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INTRODUCTION



What is Machine Learning?

The use of computer-based algorithms for constructing useful 

models of data.

Machine learning algorithms fall into five broad categories:

1. Supervised Learning

2. Semi-supervised Learning

3. Unsupervised Learning

4. Reinforcement Learning

5. Generative Learning
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Machine Learning

Method

Choose f (x, w*) from F by minimizing the 
average loss (or empirical risk)

𝑅 𝒘 =
1

𝑁
σ𝑖=1
𝑁 𝑳 𝒚𝒊, 𝒇𝒊 + 𝐶(𝒘),

where

T = {(yi , xi)} are training data, 

𝑓𝑖 𝑓 𝑥,𝒘 evaluated at 𝑥𝑖, and

𝑳 𝒚𝒊, 𝒇𝒊 , the loss function, is a measure of the 
quality of the choice of function.

C(w) is a constraint that guides the choice of f (x, w).

F = Function class
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The average loss function defines a “landscape” in the space 
of functions, or, equivalently, the space of parameters.

The goal is to find the lowest point in that landscape, by 
moving in the direction of the negative gradient:

𝑤𝑖 ← 𝑤𝑖 − 𝜌
𝜕𝑅(𝑤)

𝜕𝑤𝑖

Most minimization algorithms are variations on this theme. 

Stochastic Gradient Descent (SGD) uses 

random subsets (batches) of the training 

data to provide noisy estimates of 

the gradient.

Minimizing the Average Loss

6



Minimizing the Average Loss

Consider 𝑅 𝑤 in the limit 𝑁 → ∞

𝑅 𝑤 =
1

𝑁
෍

𝑖=1

𝑁

𝑳 𝒚𝒊, 𝒇𝒊 + 𝐶(𝑤)

→ 𝑑𝑥׬ 𝑑𝑦׬ 𝑳 𝒚, 𝒇 𝑝(𝑦, 𝑥)

Since 𝑝 𝑦|𝑥 = 𝑝(𝑦, 𝑥)/𝑝(𝑥) we can write

= 𝑑𝑥׬ 𝑝 𝑥 𝑑𝑦׬ 𝑳 𝒚, 𝒇 𝑝(𝑦|𝑥)

We have assumed the influence of the constraint to be 

negligible in this limit.
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Minimizing the Average Loss

Now, consider the quadratic loss 𝑳 𝒚, 𝒇 = 𝒚 − 𝒇 𝟐

𝑅 𝑤 = න𝑑𝑥 𝑝 𝑥 න𝑑𝑦 𝑳 𝒚, 𝒇 𝑝(𝑦|𝑥)

= න𝑑𝑥 𝑝(𝑥) න𝑑𝑦 𝒚 − 𝒇 𝟐 𝑝(𝑦|𝑥)

and its minimization with respect to the choice of function f.
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Minimizing the Average Loss

If we change the function f by a small arbitrary function 𝜹𝒇
a small change

𝜹𝑹 = 𝑑𝑥׬2 𝑝(𝑥)𝜹𝒇 𝑑𝑦(𝑦׬ − 𝑓)𝑝(𝑦|𝑥)

will be induced in R. In general, 𝜹𝑹 ≠ 0. 

However, if the function f is flexible enough then we shall be 

able to reach the minimum of R, where 𝜹𝑹 = 0. 

But, in order to guarantee that 𝜹𝑹 = 0 for all 𝜹𝒇 and for all x

the quantity in brackets must be zero. This implies:

𝑓(𝑥, 𝑤∗) = න𝑦 𝑝 𝑦 𝑥) 𝑑𝑦
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Classification

According to Bayes’ theorem

𝑝 𝑦 𝑥 =
𝑝 𝑥 𝑦 𝑝(𝑦)

𝑝׬ 𝑥 𝑦 𝑝 𝑦 𝑑𝑦

Let’s assign the target value y = 1 to objects of class S and 

the target value y = 0 to objects of class B.

Then

That is, the function 𝑓 𝑥,𝑤∗ equals the class probability.

