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INTRODUCTION



Introduction: Statistical Inference

The main goal of statistical inference is to use a sample, 

which is necessarily finite, to infer something about its 

associated population, which, by definition, is infinite.

Note:

The great thing about physics is that there is a single judge 

of its correctness (namely, Nature). The bad thing about 

statistics is that there too many judges!

Consequently, there is no such thing as “the right 

approach”; rather, there are different approaches, with 

different assumptions, and different opinions about them. 
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Everyone at least agrees that the key concept is probability. 

But, it is interpreted in at least two ways:

1. Degree of belief in, or assigned to, a proposition e.g.:

proposition: It will rain in Cairo tonight 

probability: 𝑝 = 5 × 10−2

2. Relative frequency of outcomes in an infinite

sequence of trials, e.g.:

trial: a proton-proton collision at the LHC

outcome: creation of a Higgs boson

probability: 𝑝 = 5 × 10−10

Introduction: Statistical Inference



FREQUENTIST ANALYSIS

AN EXAMPLE



Example: 𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍

Process 𝝈 × 𝑩𝑹 (𝐟𝐛)

(a) Gluon gluon fusion (ggF) 12.18

(b) Vector boson fusion (VBF) 1.044

(c) Associated production (VH) 1.047

(d) Top anti-top fusion (ttH) 0.393

Before event selection, the background ~ 1700 times larger!

7http://www.scholarpedia.org/article/The_Higgs_Boson_discovery



CMS (2018) 𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍
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The main backgrounds:

𝒁 → 𝟒𝒍

𝒁𝒁 → 𝟒𝒍
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Knowns and Unknowns: 𝐻 → 𝑍𝑍 → 4𝑙

In 2014, the CMS Collaboration published a summary of its 
work on 𝑝𝑝 → 𝐻 → 𝑍𝑍 → 4𝑙 (Phys. Rev. D89, 092007 (2014))

knowns:

N = 25 observed event count

𝐵 ± 𝛿𝐵 = 9.4 ± 0.5 background event count
𝑆 ± 𝛿𝑆 = 17.3 ± 1.3 predicted signal count

@ 𝑚𝐻 = 125 GeV

unknowns:

b mean background count

s mean signal count

d = s + b mean event count
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Probability Model: 𝐻 → 𝑍𝑍 → 4𝑙

Goals: 

1. Estimate (i.e., measure) the mean signal, s.

2. Quantify the accuracy of the estimate.

3. Quantify the significance of the signal.

In order to do the above, we need first to construct a 
probability model of the data generation mechanism.

Let’s start from scratch…



Bernoulli Trial (1): 𝐻 → 𝑍𝑍 → 4𝑙

A Bernoulli trial has two outcomes: 

S = success or F = failure. 

Example: Each collision between protons at the LHC is a 

Bernoulli trial in which either something interesting 

happens (S) or does not happen (F).

What is the probability of this sequence of events? 

Without assumptions, there is no answer!
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Bernoulli Trial (2) : 𝐻 → 𝑍𝑍 → 4𝑙

Assumption 1: Let p be the probability of a success. 

Assumption 2: Let p be the same for every collision (trial). 

Assumption 3: Let S and F be exhaustive and mutually 

exclusive. Therefore, the probability of a failure is 1 – p. 

Consequently, for a sequence Q of n trials, the probability 

P(k |Q, p, n) of exactly k successes and exactly n – k

failures is

𝑃 𝑘| 𝑄, 𝑝, 𝑛 = 𝑝𝑘(1 − 𝑝)𝑛−𝑘
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Binomial Distribution: 𝐻 → 𝑍𝑍 → 4𝑙

Note: the sequence Q of successes at the LHC is unknown!

