ibl.gov/

Online Literature Search

- arXiv (http://arxiv.org):
- Preprints of very many scientific publications
- Topics: physics, mathematics, computer science, system biology, finance mathematics, statistics, ...
- INSPIRE (http://inspirehep.net):
- Specialized literature search for particle physics
- arXiv and other preprints, published articles
- Authors: affiliations, publication statistics, ...

Historical Overview, Part I FOUNDATIONS OF Particle Physics

Quantum Mechanics \& Special Relativity

- Theoretical foundations of particle physics:
- Quantum mechanics (Heisenberg, Schrödinger, Dirac, ..., 1920s)
- Special relativity (Einstein, 1905)
- Modern theories of particle physics: relativistic quantum field theory (QFT)
- Lorentz invariance
- Quantized fields (i.e. fields = QM operators)
- Physical particles = excitations (quanta) of fields

Albert Einstein

Paul A. M. Dirac

Erwin Schrödinger

Werner Heisenberg

Nuclear Force

- Rutherford experiment (Rutherford, Geiger, Marsdon, 1911):
- Beam of α particles directed at thin gold foil \rightarrow measure distribution of scattering angles θ

$$
\frac{\mathrm{d} N}{\mathrm{~d} \theta} \sim \frac{1}{\sin ^{4}(\theta / 2)}
$$

- Result: scattering angle distribution compatible with Coulomb scattering at compact nucleus \rightarrow atom $=$ nucleus + shell
- Chadwick, Bieler (1921): deviation from $\sin ^{-4}(\theta / 2)$ behavior \rightarrow new nuclear force ("strong force")

Ernest Rutherford

James Chadwick

Nuclear Force

- Discovery of the neutron (Chadwick, 1932)
- Mesons as messengers of nuclear force (Yukawa, 1935)
- Analogous to photon in electrodynamics
- Limited range of nuclear force λ : Yukawa potential
 = exponentially damped Coulomb potential

$$
V(r) \sim-\frac{\exp [-r / \lambda]}{r}
$$

- Experimentally: $\lambda \cong 1 \mathrm{fm}$
$\rightarrow m_{\text {meson }} \cong 200 \mathrm{MeV}$: pions!

Isospin

- New internal degree of freedom for nuclei: isospin (short for: "isotopic spin") (Discovery: Heisenberg 1932, name "isospin" coined by Wigner 1937)
- Proton/neutron: similar properties (if charge is ignored)
- Experiment: scattering off mirror nuclei (number of protons/neutrons exchanged, e.g. $\left.{ }^{3} \mathrm{H} \leftrightarrow{ }^{3} \mathrm{He},{ }^{15} \mathrm{~N} \leftrightarrow{ }^{15} \mathrm{O}\right) \rightarrow$ strong force independent of electric charge
- New view on the strong force:
- If there was only the strong force: proton = neutron = "nucleon"
\rightarrow symmetry between protons and neutrons: (strong) isospin I
- Mathematical description: group theory - SU(2) group (like for spin), nucleon as isospin doublet:

$$
\text { nucleon }=\binom{|p\rangle}{|n\rangle}=\binom{\left|I=\frac{1}{2}, I_{3}=+\frac{1}{2}\right\rangle}{\left|I=\frac{1}{2}, I_{3}=-\frac{1}{2}\right\rangle}
$$

Isospin

- Isospin concept can be extended to further particle classes:
- Example: pion = isospin triplet

$$
\text { pion }=\left(\begin{array}{c}
-\left|\pi^{+}\right\rangle \\
\left|\pi^{0}\right\rangle \\
\left|\pi^{-}\right\rangle
\end{array}\right)=\left(\begin{array}{l}
\left|I=1, I_{3}=+1\right\rangle \\
\left|I=1, I_{3}=0\right\rangle \\
\left|I=1, I_{3}=-1\right\rangle
\end{array}\right)
$$

- Compare third component l_{3} of isospin for nucleons and pions:
- I_{3} depends on charge Q (in e) - different for mesons and baryons
- Connection to baryon number B (reminder: $B=$ (\#quarks - \#antiquarks)/3):

$$
I_{3}=Q-\frac{B}{2}
$$

Strangeness

- 1940s: new "strange" particles in cosmic rays (Rochester, Butler, 1947)
- Experimental technique: stereoscopic bubble chamber pictures
- Signature: V0 ("neutral vertex") created in lead block
- Today: V^{0} decays are mainly $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}, \Lambda^{0} \rightarrow p \pi^{-}$