𝑓 𝑥,𝑤∗ = න𝑦 𝑝 𝑦 𝑥) 𝑑𝑥 = 𝑝 1 𝑥

≡ 𝑝(𝑺|𝑥)
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Classification

1. In summary, the result

𝑓 𝑥,𝑤∗ = 𝑝 𝑆 𝑥 =
𝑝 𝑥 𝑆 𝑝 𝑆

𝑝 𝑥 𝑆 𝑝 𝑆 + 𝑝 𝑥 𝐵 𝑝(𝐵)

depends only on the form of the loss function provided that:

1. the training data are sufficiently numerous,

2. the function f (x, w) is sufficiently flexible, and

3. the minimum of the average loss, R, can be found.

2. Note, if 𝑝 𝑆 = 𝑝(𝐵),  we arrive at the discriminant

𝐷 𝑥 =
𝑝 𝑥 𝑆

𝑝 𝑥 𝑆 + 𝑝 𝑥 𝐵
≡

𝑠 𝑥

𝑠 𝑥 + 𝑏 𝑥
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DECISION TREES

𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍



y

x

z
𝑝𝑇 , 𝜂, 𝜑 𝜂 = − ln tan

𝜃

2

𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍



Higgs Boson Production

Process 𝝈 × 𝑩𝑹 (𝐟𝐛)

(a) Gluon gluon fusion (ggF) 12.18

(b) Vector boson fusion (VBF) 1.044

(c) Associated production (VH) 1.047

(d) Top anti-top fusion (ttH) 0.393

Before event selection, background ~ 1700 times larger!

14http://www.scholarpedia.org/article/The_Higgs_Boson_discovery



The Higgs boson mass is an excellent discriminant between 

Higgs boson events and

other Standard Model

events. But, clearly it

is not for separating

VBF events from 

ggF events. For that

we  need other 

observables.

VBF vs. ggF Higgs Boson Production
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We shall use decision

trees with the 

variables

∆𝜂 𝑗𝑗, 𝑚𝑗𝑗

to try to 

separate

𝑉𝑉 → 𝐻 (VBF) 

from

𝑔𝑔 → 𝐻 (ggF).



Decision Trees

A decision tree (DT) is a set of if then else statements that 

form a tree-like structure.

Algorithm: recursively partition the space into regions of 

diminishing impurity.

A common impurity measure is the Gini Index: 

p (1 – p), where p is the purity

p = S / (S + B)

p = 0 or 1: maximum purity

p = 0.5:     maximum impurity

17

(Corrado Gini, 1884-1965) 



1. For each variable,  

find the partition 

(“cut”) that gives 

the greatest decrease in 

impurity.

2. Choose the best partition 
among all partitions
and split the data 
along that
partition into two
subsets.

3. Repeat 1. and 2. for each 
subset of data.

18

Decision Trees
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Geometrically, a 

decision tree is just a

d-dimensional 

histogram in which the

bins are created 

recursively.
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Decision Trees
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Decision Trees

Unfortunately, decision trees are unstable!
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BOOSTED DECISION TREES



Boosted Decision Trees: AdaBoost

In 1997, AT&T researchers Freund and Schapire [Journal of 

Computer and  Sys. Sci. 55 (1), 119 (1997)] published an 

algorithm that produced highly effective classifiers by 

combining many mediocre ones! 

Their algorithm, called AdaBoost, was the first successful 

method to boost (i.e., enhance) the performance of poorly 

performing classifiers by averaging their outputs: 

𝑓 𝑥,𝑤 = ෍

𝑛 =1

𝑁

𝑎𝑛 𝑇(𝑥,𝑤𝑛)

T = tree
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The most popular methods (used mostly with decision trees) are:

Bagging: each tree is trained on a bootstrap* 

sample drawn from the training set

Random Forest: bagging with randomized trees

Boosting: each tree trained on a different 

reweighting of the training set

*A bootstrap sample is a sample of size N drawn, with replacement, from 

another of  the same size. Duplicates can occur and are allowed.

Averaging Methods



EXAMPLE: 𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍



VBF vs. ggF: First 6 Decision Trees
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VBF vs. ggF: <Decision Trees>
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VBF vs. ggF: Results

Fraction of ggF events rejected

for a given fraction of VBF

events accepted.