According to the rules of probability theory, we can eliminate 

the unknown (discrete) parameter Q from the problem by 

summing over all sequences that are possible a priori: 

𝑃 𝑘|𝑝, 𝑛 =

𝑸

𝑃 𝑘|𝑺, 𝑝, 𝑛 =

𝑄

𝑝𝑘(1 − 𝑝)𝑛−𝑘

Each sequence has the same probability and there are 
𝑛
𝑘

of 

them in the sum. Therefore, 

𝑃 𝑘| 𝑝, 𝑛 =
𝑛
𝑘

𝑝𝑘(1 − 𝑝)𝑛−𝑘, 

which is the binomial distribution, Binomial 𝑘, 𝑛, 𝑝 .
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Poisson Distribution: 𝐻 → 𝑍𝑍 → 4𝑙

The mean number of successes a is 

𝒂 = 𝒑𝒏.

For the Higgs boson outcomes, 𝒑 ~ 𝟏𝟎−𝟏𝟎 and n >> 1012.

So, let’s consider p → 0 and n → ∞, with a constant,

Binomial(k, n, p) → Poisson(k, a) = 𝑎𝑘 exp −𝑎 /𝑘!
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Exercise 2: Show that Binomial(k, n, p) → Poisson(k, a)

Exercise 1: Show this



Probability Function:

The probability to observe a count n is, therefore,

𝑝 𝑛 𝑠, 𝑏 = Poisson 𝑛, 𝑠 + 𝑏 =
𝑠 + 𝑏 𝑛𝑒−(𝑠+𝑏)

𝑛!
Likelihood Function:

p(N |s,  b), N =25

The likelihood function is simply the probability function 

evaluated at the observed data. 

What about 𝐵 ± 𝛿𝐵 = 9.4 ± 0.5? 
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Example: 𝐻 → 𝑍𝑍 → 4𝑙



One way to proceed is to suppose that

𝐵 ± 𝛿𝐵 = 9.4 ± 0.5

is the result of scaling down a count M by some factor k

B = M / k, δB = √M / k,

and that the count M is sampled from a Poisson distribution

with variance ≈ 𝑀 (perhaps from a Monte Carlo simulation).

We can then solve for M and k to get M = 353.4, k = 37.6. 
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Example: 𝐻 → 𝑍𝑍 → 4𝑙



Therefore, the likelihood for the count M is

Poisson 𝑀, 𝑘𝑏 = 𝑘𝑏 𝑀𝑒−𝑘𝑏/ Γ(𝑀 + 1), 

where we have continued the function to non-integer M. 

The full likelihood for the data 𝐷 = (𝑁,𝑀, 𝑘) is, therefore,

𝑝 𝐷 𝑠, 𝑏 = Poisson 𝑁, 𝑠 + 𝑏 Poisson 𝑀, 𝑘𝑏

=
𝑠+𝑏 𝑁𝑒−(𝑠+𝑏)

𝑁!

(𝑘𝑏)𝑀𝑒−𝑘𝑏

Γ(𝑀+1)
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Example: 𝐻 → 𝑍𝑍 → 4𝑙
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Example: 𝐻 → 𝑍𝑍 → 4𝑙 Summary

Given 𝑝 𝐷 𝑠, 𝑏 , we can answer:

1. How does one estimate (measure) the mean signal, s?

2. How does one quantify the accuracy of the estimate?

3. How does one decide if a signal has been found? 

A common way to estimate a parameter is to choose the value 
that maximizes the likelihood.

Estimates obtained this way are called maximum likelihood 
estimates (MLE).



Nuisance Parameters are a Nuisance!

But, there is a problem! The likelihood

𝑝 𝐷 𝑠, 𝑏 = Poisson 𝑁, 𝑠 + 𝑏 Poisson 𝑀, 𝑘𝑏

contains two parameters s and b only one of which, s, is of 

interest to us, that is, only one is the parameter of interest. 

The parameter b is an example of a nuisance parameter.

If we wish to make inferences about the parameter of interest, 

we must rid our probability model of all nuisance 

parameters.
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Example: 𝐻 → 𝑍𝑍 → 4𝑙
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This means, we must transform the  2-parameter function

𝑠 + 𝑏 𝑁𝑒−(𝑠+𝑏)

𝑁!

