

Overview of Particle Physics

7th ENHEP School on High Energy Physics Ain Shams University, Cairo, January 26–31, 2019

Ulrich Husemann, Institute of Experimental Particle Physics, Karlsruhe Institute of Technology

Outline

Introduction

Foundations of Particle Physics

The Standard Model of Particle Physics

Particle Physics Today

What Is Particle Physics?

We have theories at hand for the **largest** and the **smallest**:

- **Standard model** of **particle physics**: six quarks and six leptons
- **Standard model** of **cosmology**: cold dark matter, dark energy, ...
- Guiding principle: start from **symmetries**
- Particle physics means experiments with and without accelerators:
 - Highest energy: cosmic rays, Large Hadron Collider, ...
 - Highest precision: B factories, measurement of neutrino masses and mixing, Dark Matter searches, …
 - Advanced **technology**: detectors, statistical data analysis, ...

Recommended Reading

Experimental textbooks:

- M. Thomson: *Modern Particle Physics,* Cambridge UP (2013)
- D. Griffith: Introduction to Elementary Particles, Wiley (2008)
- A. Bettini: Introduction to Elementary Particle Physics, Cambridge UP (2008)
- R. Cahn, G. Goldhaber: *The Experimental Foundations of Particle Physics,* Cambridge UP (2009)

Introduction to Elementary Particles

Introduction to Elementary Particle Physics

Recommended Reading

Theory textbooks:

- F. Halzen, A. D. Martin:
 Quarks & Leptons, Wiley (1984)
- W. N. Cottingham, D. A. Greenwood: An Introduction to the Standard Model of Particle Physics, Cambridge UP (2007)
- M. D. Schwartz: Quantum Field Theory and the Standard Model, Cambridge UP (2013)
- M. E. Peskin, D. V. Schroeder: *An Introduction to Quantum Field Theory*, Westview (1995)

Karlsruhe Institute of Technology

QUANTUM FIELD THEORY and the STANDARD MODEL Matthew D. Schwartz

Looking up Particle Properties

The Review of Particle Physics:

- PDG the "holy book" of particle physics: particle properties, overview articles for experts
- Current printed version: M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018).
- Online version: <u>http://pdglive.lbl.gov/</u>

About PDG PI	G Authors PDG Citation	News Contact Us
M. Tanabashi et al.	Particle Data Group), Phys. Re	V. D 98 , 030001 (2018).
	pdgLive - Intera	active Listings
	Summary Tables	
	Reviews, Tables	s, Plots
	Particle Listing	s
AL BAR	Search	
	ORDER: Book & Bookle	et
	WNI OAD: Book & Booklet	
DC	WNLOAD: BOOK, BOOKIEC	, more
Previous Editions (& Errat) 1957-2017 Physical C	onstants
Errata in current edition	Astrophys	ical Constants
Figures in reviews	Atomic & I	Nuclear Properties
Mirror Sites	Astrophys	ics & Cosmology
	PDG Outreach	
Particle Adventure & Apps	CPEP Charts	History book
	Non-PDG Resource	e
 HEP Papers 	 Databases & Info 	 Institutions & People
	The state of the second	
	Funded by:	
The publication of the Review of and INEN (Italy) Individua	Particle Physics is supported t collaborators receive support	by US DOE, CERN, MEXT (Japar for their PDG activities from their
AND IN ANALY AND AND A	respective funding agencies	
	respective running agencies	

Online Literature Search

arXiv (<u>http://arxiv.org</u>):

- Preprints of very many scientific publications
- Topics: physics, mathematics, computer science, system biology, finance mathematics, statistics, ...

INSPIRE (<u>http://inspirehep.net</u>):

- Specialized literature search for particle physics
- arXiv and other preprints, published articles
- Authors: affiliations, publication statistics, ...

g v1.0.2+ 14 to feedback@insainhea.net

Historical Overview, Part I FOUNDATIONS OF PARTICLE PHYSICS

Quantum Mechanics & Special Relativity

- Theoretical foundations of particle physics:
 - Quantum mechanics (Heisenberg, Schrödinger, Dirac, ..., 1920s)
 - Special relativity (Einstein, 1905)
- Modern theories of particle physics: relativistic quantum field theory (QFT)
 - Lorentz invariance
 - Quantized fields (i.e. fields = QM operators)
 - Physical particles = excitations (quanta) of fields

