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Some textbooks

Introductory textbooks:

-Introduction to High Energy Physics, 4th edition, D. Perkins (Cambridge)
-Introduction to Elementary particles, 2nd edition, D.Griffiths (Wiley)

Introduction to Quantum Field Theory:

-A Modern Introduction to Quantum Field Theory, Michele Maggiore (Oxford series)

-An Introduction to Quantum Field Theory, Peskin and Schroder (Addison Wesley)

-Quantum Field Theory, F. Mandl and 6. Shaw, (Jhon Wiley & Sons)



Symmeftries

I- Continuous global space-time (Poincaré) symmetries all particles have (m, s)
-> energy, momentum, angular momentum conserved

II- Global (continuous) internal symmetries -> B, L conserved
(accidental symmetries)
ITI- Local or gauge internal symmetries - color, electric charge conserved

SU(3)C X SU(Q)L X U(l)y

IV- Discrete symmetries ->CPT



Why Quantum Field Theory (QFT)
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Wave equations, relativistic or not, cannot account for
processes in which the number and type of particles change.

We need to change viewpoint, from wave equation where one quantizes a single
particle in an external classical potential to QFT where one identifies the particles
with the modes of a field and quantize the field itself (second quantization).



Classical Field Theory
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Classical Field theory and Noether theorem
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Scalar Field theory

Lorentz invariant 4 " 2 %
action of a complex S = d 33(8”90 3“(,0 —m @ (p)

scalar field
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equation leads to
Klein-Gordon equation

with solution a d3 P > . i
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From first to second quantization

B::jaz:::t:ﬂg To quantize a classical system with coordinates q'and momen’ra.p",
P i, we promote q'and p' to operators and we impose [q', p']1=6"
same principle can where q' (1) are replaced by 99(?5, :I?)
be applied to

scalar field theory and p' (1) are replaced by II(%, )

Pand T1 are promoted to operators and we impose [p(t, 2), TI(t, y)] = i8% (2 — y)
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Expand the complex Y = / d’p a.e—P% 4 pteipe
field in plane waves: PAR) (27m)3, /QEP( X P )

where a, and b, are promoted to operators

scalar field theory is ap, a;] = (2’”3)5(3) (p—q) = [bpﬁ b;ﬂ
a collection of

- ines th
harmonic oscillators ~ destruction operator (ﬂrp|0 = fD miﬁ.&"gfm:m}
a generic state is obtained by acting on e Syl e
the vacuum with the creation operators |P1 Pn >= Gp,-.-0p, 0> "



Scalar field quantization continued

d3 E
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the q uunfn uf a complex scalar field are given
by 1wo different particle species with same
mass created by a* and b* respectively

The Klein Gordon action has d3p
a conserved U(1) charge due Qua) = / d’zj’ = / @) (a;’,ap@;ﬂbp)
to invariance () — e (z) »

2 different kinds of quanta: each particle has
its antiparticle which has the same mass but
opposite U(1) charge

Field quantization provides a proper interpretation of "E<O solutions”

d3p . .
z) = aye 'PT 4 ble'P”
{10( ) f (2?’()3 \/E( P p )

coefficient of the positive energy solution e'P* becomes after

quantization the destruction operator of a particle while the coefficient
of the e'®™ becomes the creation operator of its antiparticle

ay|0> and b,|0> represent particles with opposite charges 9



Similarly, we are led to quantize:

\ Spinor fields lII]

T———— e—
Lorentz invariant lagrangian [, p— @(?a —_ m)lIf @ = 7“‘8“
Dirac equation (?,a oy m)\IJ =0

anticommutation

fermions:— ™" relations {W,(z,1), lpi(y, t)} = 5 (z — Yy)dab
\The electromagnetic field A ,,.]
TS —
1
Lorentz inv. lagrangian [, — — EFH*‘-’FHU where F:u,, = 3.,“4” — ayA“_
Maxwell eq. 8HF KY _— 0
Maxwell lagrangian inv. under /—1'u —n A.u- T 3“9 Gauge transformation