(𝑘𝑏)𝑀𝑒−𝑘𝑏

Γ(𝑀 + 1)

into one involving s only.

Moreover, in principle, this should be done while respecting 

the foundational principle of frequentist statistics, namely, 

the frequentist principle.



The Frequentist Principle

The Frequentist Principle (FP) (Jerzy Neyman, 1937)

Given a probability p, statements should be constructed so that 

we can guarantee that a fraction f ≥  p of them are true over 

an ensemble of statements, even if we do not know which 

ones are true and which are false.

The fraction f is called the coverage probability (or coverage

for short) and p is called the confidence level (C.L.).

Statements that obey the frequentist principle are said to cover.
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The Frequentist Principle

Example

Consider an ensemble of statements, each associated with a 

pair of numbers, a mean count θ randomly sampled from 

uniform(0, 3) and a count N randomly sampled from a 

Poisson distribution with mean θ. 

In a simulation, both numbers are known. Therefore, we can 

compute the coverage probability f of statements of the 

form 𝑁 + 𝑁 > 𝜃.

22

Exercise 3: 

What is the coverage probability of these 

statements? Repeat using uniform(0, 3000).



Profile Likelihood: 𝐻 → 𝑍𝑍 → 4𝑙
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As noted, in order to make an inference about the parameter 

of interest, we must get rid of the nuisance parameters.

The common practice, is to replace the nuisance parameters in 

the likelihood function by their conditional MLEs, that is, 

their MLE for given values of the parameter (or 

parameters) of interest.

The resulting function is called the profile likelihood, 𝐿𝑝.



Profile Likelihood: 𝐻 → 𝑍𝑍 → 4𝑙
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In our example, this means replacing the unknown parameter 

b by its MLE
𝑏 = 𝑓(𝑠)

for a given value of 𝑠: 𝐿𝑝 𝑠 = 𝑝(𝐷|𝑠, 𝑓(𝑠)).

Replacing the true value of a parameter by an estimate of it is 

an approximation. 

Consequently, if we use the profile likelihood as if it were a 

likelihood then the frequentist principle is not guaranteed 

to be satisfied exactly. 

Nevertheless, profiling has a sound justification…



Wald Approximation: 𝐻 → 𝑍𝑍 → 4𝑙
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Consider the profile likelihood ratio

𝜆 𝑠 =
𝐿𝑝 𝑠

𝐿𝑝 ො𝒔

where ො𝒔 is the MLE of s. Taylor expand the quantity 

𝑡 𝑠 = −2 ln 𝜆 𝑠

about ො𝒔:

𝑡 ො𝒔 + 𝑠 − ො𝒔 = 𝑡 ො𝒔 + 𝑡′ ො𝒔 𝑠 − ො𝒔 +
𝑡′′ ො𝒔 𝑠 − ො𝒔 2

2
+⋯

≈ 𝑠 − ො𝒔 2/ 𝜎2 + O(1/ 𝑁)

where 𝜎2 ≈ 2/𝑡′′ ො𝒔 .

This approximation is called the Wald approximation (1943).



Wilks’ Theorem: 𝐻 → 𝑍𝑍 → 4𝑙
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If ො𝒔 does not occur on the boundary of the parameter space, 

and the data sample is large enough (typically, when the 

density of ො𝒔 is approximately Gaussian(ො𝒔, 𝐬, σ)), and s is 

the true value of the mean signal, then 

𝑡 𝑠 = −2 ln 𝜆 𝑠

has a χ2 density of one degree of freedom. 

This result is called Wilks’ Theorem (1938)*. 

Note, this theorem implies that the probability density of 𝒕 𝒔
is independent of all the parameters of the problem! 