Albert Einstein

Erwin Schrödinger

Paul A. M. Dirac

Werner Heisenberg

nobelprize.org

Nuclear Force

Rutherford experiment (Rutherford, Geiger, Marsdon, 1911):

Beam of α particles directed at thin gold foil \rightarrow measure distribution of scattering angles θ

 $rac{{
m d}N}{{
m d} heta}\sim rac{1}{{
m sin}^4(heta/2)}$

- Result: scattering angle distribution compatible with Coulomb scattering at compact nucleus
 → atom = nucleus + shell
- Chadwick, Bieler (1921): deviation from sin⁻⁴(θ/2) behavior→ new nuclear force ("strong force")

Ernest Rutherford James Chadwick nobelprize.org

Ulrich Husemann Institute of Experimental Particle Physics

Discovery of the **neutron** (Chadwick, 1932)

Nuclear Force

Mesons as messengers of nuclear force (Yukawa, 1935)

- Analogous to photon in electrodynamics
- Limited range of nuclear force λ: Yukawa potential
 = exponentially damped Coulomb potential

$$V(r) \sim -rac{exp[-r/\lambda]}{r}$$

Experimentally: λ ≅ 1 fm → m_{meson} ≅ 200 MeV: pions!

Isospin

- New internal degree of freedom for nuclei: isospin (short for: "isotopic spin") (Discovery: Heisenberg 1932, name "isospin" coined by Wigner 1937)
 - Proton/neutron: similar properties (if charge is ignored)
 - Experiment: scattering off mirror nuclei (number of protons/neutrons exchanged, e.g. ³H ↔ ³He, ¹⁵N ↔ ¹⁵O) → strong force **independent** of electric charge
- New view on the strong force:
 - If there was only the strong force: proton = neutron = "nucleon" → symmetry between protons and neutrons: (strong) isospin /
 - Mathematical description: group theory SU(2) group (like for spin), nucleon as isospin doublet:

nucleon =
$$\begin{pmatrix} |p\rangle \\ |n\rangle \end{pmatrix} = \begin{pmatrix} |I = \frac{1}{2}, I_3 = +\frac{1}{2}\rangle \\ |I = \frac{1}{2}, I_3 = -\frac{1}{2}\rangle \end{pmatrix}$$

Isospin

Isospin concept can be extended to further particle classes:

Example: pion = isospin triplet

$$pion = \begin{pmatrix} -|\pi^+\rangle \\ |\pi^0\rangle \\ |\pi^-\rangle \end{pmatrix} = \begin{pmatrix} |I=1, I_3=+1\rangle \\ |I=1, I_3=0\rangle \\ |I=1, I_3=-1\rangle \end{pmatrix}$$

Compare third component I_3 of isospin for nucleons and pions:

- I₃ depends on charge Q (in e) different for mesons and baryons
- Connection to baryon number B (reminder: B = (#quarks #antiquarks)/3):

$$l_3 = Q - \frac{B}{2}$$

Strangeness

1940s: new "strange" particles in cosmic rays (Rochester, Butler, 1947)

- Experimental technique: stereoscopic bubble chamber pictures
- Signature: **V**⁰ ("neutral vertex") created in lead block
- Today: V^0 decays are mainly $K^0_S \to \pi^+\pi^-$, $\Lambda^0 \to p\pi^-$

Strangeness & Parity

Theta-tau puzzle:

Observation: "two" particle decays with different final state parity

$$\theta^+ \to \pi^+ \pi^0, \ \tau^+ \to \pi^+ \pi^0 \pi^0$$

But: both particles have the **same mass and lifetimes** \rightarrow same particle?

$$m_{\theta^+} = m_{\tau^+}, \ \tau_{\theta^+} = \tau_{\tau^+}$$

Solution: new quantum number *S* = **strangeness (**Gell-Mann; Nakano, Nishijima, 1953)

- Indeed: two different decays of the **same** particle $K^+ \rightarrow 2\pi/3\pi$, in today's language:
 - Strangeness conserved in K⁺ production (strong interaction)
 - Strangeness **violated** in *K*⁺ decay (weak interaction)
 - Another important consequence: weak interaction violates parity