𝐵𝐷𝑇 𝑥, 𝑦 = ෍

𝑘=1

𝟖𝟎𝟎

𝛼𝑘𝑓(𝑥, 𝑦, 𝑤𝑘)

x = ∆𝜂 𝑗𝑗

y = 𝑚𝑗𝑗
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DEEP NEURAL NETWORKS



Deep Neural Networks

A (3, 5, 4, 2)-DNN
𝑜 = 𝑔(𝒃𝟐 +𝒘𝟐ℎ(𝒃𝟏 +𝒘𝟏ℎ(𝒃0 +𝒘𝟎𝑥)))

h(z) = ReLU(z) [= max(0, z)], tanh(z)

g(z) = Identity(z), logistic(z) = 1/[1 + exp(-z)]

input layer layer 0              layer 1               layer 2



 In 2006, Hinton, Osindero, and Teh1 (U. of Toronto ) 

succeeded in training a deep neural network for the first time 

using a very clever training algorithm.

But, in 2010, Cirȩsan et al.2 showed that cleverness was not 

needed! Just a lot of computing power! 

The authors succeeded in training a DNN with architecture 

(784, 2500, 2000, 1500, 1000, 500, 10) to classify the hand-

written digits in the MNIST database.

Deep Neural Networks

1 Hinton, G. E., Osindero, S. and Teh, Y. (HOT), A fast learning algorithm 

for deep belief nets, Neural Computation 18, 1527-1554. 

2 Cirȩsan DC, Meier U, Gambardella LM, Schmidhuber J. , Deep, big, 

simple neural nets for handwritten digit recognition. Neural Comput. 2010 Dec;

22 (12): 3207-20. http://yann.lecun.com/exdb/mnist/
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The database comprises 60,000 28×28 = 784 pixel images 

for training and validation, and 10,000 for testing.

The error rate of their (784, 2500, 2000, 1500, 1000, 500, 10) 

DNN was 35 images out of 10,000. 

The misclassified images are shown on the next slide.

Deep Neural Networks

2 Cirȩsan DC, Meier U, Gambardella LM, Schmidhuber J. , Deep, big, 

simple neural nets for handwritten digit recognition. Neural Comput. 2010 Dec;

22 (12): 3207-20. http://yann.lecun.com/exdb/mnist/
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(784, 2500, 2000, 1500, 1000, 500, 10)

32

Upper right: correct answer; lower left answer of highest DNN output; 

lower right answer of next highest DNN output.



Convolutional Neural Networks

Many of the remarkable breakthroughs in tasks such as face 

recognition use a type of DNN called a convolutional neural 

network (CNN). 

CNNs are functions that compress data and classify objects 

using their compressed representations using a fully 

connected NN. The compression dramatically reduces the 

dimensionality of the space to be searched.

Source: https://www.clarifai.com/technology
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THE FUTURE OF MACHINE 

LEARNING



The Future of Machine Learning

 In Particle Physics

The standard approach to classification and regression 

problems is to use physical insight to arrive at suitable 

variables and functions.

However, in recent work, machine learning has 

matched or outperformed the work of expert physicists.

 In Society

The most far-reaching application of machine learning 

is artificial intelligence (AI), a technological 

development that could transform our societies more 

profoundly than did the Industrial Revolution. 



Example: Pileup Mitigation

36

Pileup: additional interactions per bunch crossing 

Only one interaction is of interest!



Pileup Mitigation Example: PUMML
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* Pileup Mitigation with Machine Learning (PUMML)

Metodiev, Komiske, Nachman, Schwarz, JHEP 12 (2017) 051, arXiv:1707.08600



Pileup Mitigation Example: PUMML
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* Pileup Mitigation with Machine Learning (PUMML)

Metodiev, Komiske, Nachman, Schwarz, JHEP 12 (2017) 051, arXiv:1707.08600



AlphaGo 4, Homo sapiens 1

2016 – Google’s AlphaGo program beats Go champion Lee 

Sodol.