(*Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells “Asymptotic formulae for 

likelihood-based tests of new physics.” Eur.Phys.J.C71: 1554, 2011)

Exercise 4: Verify this theorem through simulation 



MLE: 𝐻 → 𝑍𝑍 → 4𝑙

The MLE of b, given s, is

𝑏 = 𝑓 𝑠 =
𝑔+ 𝑔2+4 1+𝑘 𝑀𝑠

2(1+𝑘)

𝑔 = 𝑁 +𝑀 − 1 + 𝑘 𝑠

Note,

s = N – B = 15.6 events

b = B 

is the mode (location of the

peak) of the likelihood 

function.
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Exercise 5: Show this



Confidence Interval: 𝐻 → 𝑍𝑍 → 4𝑙

Since 𝑡 𝑠 ≈ 𝜒2, we can

compute an approximate

68% confidence interval 

by solving

𝑡 𝑠 = −2 ln 𝜆 𝑠 = 1

for s. The result is the statement 

𝑠 ∈ 10.9, 21

@ ~ 68% confidence level (CL).  

28

Exercise 6: Show this by solving 𝑡 𝑠 = 1 numerically



Confidence Interval: 𝐻 → 𝑍𝑍 → 4𝑙

But what exactly does the statement 

𝑠 ∈ 10.9, 21 @ 68% CL

mean? First note that this statement is either true or false.

While we do not know the truth value of this particular 

statement, we can assert that this statement is a member of 

an ensemble of statements for which it is guaranteed that 

(approximately) 68% are true.

If the frequentist principle were satisfied exactly, we could 

remove the word “approximately”.

29



Confidence Interval: 𝐻 → 𝑍𝑍 → 4𝑙
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The confidence interval algorithm just described approximates 

the method devised by Neyman (1937):

For every n solve,

s

u

l

n

𝑓 ≥ 𝑝
𝜶𝑳 = 𝑃(𝑥 ≤ 𝑛|𝒖)

𝜶𝑹 = 𝑃(𝑥 ≥ 𝑛|𝒍)

𝛼𝐿 + 𝑓 + 𝛼𝐿 = 1

𝑙(𝑛)

u(𝑛)

If 𝜶𝑳 = 𝜶𝑹 the resulting intervals are called central intervals.



But Is The Signal Real?

In the real world, we can never know for sure.

We can, however, make a probabilistic statement about 

whether the signal is real or the result of a fluctuation of 

the background.

In particle physics, the broad consensus is that we declare a 

signal real if the background-only hypothesis is extremely 

unlikely.

But, to be quantitative, we need a way to test hypotheses.
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HYPOTHESIS TESTS

AN EXAMPLE



Hypothesis Tests – 1

1. Decide which hypothesis is to be rejected and call it the 

null hypothesis, denoted by H0. At the LHC, this is 

usually the background-only hypothesis.

2. Construct a function of the data called a test statistic such 

that large values of it would cast doubt on the truth of the 

null hypothesis.

3. Choose a test statistic threshold above which we are 

inclined to reject the null. Do the experiment, compute the 

statistic, and reject the null if the threshold is exceeded.
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Hypothesis Tests – 2

There are two related variations on this general procedure:

1. Fisher: reject the null if the test statistic is large enough.

2. Neyman: compare the null to an alternative hypothesis 

using a statistic that depends on both hypotheses.  Reject 

the null if the alternative is preferred.

In particle physics, we do a mixture of both!

34



Hypothesis Tests – 3

35

Fisher’s Approach: Null hypothesis (H0), e.g., background-only

The null hypothesis is rejected if the p-value is judged 

to be small enough, i.e., if x0 is large enough.

x0 is the observed value of the test statistic x.

𝑥0 𝑥

𝑝(𝑥|𝐻0) Calculate:

p−value = 𝑃(𝑥 ≥ 𝑥0|𝐻0)
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Background, B = 9.4 events (ignoring uncertainty in background)

observed count

Example: 𝐻 → 𝑍𝑍 → 4𝑙

𝑝 𝑥0 = 𝑁 𝐻0 = Poisson(𝑁, 𝐵 = 9.4)

𝑁 = 25

p−value = 

𝑘=𝑁

∞

Poisson(𝑘, 9.4) = 1.76 × 10−5

σ𝑘=𝑁
∞ Poisson(𝑘, 𝑎) = 0

𝑎
𝑡𝑁−1𝑒−𝑡𝑑𝑡/Γ(𝑁) = TMath. Gamma(N, a) 
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Background, B = 9.4 events (ignoring uncertainty)

observed count

We often map a p-value to a Z-value, that is, to the number 

of standard deviations away from the null if the distribution 

were a Gaussian. This yields Z = 4.14. 