Strangeness \& Parity

- Theta-tau puzzle:
- Observation: "two" particle decays with different final state parity

$$
\theta^{+} \rightarrow \pi^{+} \pi^{0}, \tau^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}
$$

- But: both particles have the same mass and lifetimes \rightarrow same particle?

$$
m_{\theta^{+}}=m_{\tau^{+}}, \tau_{\theta^{+}}=\tau_{\tau^{+}}
$$

- Solution: new quantum number $S=$ strangeness (Gell-Mann; Nakano, Nishijima, 1953)
- Indeed: two different decays of the same particle $K^{+} \rightarrow 2 \pi / 3 \pi$, in today's language:
- Strangeness conserved in K^{+}production (strong interaction)
- Strangeness violated in K^{+}decay (weak interaction)
- Another important consequence: weak interaction violates parity

From Strangeness to Flavor

- Group theory: from isospin $S U(2)$ to flavor $\operatorname{SU}(2)$
- Describe states with two quantum numbers, e.g. I_{3} and S
- Alternative choice: I_{3} and (flavor) hypercharge $Y_{F}=B+S$
- Relation to electric charge: Gell-Mann-Nishijima formula

$$
I_{3}=Q-\frac{Y_{F}}{2}=Q-\frac{1}{2}(B+S)
$$

- Generalized to today's six flavors: $Y_{F}=B+S+C+\mathscr{B}+T$

C	$=$ charm
\mathscr{B}	= bottomness (also: beauty)
T	$=$ topness (also: truth)

Kazuhiko Nishijima

Quark Model

- 1960s: particle zoo
- Many further "elementary" particles discovered, e.g.

$$
\eta^{\prime}, \rho, \omega, K^{*} \Delta, \Sigma, \equiv
$$

- Missing: classification scheme (cf. Mendeleev's periodic table)
- Quarks (Gell-Mann, 1964) and Aces (Zweig, 1964)
- Fundamental representation of flavor $S U(3)$: three quarks ($u=$ up, $d=$ down, $s=$ strange)
- Baryon and meson multiplets as further representations of flavor SU(3)
- Straightforward extension to four quarks: flavor SU(4)
- Initially: purely mathematical tool, no physical reality

Quark-Parton Model

- Stanford Linear Accelerator Center (SLAC), 1960s:
- Scattering experiment: $20-\mathrm{GeV}$ electron beam on fixed target \rightarrow nucleon structure (expressed through form factors, e.g. for charge distribution)
- Process: deep inelastic scattering (DIS)

Quark-Parton Model

- Discovery of nucleon substructure (Breidenbach et al., 1969)
- Theoretical interpretation:
- Substructure = "partons" - pointlike spin-1/2 particles (Feynman, 1969)
- These partons can be identified with quarks (Bjorken, Paschos, 1969)

James D. Bjorken

Karlsruhe Institute of Technology

Quantum Chromodynamics

- Yang-Mills theory (Yang, Mills, 1954):
- Use gauge symmetries to construct theories of of strong \& weak interactions (symmetry group: $\operatorname{SU}(N)$)
- Prediction: massless mediators (= force carriers)
- But: massive pions as mediators of nuclear force, Fermi coupling constant G_{F} of weak interactions not dimensionless \rightarrow contradiction to theory

Chen Ning Yang, Robert L. Mills (1999) www-rnc.lbl.gov

- Hints of unknown new internal degree of freedom for quarks:
- Example: Ω^{-}baryon has quark content |sss \rangle
- Ω^{-}is a fermion, but wave functions in position, spin, and flavor space symmetric \rightarrow wave function antisymmetric in new degree of freedom: "color"

Quantum Chromodynamics

Karlsruhe Institute of Technology

- Color-SU(3) (Fritzsch, Gell-Mann, Leutwyler, 1973):
- Strong interaction described as $S U(3)$ gauge theory for quarks
- Mediators ("force carriers"): 8 gluons
- Quarks and gluons carry "color charge" \rightarrow quantum chromodynamics (QCD)

- Asymptotic freedom (Gross, Wilczek, Politzer, 1973): QCD coupling α_{s} gets weaker with increasing energy
- Quarks approximately free particles in DIS
- Low energies: confinement \rightarrow no free quarks

