The Standard Model of Particles and Interactions I- Towards Gauge Theories

Elsayed Ibrahim Lashin Ain Shams University, Cairo Egypt Zewail City of Science and Technology, Giza Egypt 26-31 January 2019 7th ENHEP School on High Energy Physics Ain Shams University, Cairo, Egypt

Some textbooks

Introductory textbooks:

-Introduction to High Energy Physics, 4th edition, D. Perkins (Cambridge)

-Introduction to Elementary particles, 2nd edition, D.Griffiths (Wiley)

Introduction to Quantum Field Theory:

-A Modern Introduction to Quantum Field Theory, Michele Maggiore (Oxford series)

-An Introduction to Quantum Field Theory, Peskin and Schroder (Addison Wesley)

-Quantum Field Theory, F. Mandl and G. Shaw, (Jhon Wiley & Sons)

Symmetries

I- Continuous global space-time (Poincaré) symmetries all particles have (m, s) -> energy, momentum, angular momentum conserved

II- Global (continuous) internal symmetries

III- Local or gauge internal symmetries $SU(3)_c \times SU(2)_L \times U(1)_Y$ IV- Discrete symmetries -> CPT

- -> B, L conserved (accidental symmetries)
- -> color, electric charge conserved

Why Quantum Field Theory (QFT)

$\left(i\hbar\frac{\partial}{\partial t} + \frac{\hbar^2}{2m}\Delta - V\right)\Phi = 0$	Schrodinger equation	$E = \frac{p}{2m} + V$ $E \to i\hbar \frac{\partial}{\partial t} p \to -i\hbar \frac{\partial}{\partial x}$
$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \Delta + \frac{m^2c^2}{\hbar^2}\right)\Phi = 0$	Klein Gordon equation	
$\left(i\gamma^{\mu}\partial_{\mu}-\frac{mc}{\hbar}\right)\Psi=0$	Dirac equation	

Wave equations, relativistic or not, cannot account for processes in which the number and type of particles change.

We need to change viewpoint, from wave equation where one quantizes a single particle in an external classical potential to QFT where one identifies the particles with the modes of a field and quantize the field itself (second quantization).

-2

$$\begin{array}{l} \text{Classical Field Theory}\\ \text{classical mechanics } \\ \text{lagrangian formalism} \end{array} \ \ a system is described by \ \ S = \int dt \mathcal{L}(q,\dot{q}) \\ \text{position momentum}\\ \text{determines classical}\\ \text{trajectory:} \end{array} \ \ \delta S = 0 \dashrightarrow \text{Euler-Lagrange equations} \ \ \frac{\partial \mathcal{L}}{\partial q_i} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = 0\\ \text{conjugate momenta} \ \ p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \quad \text{hamiltonian} \quad H(p,q) = \sum_i p_i \dot{q}_i - \mathcal{L}\\ \text{extend lagrangian formalism}\\ \text{to dynamics of fields} \quad S = \int d^4 x \mathcal{L}(\varphi, \partial_\mu \varphi) \quad \partial_\mu = \frac{\partial}{\partial x^\mu} \\ \delta S = 0 \quad \dashrightarrow \quad \frac{\partial \mathcal{L}}{\partial \varphi_i} - \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi_i)} = 0 \quad \partial_0 = \frac{\partial}{\partial x^0} = \frac{\partial}{\partial t} \\ \text{conjugate momenta} \ \Pi_i = \frac{\partial \mathcal{L}}{\partial (\partial_0 \varphi_i)} \quad \text{hamiltonian} \quad H(x) = \sum_i \Pi_i(x) \partial_0 \varphi_i(x) - \mathcal{L} \\ \text{s} \end{array}$$

Classical Field theory and Noether theorem

Invariance of action under continuous global transformation --->

There is a conserved current/charge

$$\partial_{\mu}j^{\mu} = 0 \qquad Q = \int d^3x j^0(x,t)$$

example of transformation:

$$\varphi \rightarrow \varphi e^{i\alpha}$$
 (*)

if small increment $\,\alpha \ll 1 \;\; \varphi \to \varphi + i \alpha \varphi \,$ $\delta \varphi = i \alpha \varphi \,$

$$\begin{array}{l} \text{invariance of } \mathcal{L} \text{ under (*): } \delta \mathcal{L} = 0 = \frac{\partial \mathcal{L}}{\partial \varphi} \ \delta \varphi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta (\partial_{\mu} \varphi) \\ \text{Euler-Lagrange equations: } \frac{\partial \mathcal{L}}{\partial \varphi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} = 0 \\ j^{\mu}_{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta \varphi \end{array}$$