We say we have a 4.14𝜎 signal.

Example: 𝐻 → 𝑍𝑍 → 4𝑙

𝑝 25 𝐻0 = Poisson(25, 9.4)

𝑁 = 25

p−value = 1.76 × 10−5



Hypothesis Tests – 4
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Alternative hypothesis

Choose a fixed value of α before data are analyzed. Reject 

the null in favor of the alternative if the p-value < α. 

Statisticians call α the significance (or size) of the test, 

while particle physicists call the Z-value the significance!

Neyman argued 

that it is 

necessary to 

consider 

alternative 

hypotheses 

H1

Neyman’s Approach: Null hypothesis (H0) + alternative (H1) 

𝑝(𝑥|𝐻0)

𝑝(𝑥|𝐻1)

𝑥0 𝑥

𝑥𝛼 𝛼 = p−value 𝑥𝛼



The Neyman-Pearson Test
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In Neyman’s approach,

hypothesis tests are

a contest between

significance and 

power, which is the 

probability to accept a 

true alternative.

power of testsignificance of test

𝑝(𝑥|𝐻0)

𝑝(𝑥|𝐻1)

𝑥

𝑥𝛼

𝛼 = න
𝑥𝛼

∞

𝑝 𝑥 𝐻0 𝑑𝑥 𝑝 = න
𝑥𝛼

∞

𝑝 𝑥 𝐻1 𝑑𝑥



The Neyman-Pearson Test

40

The optimal test for fully

specified hypotheses,

that is, simple hypotheses, 

is to reject the null if the 

ratio

𝑝 𝑥 𝐻1 / 𝑝 𝑥 𝐻0 > 𝜆
for some threshold 𝜆.

𝑝(𝑥|𝐻0)

𝑝(𝑥|𝐻1)

𝑥

𝑥𝛼

𝛼 = න
𝑥𝛼

∞

𝑝 𝑥 𝐻0 𝑑𝑥 𝑝 = න
𝑥𝛼

∞

𝑝 𝑥 𝐻1 𝑑𝑥

power of testsignificance of test



Hypothesis Tests – 5

All realistic analyses contain nuisance parameters that we 

must get rid of in order to perform an hypothesis test.

There two primary ways:

Profiling: Use the profile likelihood.

Marginalizing: Use the marginal likelihood, i.e., a

likelihood integrated over the nuisance

parameters.
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Example: 𝐻 → 𝑍𝑍 → 4𝑙 (Profiling)

In the 2-parameter likelihood 𝐿 𝑠, 𝒃 ≡ 𝑝 𝐷 𝑠, 𝒃), we 

replace b by 𝒃 = 𝒇 𝒔

to get the profile likelihood 𝐿𝑝 𝑠 = 𝐿(𝑠, 𝒇 𝒔 ).

We can use the quantity

𝑡 𝑠 = −2 ln[𝐿𝑝 𝑠 /𝐿𝑝 Ƹ𝑠 ]

as a test statistic to test the null hypothesis s = s0. 

Note that the tests are approximate because we used an 

approximation to arrive at the profile likelihood.

For HEP applications, however, the tests work very well. 
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For this example, Wilks’ theorem is equivalent to the 

statement that for large samples the density of the signal 

estimate ො𝒔 is approximately Gaussian. 

If, furthermore, s0 is the true value of s, then the distribution 

of 𝒙 ≡ 𝒕 𝒔𝟎 will be approximately a χ2 density of one 

degree of freedom. 

Therefore, for any value of x, the associated p-value(x) can be 

computed using the χ2 density. 