Weak Interactions

- Process known from radioactive beta decay (A: mass number, Z : atomic number)

$$
(A, Z) \rightarrow(A, Z+1)+e^{-}
$$

- Apparent two-body decay: expect fixed electron energy \rightarrow contradicts observation
- Solution (Pauli, 1930): neutrino postulate

$$
(A, Z) \rightarrow(A, Z+1)+e^{-}+\bar{\nu}_{e}
$$

- Fermi's theory of weak interactions:

Weak Process

Parity Violation in Weak Interactions

- Discrete symmetries of particle physics:
C (charge conjugation), P (parity), and T (time reversal)
- Each conserved individually in strong and electromagnetic interactions
- Expectation: parity conservation also for weak interactions
- Starting from theta-tau puzzle (see above):
- Lee/Yang: suggestion of parity violation in weak interactions (1956)
- Parity violation first observed in Wu experiment (1957)
- Goldhaber, Grodzins, Sunyar experiment (1958): massless neutrinos are left-handed \rightarrow maximal parity violation \rightarrow weak interactions only act on left-handed particles
- Improved theory of weak interactions: V-A theory (Feynman, Gell-Mann; Sudarshan, Marshak, 1958) \rightarrow weak current = "vector minus axial vector" current

CP Violation

- Search for CP violation in neutral K meson ("K long") decays (Christenson, Cronin, Fitch, Turlay, 1964):
- CP conserving: $K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- CP violating: $\quad K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \quad$ (2000 times smaller)
- Weak interaction also violates combined CP symmetry
- Cosmological implications of CP violation: each explanation of the baryon asymmetry $\frac{n_{B}-n_{\bar{E}}}{n_{\gamma}} \approx 10^{-9}$ in the universe requires (Sakharov, 1967):
- Thermal non-equilibrium
- CP violation
- Baryon number violation Particle Physics

Electroweak Theory

- Unitarity problem in $V-A$ theory:
- Cross section for neutrino-electron scattering prediction by $V-A$ theory proportional to s (center-of-mass energy squared), infinitely large for $s \rightarrow \infty$
- Solution: unified theory of weak and electromagnetic interactions
\rightarrow Glashow-Salam-Weinberg model (GSW)
- Gauge group (Glashow, 1961): $S U(2) \times U(1)$ $S U(2): \quad$ weak isospin $U(1)$: weak hypercharge

A. Salam

S. Weinberg

Electroweak Theory

- (Brout-Englert-)Higgs mechanism: spontaneous symmetry breaking (SSB) through Higgs potential $V(\phi)$
- SSB: ground state of a theory does not preserve symmetry of Lagrangian
- Discovered independently by several groups: Higgs; Brout, Englert; Goldstone, Jona-Lasinio, Nambu; Guralnik, Hagen, Kibble (1960s)
- Application of Higgs mechanism on $S U(2) \times U(1)$ theory (Salam, Weinberg, 1968)
\rightarrow massive W und Z bosons, massless photon \rightarrow prediction of a Higgs boson

2D Analogy of Higgs Potential

Discoveries

W and Z Boson Discovery (Spp̄S, CERN, 1983)
Higgs Boson Discovery (LHC, CERN, 2012)

Quark Mixing and Flavor Physics

- Application of GSW model to quarks:
- Eigenstates of weak interactions (= particles interacting with the W boson) \neq mass eigenstates (= physical particles)
- W boson couples to linear combination of mass eigenstates d and s

$$
u \rightarrow d^{\prime}=d \cos \theta_{C}+s \sin \theta_{C}
$$

\rightarrow quark "mixing" with θ_{c} "Cabibbo angle", $\sin \theta_{C} \cong 0.22$ (Cabibbo, 1963)

- GIM mechanism (Glashow, Iliopoulos, Maiani, 1970):
- Observation: decay $K^{+} \rightarrow \ell \nu$ much more likely than $K^{0} \rightarrow \mu \mu$
- GIM: $K^{0} \rightarrow \mu \mu$ suppressed due to quantum corrections from fourth quark \mathbf{c}
- Discovery of the $J / \psi=$ bound cc state (SLAC, BNL, 1974)

Quark Mixing and Flavor Physics

- Quark mixing as source of CP violation:
- Only with at least three quark generations (Kobayashi, Maskawa, 1973)
- Mathematical description: (complex, unitary) Cabibbo-KobayashiMaskawa (CKM) mixing matrix

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=V_{\text {СКМ }}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

- Discovery of third generation quarks and leptons:
- Leptons: τ lepton (Perl et al., 1975), v_{τ} (DONUT, 2000)
- Quarks: bottom quark (Lederman et al., 1977), top quark (Tevatron, 1995)

Standard Model of Particle Physics

- Particle content: 6 quarks +6 leptons (+ antiparticles)
- Interactions (mediated by gauge bosons): electroweak interaction (= unified electromagnetic and weak interaction), strong interaction

Beyond the Standard Model?