Scalar Field theory

Lorentz invariant action of a complex scalar field

$$S = \int d^4x (\partial_\mu \varphi^* \partial^\mu \varphi - m^2 \varphi^* \varphi)$$

Euler-Lagrange equation leads to Klein-Gordon equation

$$(\Box + m^2)\varphi = 0$$

with solution a superposition of plane waves:

$$\varphi(x) = \int \frac{d^3p}{(2\pi^3)\sqrt{2E_p}} (a_p e^{-ipx} + b_p^* e^{ipx})$$

$$\varphi(x) \to e^{i\theta} \varphi(x)$$

existence of a global U(1) symmetry of the action

From first to second quantization

Basic Principle of Quantum Mechanics:

To quantize a classical system with coordinates g'and momenta p', we promote qⁱ and pⁱ to operators and we impose $[q^i, p^j] = \delta^{ij}$

same principle can be applied to scalar field theory where g'(t) are replaced by $\varphi(t,x)$ and p'(t) are replaced by $\Pi(t,x)$

 φ and \prod are promoted to operators and we impose $[\varphi(t,x), \Pi(t,y)] = i\delta^3(x-y)$

Expand the complex field in plane waves:

$$\varphi(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} (a_p e^{-ipx} + b_{\rm p}^{\dagger} e^{ipx})$$

where a_p and b_p^{\dagger} are promoted to operators $[a_p, a_q^{\dagger}] = (2\pi^3)\delta^{(3)}(p-q) = [b_p, b_q^{\dagger}]$

scalar field theory is a collection of harmonic oscillators

a generic state is obtained by acting on the vacuum with the creation operators

destruction operator $\left(a_p|0>=0\right)$ defines the vacuum state |0>

 $|p_1\dots p_n \rangle \equiv a_{p_1}^{\dagger}\dots a_{p_n}^{\dagger}|0 \rangle$

Scalar field quantization continued

$$\mathcal{H}=\Pi\partial_0arphi-\mathcal{L}$$
 ,

$$\mathbf{H} = \int \frac{d^3p}{(2\pi)^3} \frac{E_p}{2} (a_p^{\dagger} a_p + b_p^{\dagger} b_p)$$

the quanta of a complex scalar field are given by two different particle species with same mass created by a⁺ and b⁺ respectively

The Klein Gordon action has a conserved U(1) charge due to invariance $\varphi(x) \to e^{i\theta}\varphi(x)$

$$Q_{U(1)} = \int d^3x j^0 = \int \frac{d^3p}{(2\pi)^3} (a_p^{\dagger} a_p \bigcirc b_p^{\dagger} b_p)$$
2 different kinds of quanta: each particle has
its antiparticle which has the same mass but
opposite U(1) charge

Field quantization provides a proper interpretation of "E<O solutions"

$$\varphi(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} (a_p e^{-ipx} + b_{\rm p}^{\dagger} e^{ipx})$$

coefficient of the positive energy solution e^{-ip×} becomes after quantization the destruction operator of a particle while the coefficient of the e^{ip×} becomes the creation operator of its antiparticle

a⁺_p|0> and b⁺_p|0> represent particles with opposite charges

Summary of procedure for building QFT

◆ Kinetic term of actions are derived from requirement of Poincaré invariance

Promote field & its conjugate to operators and impose (anti) commutation relation

Expanding field in plane waves, coefficients a_p, a⁺_p become operators

The space of states describes multiparticle states

a_p destroys a particle with momentum p while a_p creates it

e.g $|p_1 \ldots p_n > \equiv a_{p_1}^\dagger \ldots a_{p_n}^\dagger |0>$

crucial aspect of QFT: transition amplitudes between different states describe processes in which the number and type of particles changes