Example: 𝐻 → 𝑍𝑍 → 4𝑙 (Profiling)
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So, we need to compute

p-value = P[𝒙 > 𝑥0]

given the observed value 𝑥0 = 𝑡𝑜𝑏𝑠(𝑠0) of 𝑥 = 𝑡 𝑠0 . 

Then, if the p-value < α we reject the s = s0 hypothesis. In 

addition, the p-value is reported.

But, since 𝑍 = 𝑡𝑜𝑏𝑠(𝑠0), we can avoid the calculation of the 

p-value and just report Z!

Example: 𝐻 → 𝑍𝑍 → 4𝑙 (Profiling)



Background, B = 9.4 ± 0.5 events. For this example, 𝒔𝟎 = 𝟎.

tobs(0) = 17.05

therefore, 𝑍 = 𝑡𝑜𝑏𝑠(0) = 4.13

Exercise 7: Verify this calculation

45

𝑏 = 𝑓 𝑠 =
𝑔+ 𝑔2+4 1+𝑘 𝑀𝑠

2(1+𝑘)

𝑔 = 𝑁 +𝑀 − 1 + 𝑘 𝑠

𝐿𝑝 𝑠 = 𝐿(𝑠, 𝒇 𝒔 )

𝑡 𝑠 = −2 ln[𝐿𝑝 𝑠 /𝐿𝑝 Ƹ𝑠 ]

Example: 𝐻 → 𝑍𝑍 → 4𝑙 (Profiling)



Summary

Probability

Interpretations: degree of belief, relative frequency

Likelihood Function

Probability function into which data have been inserted. 

Frequentist Principle

Construct statements such that a fraction f ≥ C.L. of them 

are true over an infinite ensemble of statements.

Frequentist Analysis

1. Eliminate nuisance parameters by profiling likelihood.

2. Tests: decide on a fixed threshold α and reject null 

hypothesis if the p-value < α; report the p-value.
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Tutorials

Download the tutorials from github using

git clone https://github.com/hbprosper/ENHEP

or update your local copy using git pull

Requirements

1. ROOT (from  https://root.cern.ch) 6.14/06 or greater.

2. jupyter, which is needed to run the Python notebooks, 

with Python 2.7.X (X > 9) or Python 3 provided you 

replace statements such as print “hello” by print(“hello”) 

(thanks for testing this Ulrich!). 

3. Python packages: pandas, numpy, matplotlib, scipy, and 

scikit-learn; sympy is also very handy.

48
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Tutorials

Statistics notebooks

1. roofit basics of Python, PyROOT, and RooFit

2. rootN coverage of statements: 𝑁 + 𝑁 > 𝜃

3. Poisson Poisson confidence intervals

4. Wilks demonstration of Wilks’ theorem

5. hzz4l analysis of data 𝑁 = 25, 𝐵 = 9.4 ± 0.5

6. Type1afit fitting Α𝐶𝐷𝑀 model to Type1a Sne data.

Machine learning notebooks

1. higgs_vbf_ggf_bdt VBF vs. ggF Higgs production

2. higgs_vbf_ggf_dnn as above, but using a DNN
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BACKUP SLIDES



The Poisson Process

The Poisson distribution is also the outcome of a stochastic 

process. Suppose that at time 𝑡 + ∆𝑡 there are n successes. 

Assume the following:

1. The probability of 1 success in the interval [𝑡, 𝑡 + ∆𝑡] is 𝑞∆𝑡.

2. The probability of ≥ 2 successes is negligible.

The possible state transitions, and transition probabilities, are 

1. 𝑛 − 1 → 𝑛 𝑝𝑛−1 𝑡 𝑞∆𝑡

2. 𝑛 → 𝑛 𝑝𝑛 𝑡 (1 − 𝑞∆𝑡)

Therefore, 𝑝𝑛 𝑡 + ∆𝑡 = 𝑝𝑛 𝑡 1 − 𝑞∆𝑡 + 𝑝𝑛−1 𝑡 𝑞∆𝑡, where 

𝑝𝑛 𝑡 is the probability to have n successes by time t. 