From Strangeness to Flavor

nobelprize.org

Murray Gell-Mann

Kazuhiko Nishijima

Group theory: from isospin *SU*(2) to **flavor** *SU***(2**)

- Describe states with two quantum numbers, e.g. I_3 and S
- Alternative choice: I_3 and (flavor) hypercharge $Y_F = B + S$
- Relation to electric charge: Gell-Mann–Nishijima formula

$$I_3 = Q - \frac{Y_F}{2} = Q - \frac{1}{2}(B + S)$$

Generalized to today's **six flavors**: $Y_F = B + S + C + \mathscr{B} + T$

- C = charm
- *B* = bottomness (also: beauty)
- *T* = topness (also: truth)

1960s: particle zoo

Quark Model

Many further "elementary" particles discovered, e.g.

 $\eta', \rho, \omega, K^*\Delta, \Sigma, \Xi$

Missing: classification scheme (cf. Mendeleev's periodic table)

Quarks (Gell-Mann, 1964) and Aces (Zweig, 1964)

- Fundamental representation of flavor SU(3): three quarks (*u* = up, *d* = down, *s* = strange)
- Baryon and meson multiplets as further representations of flavor SU(3)
- Straightforward extension to four quarks: flavor SU(4)
- Initially: purely mathematical tool, **no physical reality**

Meson Multiplets

Ulrich Husemann Institute of Experimental Particle Physics

Quark-Parton Model

- Stanford Linear Accelerator Center (SLAC), 1960s:
 - Scattering experiment: 20-GeV electron beam on fixed target → nucleon structure (expressed through form factors, e.g. for charge distribution)
 - Process: deep inelastic scattering (DIS)

Quark-Parton Model

- Discovery of nucleon substructure (Breidenbach et al., 1969)
- Theoretical interpretation:
 - Substructure = "partons" pointlike spin-1/2 particles (Feynman, 1969)
 - These partons can be identified with quarks (Bjorken, Paschos, 1969)

Ulrich Husemann Institute of Experimental Particle Physics

Quantum Chromodynamics

- **Yang-Mills theory** (Yang, Mills, 1954):
 - Use gauge symmetries to construct theories of of strong & weak interactions (symmetry group: SU(N))
 - Prediction: massless mediators (= force carriers)
 - But: massive pions as mediators of nuclear force, Fermi coupling constant G_F of weak interactions not dimensionless → contradiction to theory

Chen Ning Yang, Robert L. Mills (1999) www-rnc.lbl.gov

- Hints of unknown new internal degree of freedom for quarks:
 - Example: Ω⁻ baryon has quark content |sss>
 - Ω- is a fermion, but wave functions in position, spin, and flavor space symmetric → wave function antisymmetric in new degree of freedom: "color"

Quantum Chromodynamics

Color-SU(3)

(Fritzsch, Gell-Mann, Leutwyler, 1973):

- Strong interaction described as SU(3) gauge theory for quarks
- Mediators ("force carriers"): 8 gluons
- Quarks and gluons carry "color charge" → quantum chromodynamics (QCD)
- **Asymptotic freedom** (Gross, Wilczek, Politzer, 1973): QCD coupling α_s gets weaker with increasing energy
 - Quarks approximately free particles in DIS
 - Low energies: **confinement** \rightarrow no free quarks

Weak Interactions

Karlsruhe Institute of Technology

Process known from radioactive beta decay (A: mass number, Z: atomic number)

 $(A, Z) \rightarrow (A, Z + 1) + e^{-}$

- Apparent two-body decay: expect fixed electron energy

 → contradicts observation
- Solution (Pauli, 1930): neutrino postulate

 $(A,Z)
ightarrow (A,Z+1) + e^- + \bar{
u}_e$

- Fermi's theory of weak interactions:
 - Vector currents (like in electrodynamics)
 - Contact interactions with Fermi coupling constant G_F
 - Dimension of *G_F*: [energy]⁻²
 - \rightarrow hint of massive mediator particle (today: W boson)