Gauge transformation and the Dirac action $\Psi \rightarrow \bar{e}^{iq\theta} \Psi$ U(1) transformation Consider the transformation

it is a symmetry of the free Dirac action ${\cal L}= ar{\Psi}(i\gamma^\mu\partial_\mu-m)\Psi$ if $_{ heta}$ is constant

no longer a symmetry if $\ heta= heta(x)$ no longer a symmetry if $\theta = \theta(x)$ However, the following action is invariant under $\Psi \to \bar{e}^{iq\theta}\Psi = A_{\mu} \to A_{\mu} + \partial_{\mu}\theta$

$$\mathcal{L} = \bar{\Psi}(i\gamma^{\mu}D_{\mu} - m)\Psi$$

where

$$D_{\mu}\Psi = (\partial_{\mu} + iqA_{\mu})\Psi$$

 $\dot{\mu} = \sqrt{1} (a_{\mu} \mu) T (a_{\mu} \mu)$

covariant derivative

We have gauged a global U(1) symmetry, promoting it to a local symmetry

The result is a gauge theory and A_{μ} is the gauge field

conserved current:

conserved charge:

$$\mathcal{J}^{\prime} = \Psi \gamma^{\prime} \Psi$$
$$Q = \int d^3 x \bar{\Psi} \gamma^0 \Psi = \int d^3 x \Psi^{\dagger} \Psi \quad \rightarrow \text{ electric charge}$$

12

Electrodynamics of a spinor field

 $\mathcal{L}=ar{\Psi}(i\gamma^{\mu}D_{\mu}-m)\Psi$ where

$$D_{\mu}\Psi = (\partial_{\mu} + iqA_{\mu})\Psi$$

$$\mathcal{L} = \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} - m)\Psi - qA_{\mu}\bar{\Psi}\gamma^{\mu}\Psi$$

Coupling of the gauge field A_{μ} to the current $j^{\mu}=\bar{\Psi}\gamma^{\mu}\Psi$

Gauge Symmetry predicts dynamics

- 1. The photon is massless
- 2. The minimal coupling
- 3. There is no self coupling for photon
- 4. Conservation of charge

Yang-Mills fields

These transformations are elements of U(1) group

$$\Psi \rightarrow e^{-iq\theta} \Psi$$

In the electroweak theory , more complicated transformations, belonging to the SU(2) group are involved

$$\Psi \to \exp(-ig \ \tau . \lambda) \Psi$$

where $\tau = (\tau_1, \tau_2, \tau_3)$ are three 2*2 matrices

Generalization to SU(N)

N²-1 generators (N×N matrices)

$$\begin{split} \Psi(x) &\to U(x)\Psi(x)\\ U(x) &= \bar{e}^{ig\theta^a(x)T^a}\\ A_\mu(x) &\to UA_\mu U^\dagger + \frac{i}{g}(\partial_\mu U)U^\dagger \end{split}$$

Gauge theories: Electromagnetism (EM) & Yang-Mills

$$\begin{array}{c} \mathsf{EM} \ \mathsf{U}(1) \qquad \phi \to e^{-i\alpha} \phi \qquad \text{but} \qquad \partial_{\mu} \phi \to e^{i\alpha} \left(\partial_{\mu} \phi\right) - i \left(\partial_{\mu} \alpha\right) \phi \ e^{-i\alpha} \\ z \text{ or if local transformations} \end{array}$$

$$\begin{array}{c} \mathsf{EM} \ \mathsf{field} \ \mathsf{and} \ \mathsf{covariant} \ \mathsf{derivative} \qquad \partial_{\mu} \phi + ieA_{\mu} \phi \to e^{i\alpha} \left(\partial_{\mu} \phi + ieA_{\mu} \phi\right) \\ \text{if} \quad A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha \\ \mathsf{ifferent points of the space-time} \qquad \qquad \mathsf{F}_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \end{array}$$

$$\begin{array}{c} \mathsf{Vang-Mills: non-abelian transformations} \qquad \phi \to U \phi \\ \partial_{\mu} \phi + igA_{\mu} \phi \to U \left(\partial_{\mu} \phi + igA_{\mu} \phi\right) \qquad \text{if} \qquad A_{\mu} \to UA_{\mu} U^{-1} - \frac{i}{g} U \partial_{\mu} U^{-1} \\ \mathsf{F}_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + ig[A_{\mu}, A_{\nu}] \\ \mathsf{vand-delian int.} \qquad \qquad \mathsf{if} \qquad A_{\mu} \to UA_{\mu} U^{-1} - \frac{i}{g} U \partial_{\mu} U^{-1} \\ \mathsf{ifferent points} \mathcal{I}_{\mu} = \mathcal{I}_{\mu} \mathcal{I}$$

Interactions between particles

Elementary particles interact with each other by exchanging gauge bosons The beauty of the SM comes from the the identification of a unique dynamical principle describing interactions that seem so different from each others

gauge theory = spin-1 The Lagrangian of the world

What about baryon and lepton numbers? -> accidental symmetries!