Solving the 1st order ODE yields Poisson(qt) for constant q.
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The Neyman-Pearson Test
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The Bayesian Approach in a Nutshell!

Bayesian methods are

1. based on the degree of belief interpretation of probability 

2. and use Bayes’ theorem

𝑝 𝜃𝐻, 𝐻 𝐷) =
𝑝 𝐷 𝜃𝐻, 𝐻)𝜋(𝜃𝐻, 𝐻)

𝑝(𝐷)

for all inferences, where

D observed data

θH parameters pertaining to hypothesis H

(parameters of interest and nuisance parameters)

H hypothesis  

π prior density
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Nuisance parameters

are removed by

marginalization.



Step 1: Construct a probability model for the observations

𝑝 𝐷 𝑠, 𝑏 =
𝑠+𝑏 𝑁𝑒−(𝑠+𝑏)

𝑁!

(𝑘𝑏)𝑀𝑒−𝑘𝑏

Γ(𝑀+1)

knowns:

N = 25 observed event count

𝑀 = 353.4 effective background event count

𝑘 = 37.6 effective background scale factor

unknowns:

b expected background count

s expected signal count

d = s + b expected event count
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Step 2: Write down Bayes’ theorem:

𝑝(𝑠, 𝑏|𝐷) =
𝑝 𝐷 𝑠, 𝑏) 𝜋(𝑠, 𝑏)

𝑝(𝐷)

and specify the prior:

𝜋(𝑠, 𝑏) = 𝜋(𝑏|𝑠) 𝜋(𝑠)

Sometimes it is convenient to compute the marginal 

likelihood of the parameters of interest by integrating over 

the nuisance parameters, here b (as we did earlier), 

𝑝 𝐷 𝑠 = 0
∞
𝑝 𝐷 𝑠, 𝑏) 𝜋(𝑏 𝑠 𝑑𝑏
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The Prior: 

What does

𝜋(𝑠, 𝑏) = 𝜋(𝑏|𝑠) 𝜋(𝑠)

represent?

The prior encodes what we know, or assume, about the mean 

background and signal in the absence of new observations.

We shall assume that s and b are non-negative.

Unfortunately, there is no unique way to encode such vague 

information.
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For simplicity, we shall take π(b | s) = 1, though one can do 
better*. 

We have already calculated the marginal likelihood and found

𝑝 𝐷 𝑠 )

=
1 − 𝑥 2

𝑀


𝑟=0

𝑁

beta(𝑥, 𝑟 + 1,𝑀) Poisson(𝑁 − 𝑟, 𝑠)

where, 𝑥 =
1

1+𝑘
.

*Luc Demortier, Supriya Jain, Harrison B. Prosper, 
Reference priors for high energy physics, Phys.Rev.D82:034002 (2010)
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L(s) = P(25 | s) is the

marginal likelihood for 

the expected signal s. 

Here, we compare the

marginal and profile

likelihoods. For this

problem they are almost

identical. 

But, this does not always 

happen!
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Given 𝑝 𝐷 𝑠) we can compute the posterior density of the 
signal

𝑝 𝑠 𝐷) =
𝑝 𝐷 𝑠)𝜋(𝑠)

𝑝(𝐷)

Again, for simplicity, let’s assume 𝜋 𝑠 = 1, then

𝑝 𝑠 𝐷) =
σ𝑟=0
𝑁 beta 𝑥, 𝑟 + 1,𝑀 Poisson(𝑁 − 𝑟, 𝑠)

σ𝑟=0
𝑁 beta 𝑥, 𝑟 + 1,𝑀
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Exercise 9: Derive an expression

for p(s | D) assuming a gamma

prior Gamma(qs, U + 1) for π(s)



Computing Central Credible Intervals

Solve

න
0

𝑙(𝑁)

𝑝 𝑠 𝐷) 𝑑𝑠 = (1 − 𝐶𝐿)/2

න
0

𝑢(𝑁)

𝑝 𝑠 𝐷) 𝑑𝑠 = (1 + 𝐶𝐿)/2

with CL = 0.683, we obtain 𝑠 ∈ 11.5, 21.7 at 68% CL. 