Photograph: Yonhap/Reuters 39



356 | NATURE | VOL 550 | 19 OCTOBER 2017 
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https://deepmind.com/blog/alphago-zero-learning-scratch/
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AlphaZero

43

arXiv:1712.01815v1

“Starting from random play, and given no domain knowledge 

except the game rules, AlphaZero achieved within 24 hours a 

superhuman level of play in the games of chess and shogi (Japanese 

chess) as well as Go, and convincingly defeated a world-champion 

program in each case.” 
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“Almost half the activities people are paid almost $16 trillion 

in wages to do in the global economy have the potential to be 

automated by adapting currently demonstrated technology, 

according to our analysis of more than 2,000 work activities 

across 800 occupations.”

McKinsey & Company, 
A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND 

PRODUCTIVITY

Executive Summary January 2017
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The Future of Machine Learning

By 2050, the following AI systems might be in routine use:

1. personal predictive medical systems

2. personal tutors

3. autonomous house servants

4. autonomous vehicles that can drive safely in Cairo!

The potential of machine learning and AI is vast and exciting.

But, some have argued (e.g, Henry Kissinger, Bill Gates, 

Elon Musk, the late Stephen Hawking) that the dangers are 

also vast: autonomous drone soldiers, AI computer viruses… 

Your lives may well come to depend on AI systems…
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THANK YOU!

“Doubt is not a pleasant condition, but certainty

is an absurd one”

Voltaire



Tutorials

Dependencies

python 2.7.x, x > 9

numpy array manipulation

pandas DataFrame manipulation

matplotlib plotting

scikit-learn simple machine learning toolkit

Also useful:

scipy mathematical stuff for scientists

sympy amazing symbolic algebra package

Installation

git clone https://github.com/hbprosper/ENHEP



Tutorials

1. Use a BDT to separate VBF produced Higgs boson events 

from events produced via ggF. If F(x) is the output of a 

BDT trained using the AdaBoost algorithm then 

𝐷 𝑥 =
1

1 + exp [−2𝐹 𝑥 ]

where 

𝐷 𝑥 =
vbf(𝑥)

vbf(𝑥) + ggf(𝑥)

2. Repeat, but using a DNN. Note: a DNN approximates 

𝐷 𝑥 directly. 



BACKUP
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Ensemble Methods

Suppose you have an ensemble of classifiers f (x, wk), which, 

individually, perform only marginally better than random 

guessing. Such classifiers are called weak learners.

It is possible to build highly effective classifiers by averaging

their outputs: 

Jerome Friedman & Bogdan Popescu (2008)

𝑓 𝑥 = 𝑎0 + ෍

𝑛 =1

𝑁

𝑎𝑛 𝑓(𝑥𝑛, 𝑤𝑛)
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The AdaBoost algorithm of Freund and Schapire uses 

decision trees f (x, w) with weights w assigned to each 

object to be classified, and each assigned a target value of 

either y = +1, or –1, e.g., +1 for signal, –1 for background.

The value assigned to each leaf of f (x, w) is also ±1. 

Consequently, for object n, associated with values (yn, xn)

f (xn, w) yn > 0 for a correct classification

f (xn, w) yn < 0 for an incorrect classification

Y. Freund and R.E. Schapire. Journal of Computer and  Sys. Sci. 55 (1), 119 (1997)

Adaptive Boosting
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Initialize weights w in training set (e.g., setting each to 1/N)

for k = 1 to K:

1. Create a decision tree f (x, w) using the current weights.

2. Compute its error rate on the weighted training set.

3. Compute  = ln (1– ) /  and store as   k = 

4. Update each weight wn in the training set as follows: 

wn = wn exp[– k f (xn, w) yn] /A, where A is a 

normalization constant such that ∑wn = 1. Since  

f (xn, w) yn < 0 for an incorrect classification, the weight of 

misclassified objects is increased. 