- Higgs-boson discovery: standard model completed with mechanism for spontaneous symmetry breaking
- Many open questions remain:
- Does the standard model work also at (much) higher energy scales?
- Is the standard model "natural"? Or: Why is the Higgs-boson mass so small, despite huge quantum corrections? Do we care if it is not?
- What lies beyond the standard model? (explanations missing for: neutrino mass, dark matter, dark energy, ...)

C. Grupen after C. Flammarion, L'atmosphère (1888)

Particle Physics Today

High-pt Collider Physics

Current flagship: Large Hadron Collider

- World's largest and most powerful particle accelerator 27 km circumference, approx. 100 m underground
- Protons accelerated to up to 7 TeV
- Four large multi-purpose experiments: ATLAS, CMS, ALICE, LHCb
- Broad physics program: standard model and beyond
- Main topic of this school \rightarrow more in upcoming lectures

High-Precision Flavor Physics

- Search for new physics in quantum corrections, e.g.

\rightarrow probe indirect effects to much higher scales than in high- p_{T} physics
- Only significant source of tensions with the SM so far, e.g. muon anomalous momentum (" $g-2$ "), rare B-meson decays

Super B Factory: KEKB and Belle-ll

- Experiment at asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$collider at $\mathrm{s} \approx 10.5 \mathrm{GeV}$
- Pushing the precision frontier: $50 \mathrm{ab}^{-1}$ of integrated luminosity expected
- Physics program: CP violation and rare decays in heavy quarks

Neutrino Physics: Some Recent Results

- Neutrino oscillations: non-zero mass (many experiments)
- Universe contains sources of PeV neutrinos (IceCube, South Pole)

$\overline{\text { npə }}$ (IM•əqnכəગ!

Neutrino Physics: Open Questions

- Dirac of Majorana particle?
\rightarrow neutrinoless double-beta decay $(0 v \beta \beta)$

Neutrino Physics: Open Questions

- Dirac of Majorana particle? \rightarrow neutrinoless double-beta decay $(0 \nu \beta \beta)$
- CP violation in the lepton sector?
\rightarrow accelerator \& reactor neutrino beams

Japanese Project: Hyper-Kamiokande

\rightarrow J-PARC v beam, water Cherenkov detector

\rightarrow Fermilab v beam, liquid-argon detector

Neutrino Physics: Open Questions

\squareDirac of Majorana particle? \rightarrow neutrinoless double-beta decay $(0 \nu \beta \beta)$

- CP violation in the lepton sector? \rightarrow accelerator \& reactor neutrino beams
- Absolute mass scale (\& hierarchy) ? \rightarrow KATRIN (+ $0 v \beta \beta+$ cosmology)

Neutrino Physics: Open Questions

- Dirac of Majorana particle? \rightarrow neutrinoless double-beta decay $(0 \nu \beta \beta)$
- CP violation in the lepton sector? \rightarrow accelerator \& reactor neutrino beams
- Absolute mass scale (\& hierarchy) ? \rightarrow KATRIN (+ 0v $\beta \beta$ + cosmology)
- Additional sterile neutrinos?

Non-standard model interactions?
\rightarrow small deviations in experiments

LSND/MiniBooNE Anomaly

All That Technology...

Energy Loss in Matter

WLCG Computing Model

CMS L1 Trigger Overview

JINST 12 (2017) P01020
Deep Neural Network Architecture

- Instrumentation:
- Accelerators and detectors
(\rightarrow Dobrzynski, Colaleo)
- Trigger \& readout electronics
- Computing:
- Offline data processing
- Data analysis $(\rightarrow$ Prosper, UH)

Summary

- Particle physics:
what is our universe made of on the fundamental level?
- Solid foundation of particle physics
\rightarrow well established standard model of particle physics
- Particle physics today: highly specialized sub-fields
(e.g. high- p_{T} collider physics, flavor physics, neutrino physics)
- There's so much more ... enjoy the school