Parity Violation in Weak Interactions

- Discrete symmetries of particle physics:
 C (charge conjugation), P (parity), and T (time reversal)
 - Each **conserved individually** in strong and electromagnetic interactions
 - Expectation: parity conservation also for weak interactions
- Starting from theta-tau puzzle (see above):
 - Lee/Yang: suggestion of **parity violation** in weak interactions (1956)
 - Parity violation first observed in Wu experiment (1957)
 - Goldhaber, Grodzins, Sunyar experiment (1958): massless neutrinos are left-handed \rightarrow maximal parity violation \rightarrow weak interactions only act on left-handed particles
- Improved theory of weak interactions: V–A theory (Feynman, Gell-Mann; Sudarshan, Marshak, 1958) → weak current = "vector minus axial vector" current

CP Violation

- Search for CP violation in neutral K meson ("K long") decays (Christenson, Cronin, Fitch, Turlay, 1964):
 - CP conserving: $K_L^0 \to \pi^+ \pi^- \pi^0$
 - CP violating: $K_L^0 \to \pi^+\pi^-$ (2000 times smaller)
 - Weak interaction also violates combined CP symmetry
- Cosmological implications of CP violation: each explanation of the baryon asymmetry $\frac{n_B n_{\overline{B}}}{n_{\gamma}} \approx 10^{-9}$ in the universe requires (Sakharov, 1967):
 - Thermal non-equilibrium
 - CP violation
 - Baryon number violation

Historical Overview, Part II THE STANDARD MODEL OF PARTICLE PHYSICS

Electroweak Theory

Unitarity problem in *V*–*A* theory:

- Cross section for neutrino-electron scattering prediction by *V*–*A* theory proportional to *s* (center-of-mass energy squared), **infinitely large** for $s \rightarrow \infty$
- Solution: unified theory of weak and electromagnetic interactions
 - → Glashow-Salam-Weinberg model (GSW)
- Gauge group (Glashow, 1961): SU(2) × U(1)
 SU(2): weak isospin
 U(1): weak hypercharge

S.L. Glashow

nobelprize.org

Ulrich Husemann Institute of Experimental Particle Physics

Electroweak Theory

- (Brout-Englert-)Higgs mechanism: spontaneous symmetry breaking (SSB) through Higgs potential V(φ)
 - SSB: ground state of a theory does not preserve symmetry of Lagrangian
 - Discovered independently by several groups: Higgs; Brout, Englert; Goldstone, Jona-Lasinio, Nambu; Guralnik, Hagen, Kibble (1960s)
 - Application of Higgs mechanism on SU(2)×U(1) theory (Salam, Weinberg, 1968)
 - \rightarrow **massive** *W* und *Z* bosons, **massless** photon
 - \rightarrow prediction of a **Higgs boson**

2D Analogy of Higgs Potential

Discoveries

W and Z Boson Discovery (SppS, CERN, 1983)

Higgs Boson Discovery (LHC, CERN, 2012)

Ulrich Husemann Institute of Experimental Particle Physics

Quark Mixing and Flavor Physics

- Application of GSW model to quarks:
 - Eigenstates of weak interactions (= particles interacting with the W boson)
 ≠ mass eigenstates (= physical particles)
 - W boson couples to **linear combination** of mass eigenstates *d* and *s*

 $u \rightarrow d' = d \cos \theta_C + s \sin \theta_C$

- \rightarrow quark "mixing" with θ_{C} "Cabibbo angle", sin $\theta_{C} \approx 0.22$ (Cabibbo, 1963)
- **GIM mechanism** (Glashow, Iliopoulos, Maiani, 1970):
 - Observation: decay $K^+ \rightarrow \ell \nu$ much more likely than $K^0 \rightarrow \mu \mu$
 - **GIM**: $K^0 \rightarrow \mu\mu$ suppressed due to quantum corrections from **fourth quark c**
 - **Discovery of the** J/ψ = bound cc̄ state (SLAC, BNL, 1974)

Quark Mixing and Flavor Physics

- Quark mixing as source of CP violation:
 - Only with at least three quark generations (Kobayashi, Maskawa, 1973)
 - Mathematical description: (complex, unitary) Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Discovery of third generation quarks and leptons:

- Leptons: τ lepton (Perl et al., 1975), ν_{τ} (DONUT, 2000)
- Quarks: bottom quark (Lederman et al., 1977), top quark (Tevatron, 1995)

Standard Model of Particle Physics

symmetrymagazine.org

- Particle content: 6 quarks + 6 leptons (+ antiparticles)
- Interactions (mediated by gauge bosons): electroweak interaction (= unified electromagnetic and weak interaction), strong interaction

Beyond the Standard Model?