Since this is a Bayesian calculation, this statement means: 

the probability that s lies in [11.5, 21.7] is 0.68.
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Finally, we can test different hypotheses 𝐻 about the signal s
by marginalizing over the parameters of each hypothesis. 
In our case, the parameters are 𝜃𝐻0 = 𝑏 and 𝜃𝐻1 = 𝑏, 𝑠 for 

hypotheses H0 and H1, respectively. 

Since we have already marginalized over b, we just need to 
compute

𝑝 𝐷 𝐻1) = න
0

∞

𝑝 𝐷 𝑠,𝐻1 𝜋 𝑠|𝐻1 𝑑𝑠

The simplest choice for the prior is π (s | H1) = δ(s – 15.6), 
which yields

𝑝 𝐷 𝐻1 ≡ 𝑝 𝐷 𝒔 = 𝟏𝟓. 𝟔) = 7.91 × 10−2. 

Note also that 
𝑝 𝐷 𝐻0 ≡ 𝑝 𝐷 𝒔 = 𝟎) = 1.59 × 10−5
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From

p(D | H1 ) = 7.91 × 10−2 and

p(D | H0 ) = 1.59 × 10−5

we conclude that the results increase the probability of 
hypothesis H1  relative to H0 by ~5000. 

The increased odds can be converted to a Z-value (S. Sekmen, 
HBP) roughly equivalent to the frequentist measure using

𝑍 = sign(ln𝐵10) 2 ln𝐵10
This yields Z = 4.13. 

Exercise 10: Verify this number
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Generalization to Multiple Bins

The generalization to so-called “shape” analyses, that is, to 

multiple bins introduces no new concepts. 

Here is a model for M independent bins, each with N sources:

1. Mean count in ith bin: 𝑑𝑖 = σ𝑗=1
𝑁 𝑝𝑗𝑎𝑗𝑖, where each 

bin contains N sources with mean counts 𝑎𝑗𝑖. The 𝑝𝑗 are 

parameters such as the signal strength 𝜇.

2. Likelihood for ith bin: 𝑝 𝐷𝑖 𝑑𝑖 = Poisson(𝐷𝑖 , 𝑑𝑖).

3. Likelihood for ith bin of jth source: 

𝑝 𝐴𝑗𝑖 𝑟𝑗𝑖𝑎𝑗𝑖 = Poisson 𝐴𝑗𝑖 , 𝑟𝑗𝑖𝑎𝑗𝑖 , where 𝑟𝑗𝑖 are 

known scale factors.
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Generalization to Multiple Bins

The overall probability model is

𝑝 𝐷 𝑎 =ෑ

𝑖=1

𝑀

𝑝 𝐷𝑖 𝑑𝑖 ෑ

𝑗=1

𝑁

𝑝 𝐴𝑗𝑖 𝑟𝑗𝑖𝑎𝑗𝑖

which can be marginalized with respect to 𝒂𝒋𝒊 exactly*:

𝑝 𝐷 𝑝𝑗 , 𝑟𝑗𝑖 = ς𝑖=1
𝑀 σ𝑘1…,𝑘𝑁=0

𝐷𝑖 ς𝑗=1
𝑁 𝐴𝑗𝑖+𝑘𝑗

𝑘𝑗

𝑝𝑗
𝑘𝑗𝑟𝑗𝑖

𝐴𝑗𝑖+𝑘𝑗

𝑝𝑗 + 𝑟𝑗𝑖
𝑘𝑗

with 𝑘1 +⋯+ 𝑘𝑁 = 𝐷𝑖 .

If the scale factors 𝑟𝑗𝑖 are not known precisely, the above can 

be extended to incorporate the appropriate uncertainties.

*Former FSU undergraduate Robert Orlando.
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