The quantization of electromagnetic field is more subtle
due to gauge invariance 10



Summary of procedure for building QFT

@ Kinetic term of actions are derived from requirement of Poincaré invariance

@ Promote field & its conjugate to operators and impose (anti) commutation relation
@ Expanding field in plane waves, coefficients a, a; become operators

& The space of states describes muitiparticie states

+
a, destroys a particle with momentum p while a, creates it

0>
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crucial aspect of QFT: transition amplitudes between
different states describe processes in which the number
and type of particles changes



Gauge transformation and the Dirac action

Consider the transformation lIJ — é?'qg lI] U(1) transformation

it is a symmetry of the free Dirac action ﬁ — {I} (Z,-Y:U* 8# o m) qj

if @ isconstant
no longer a symmetry if 9 — 9(;]3) |
However, the following action is invariant under v — étqg v
A, = A, + 0,0
L=Y(v"D,, —m)T

-----------------------------------------

where :D 1 \Ij — (6;;) —|— ZQA 1 ) \IJ: covariant derivative

------------------------------------------

We have gauged a global U(1) symmetry, The result is a gauge theory and
promoting it to a local symmetry A# is the gauge field

conserved current: j B — \IJ’)’ H II’

conserved charge: Q= / zUy'0 = f Pzl ~ electric charge
12



Electrodynamics of a spinor field

------------------------------------------

------------------------------------------

L=V(iy'd, —m)¥ — qA,¥y"T

Coupling of the gauge field
i to the current j“ = lI!f}/”\I!

>
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Hown =

Gauge Symmetry predicts dynamics

The photon is massless

The minimal coupling

There is no self coupling for photon
Conservation of charge

Conserved
guantity
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Yang-Mills fields

These transformations are 11; - e'iq 0 \I;
elements of U(1) group

In the electroweak theory , more \j — exp( i gT. }\) U

complicated transformations, belonging

to the SU(2) group are involved
where 7 = (71,72, 73) are three 2*2 matrices

Generalization to SU(N) II’(I?) — U(Q’J)II’(L?})
U(:E) _ éigﬂ"‘ ()T

Au(z) = UALUT + é(aﬁU)U’f

N?-1 generators
(NxN matrices)
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Gauge theories: Electromagnetism (EM) & Yang-Mills

EMU(L) @ =€) but 9.9 =& (9u0) ~i(9u) 6 &0

20 if local transformations
EM field and covariant derivative 0,0+ ieA, b — ' *(0,¢ + ieA, d)

if A, > A, + éﬂﬂa
the EM field keep track of the phase in '

different points of the space-time Foy = 0,A, —8,A,

Yang-Mills : non-abelian transformations ¢ — U

O0u® +igA,d — U(0,0 +igA.d) if Ay = UAU — gUﬂpU'l

-F_u,v — a,u A, — ar.-'fl,u < 5 f‘ﬂ[A,u- Au}
\'—-\("-J

non-abelian int.

---------------------




The Standard Model: matter

the elementary blocks:

LEPTONS

: _ each of the 6
muon . quarks
o i : | : ; exists in three
“electron - 0 colors
S !
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,::> composite states (white objects

proton P = (u,u,d)

O baryons

neufron n = (u.d.d)

. + antipartic[éﬁ_'_} 0 mesons




The Standard Model : interactions

0U(1l)y Mmmmmummm

Pho‘]ron "f molecules

0 SI/(2); - uealntonnerioms - Sl -4l decay

W=

R p+e _+

atomic nuclei

(X decay
23877 _, Wiy L dhe

strength




Elementary particles interact with each other by
exchanging gauge bosons



The beauty of the SM comes from the the identification of a unique
dynamical principle describing interactions that seem so different
from each others

-----------------------------
-
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The Lagrangian of the world
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What about baryon and lepton numbers? -> accidental symmetries!