At the end, compute the average f (x) = ∑  k f (x, wk)

Y. Freund and R.E. Schapire. Journal of Computer and  Sys. Sci. 55 (1), 119 (1997)

Adaptive Boosting



CMS Run 2 Simulated Dataset
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𝐿𝑖𝑛𝑡 = 150 fb−1

Jet1

pseudo-rapidity

distributions
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AdaBoost is a highly non-intuitive algorithm. However, soon 

after its invention, Friedman, Hastie and Tibshirani

showed that the algorithm is mathematically equivalent to 

minimizing the following average loss function

Minimizing this loss function yields

𝐷 𝑥 = logistic 2𝐹 = 1/(1 + exp(−2 𝐹(𝑥))

which can be interpreted as a probability, even though F

cannot!

J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a statistical 

view of boosting,” The Annals of Statistics, 28(2), 377-386, (2000)

Adaptive Boosting

𝑅 𝐹 = නexp(−𝑦 𝐹 𝑥 )𝒑 𝒙, 𝒚 𝑑𝑥 𝑑𝑦

where 𝐹 𝑥 = σ𝑛 =1
𝑁 𝑎𝑛 𝑓(𝑥𝑛, 𝑤𝑛),



Convolutional Neural Networks

A CNN comprises three types of processing layers: 1. 

convolution, 2. pooling, and 3. classification.

1. Convolution layers

The input layer is “convolved” with one or more matrices 

using element-wise products that

are then summed. In this example,

since the sliding matrix fits 9

times, we compress the input from

a 5 x 5 to a to a 3 x 3 matrix.
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2. Pooling Layers

After convolution, and a pixel by pixel non-linear map  

(using, e.g., the function y = max(0, x) = ReLU(x)), a 

coarse-graining of the layer is performed 

called max pooling in which the maximum 

values within a series of small windows

are selected and become the output of

a pooling layer.

Convolutional Neural Networks
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3. Classification Layers

After an alternating sequence of convolution and pooling 

layers, the outputs go to a standard neural network, either 

shallow or deep. The final outputs correspond to the 

different classes and like all flexible classifiers, a CNN 

approximates,

𝑝 𝐶𝑘 𝑥 = 𝑝 𝑥 𝐶𝑘 𝑝(𝐶𝑘)/ ෍

𝑚=1

𝑀

𝑝 𝑥 𝐶𝑚 𝑝(𝐶𝑚)

Convolutional Neural Networks
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CMS Run 2 Simulated Dataset
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𝐿𝑖𝑛𝑡 = 150 fb−1

Higgs boson

pseudo-rapidity

distributions.



CMS Run 2 Simulated Dataset

61

𝐿𝑖𝑛𝑡 = 150 fb−1

jet multiplicity

distributions



CMS Run 2 Simulated Dataset
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𝐿𝑖𝑛𝑡 = 150 fb−1

signal/bkg.

discriminant

distributions



CMS Run 2 Simulated Dataset
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𝐿𝑖𝑛𝑡 = 150 fb−1

4-lepton mass

distributions



Pileup Mitigation Example: PUMML

Basic idea*

Treat a jet as a 3-color image in the 𝜂, 𝜑 -plane, where each 

color corresponds to be different category of particle.

1. Red 𝑝𝑇 of all neutral particles

2. Green 𝑝𝑇 of charged particles from pileup (PU) 

3. Blue 𝑝𝑇 of charged particles from the primary 

interaction, i.e., leading vertex (LV)

Use machine learning to map the 3-color image to an image 

of the 𝑝𝑇 of neutral particles from the leading vertex. The jet 

is then formed from the charged and neutral particles from the 

leading vertex.
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* Pileup Mitigation with Machine Learning (PUMML)

Metodiev, Komiske, Nachman, Schwarz, JHEP 12 (2017) 051, arXiv:1707.08600



Classification

The result

𝑓 𝑥 = 𝑝 𝑆 𝑥 =
𝑝 𝑥 𝑆 𝑝 𝑆

𝑝 𝑥 𝑆 𝑝 𝑆 + 𝑝 𝑥 𝐵 𝑝(𝐵)

was derived in 1990* in the context of neural networks. 

But notice, our discussion so far made no mention of neural 

networks!

* Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990); Wan, IEEE Trans. 

Neural Networks 4, 303-305 (1990);

Richard and Lippmann, Neural Computation. 3, 461-483 (1991)
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