- Higgs-boson discovery: standard model completed with mechanism for spontaneous symmetry breaking
- Many open questions remain:
 - Does the standard model work also at (much) higher energy scales?
 - Is the standard model "natural"? Or: Why is the Higgs-boson mass so small, despite huge quantum corrections? Do we care if it is not?
 - What lies beyond the standard model? (explanations missing for: neutrino mass, dark matter, dark energy, ...)

C. Grupen after C. Flammarion, L'atmosphère (1888)

PARTICLE PHYSICS TODAY

High-pT Collider Physics

Current flagship: Large Hadron Collider

- World's largest and most powerful particle accelerator
 27 km circumference, approx. 100 m underground
- Protons accelerated to up to 7 TeV
- Four large multi-purpose experiments: ATLAS, CMS, ALICE, LHCb
- Broad physics program: standard model and beyond
- Main topic of this school → more in upcoming lectures

High-Precision Flavor Physics

Search for new physics in quantum corrections, e.g.

- \rightarrow probe **indirect effects** to much higher scales than in high- p_T physics
- Only significant source of tensions with the SM so far, e.g. muon anomalous momentum ("g–2"), rare *B*-meson decays

Super B Factory: KEKB and Belle II

Picture courtesy of KEK

- Experiment at asymmetric e^+e^- collider at $\sqrt{s} \approx 10.5$ GeV
- Pushing the precision frontier: 50 ab⁻¹ of integrated luminosity expected
- Physics program: CP violation and rare decays in heavy quarks

Neutrino Physics: Some Recent Results

- Neutrino oscillations: non-zero mass (many experiments)
- Universe contains sources of PeV neutrinos (IceCube, South Pole)

NuFIT 4.0 (2018) difference °.6 ⊒31 ™ eV²] [10⁻³ Δm^2_{32} nass CP phase 270 ್ಯ^{ದಿ} 180 04 0.5 06 07 mass difference sin²0₂₃ [10⁻⁵ eV²] 7.5 nu-fit.orc Δm^2_{21} 0.25 0.35 0.015 0.02 0.025 0.03 02 03 04 sin²0₁₂ sin²0 mixing angle

> Ulrich Husemann Institute of Experimental Particle Physics

Dirac of Majorana particle?

 \rightarrow neutrinoless double-beta decay ($0\nu\beta\beta$)

- Dirac of Majorana particle? \rightarrow neutrinoless double-beta decay (0 $\nu\beta\beta$)
- CP violation in the lepton sector? → accelerator & reactor neutrino beams

Japanese Project: Hyper-Kamiokande

\rightarrow J-PARC ν beam, water Cherenkov detector

 \rightarrow Fermilab ν beam, liquid-argon detector

Dirac of Majorana particle? \rightarrow neutrinoless double-beta decay ($0\nu\beta\beta$)

■ CP violation in the lepton sector?
→ accelerator & reactor neutrino beams

Absolute mass scale (& hierarchy) ? \rightarrow KATRIN (+ $0\nu\beta\beta$ + cosmology)

Dirac of Majorana particle? \rightarrow neutrinoless double-beta decay ($0\nu\beta\beta$)

■ CP violation in the lepton sector?
→ accelerator & reactor neutrino beams

Absolute mass scale (& hierarchy) ? \rightarrow KATRIN (+ $0\nu\beta\beta$ + cosmology)

Additional sterile neutrinos?
 Non-standard model interactions?
 → small deviations in experiments

LSND/MiniBooNE Anomaly

All That Technology...

WLCG Computing Model

CMS L1 Trigger Overview

<u>JINST 12 (2017) P01020</u>

Deep Neural Network Architecture

Instrumentation:

- Accelerators and detectors (→ Dobrzynski, Colaleo)
- Trigger & readout electronics

Computing:

- Offline data processing
- Data analysis (→ Prosper, UH)

- Particle physics: what is our universe made of on the fundamental level?
- Solid foundation of particle physics → well established standard model of particle physics
- Particle physics today: highly specialized sub-fields (e.g. high-p_T collider physics, flavor physics, neutrino physics)
- There's so much more ... enjoy the school