

#### **Tools and Techniques for High-***p***<sup>T</sup> Physics**

7th ENHEP School on High Energy Physics Ain Shams University, Cairo, January 26–31, 2019

Ulrich Husemann, Institute of Experimental Particle Physics, Karlsruhe Institute of Technology





#### **Scope of this Lecture**



- Introduction the the most important tools and techniques for experimental particle physics at colliders
  - Two one-hour **lectures**: discussion of ideas and concepts
  - One tutorial session: deeper understanding by hands-on exercise (at least for one example)
- Please ask questions during and after the lecture and anytime you can grab me otherwise

#### Outline



From Raw Data to Physics Results

#### Monte-Carlo Event Generation

#### **Physics Objects**

#### **Background Estimation**

#### **Advanced Signal Analysis**





# Overview FROM RAW DATA TO PHYSICS RESULTS

### **Cross Section: Master Formula**





# **Detector & Analysis Chain**





Collider-based particle physics: complicated analysis chain

- Detector input: calibrated digitized data, online selection ("trigger")
- Theory input: calculations and simulations
- Physics object reconstruction and selection
- Statistical analysis & comparison with theory





# **MONTE-CARLO EVENT GENERATION**

Tools and Techniques for High- $p_T$  Physics

Ulrich Husemann Institute of Experimental Particle Physics

# **MC Simulations in Particle Physics**



- Goal: comprehensive simulation of collision events based on best knowledge of all physics processes (collision events and interactions in detector)
- Main tools based on Monte-Carlo (MC) method:
  - In general: MC = numerical techniques to compute probabilities using random numbers
  - Excellent tool to generate physics events (QM = probabilistic theory) and simulate particle interactions in detectors



### **Simulation of a Collision Event**





### **MC Event Generators**



- Goal: realistic simulation of all relevant physics processes in a particle collision
- Problem: complexity of hadron-hadron collisions
  - Initial state: hadrons = compound objects, constituents (quarks & gluons) confined in hadron (QCD interactions at low four-momentum transfer Q<sup>2</sup>)
  - Final state: many hadrons and leptons
- Way out: QCD factorization
  - Separate treatment of processes at low and high Q<sup>2</sup>
  - High Q<sup>2</sup> ("hard scattering process", short-distance physics): perturbation theory in leading order (LO) or higher orders (NLO, NNLO, …)
  - Low Q<sup>2</sup> ("soft physics", long-distance physics): phenomenological **models**

# **QCD** Factorization in Pictures



Cross Section = PDFs ⊗ Hard Process ⊗ Hadronization



# **Overview of MC Generators**



Central step in any MC generator: MC integration of cross section for hard process in fixed order of perturbation theory (using PDFs as inputs) (Fermi's Golden Rule: cross section = |matrix element|<sup>2</sup> ⊗ phase space)

#### Parton-level MC generators:

- Simulation stops at the level of partons (quarks and gluons)
- No hadronisation, only events weighted with the differential cross section → no full event simulation (still useful for theoretical studies)

#### Particle-level MC generators:

- Full event simulation: parton level + unweighting (→ number of MC events corresponds to theoretical expectation) + parton shower + hadronization
- May be provided as a single comprehensive package or as a combination of ME provider and parton shower MC (SMC) program (examples: later)

## **Lectures on Event Generators**



- T. Sjöstrand, Introduction to Event Generators, CTEQ/MCnet School, DESY 2016
  - http://home.thep.lu.se/~torbjorn/talks/desy16a.pdf
  - http://home.thep.lu.se/~torbjorn/talks/desy16b.pdf
  - http://home.thep.lu.se/~torbjorn/talks/desy16c.pdf
  - http://home.thep.lu.se/~torbjorn/talks/desy16d.pdf
- S. Gieseke, Parton Shower Monte Carlos, UA Madrid 2016: <u>https://www.itp.kit.edu/~gieseke/uam/madrid16.pdf</u>
- F. Maltoni, CERN Academic Training Lectures 2012: <u>https://indico.cern.ch/conferenceDisplay.py?confld=181765</u>
- B. Webber, Parton Shower Monte Carlo Event Generators, <u>Scholarpedia, 6(12):10662</u>

# **Parton Shower**

Parton shower:

■ Coherent emission of soft colored particles → quantum interference effect





- **E** Emission process can be modeled by a sequence of  $1 \rightarrow 2$  parton splitting processes
- Parton shower = probabilistic model of quark fragmentation
- Central object of parton shower: Sudakov form factor
  - Probability for a parton *i* to emit a parton *j*: splitting function P<sub>ji</sub>
  - Solution of **DGLAP equation** for parton shower: Sudakov form factor

$$\Delta_{i}(t) = \exp\left[-\sum_{j} \int_{t_{0}}^{t} \frac{\mathrm{d}t'}{t'} \int_{0}^{1} \mathrm{d}y \, \frac{\alpha_{S}}{2\pi} \, P_{ji}(y)\right] \qquad p = -\frac{1}{2} \sum_{j=1}^{n} \frac{\mathrm{d}y}{2\pi} \, P_{ji}(y)$$



Ulrich Husemann Institute of Experimental Particle Physics

### Modern SMC Codes



- General purpose SMC event generators: completely new C++ developments based on experience with established FORTRAN codes and new C++ codes
  - Pythia 8 (<u>http://home.thep.lu.se/~torbjorn/Pythia.html</u>): default: p<sub>r</sub>-ordering, other options available
  - Herwig 7 (<u>http://herwig.hepforge.org</u>): default: angular ordering, optionally: dipole showering
  - Sherpa (<u>https://gitlab.com/sherpa-team/sherpa</u>): dipole showering
- LHC Run 2: Pythia 8, Herwig 7, Sherpa as new standards for SMC (also in combination with other packages)

### **Hadronization Models**



- Parton-hadron transition: non-perturbative processes
- Phenomenological MC models very successful:
  - Basic assumption: parton-hadron duality → very close relation between parton dynamics and properties of final state hadrons
  - Advantage: full event simulation  $\rightarrow$  can be used directly for experiments
  - Disadvantage: many ad-hoc parameters in some models → (rather extensive) tuning required
- Most well-known hadronization models:
  - Independent fragmentation (not used any more)
  - Lund string model (Pythia)
  - **Cluster** model (Herwig, Sherpa)



# **Independent Fragmentation**



- Fragmentation for each parton independent (as the name says...) (R.D. Field, R.P. Feynman, 1978)
- Algorithm (starting from original quark):
  - Quark-antiquark pairs formed out of vacuum  $\rightarrow$  primary mesons with energy fraction z
  - New starting point: remaining quark with energy fraction 1–z
  - Stop at lower energy threshold
- Fragmentation function D(z): Probability to find hadron with energy fraction z in jet (D: non-perturbative object)



Ulrich Husemann Institute of Experimental Particle Physics

# Lund String Model



- Quark-antiquark pairs form strings: (B. Andersson et al., Phys. Rept 97 (1983) 31)
  - Static QCD potential between quark and antiquark: **linear** increase with distance  $\rightarrow$  gluon field collapses to a string

$$V(r) = -\frac{4}{3} \frac{\alpha_{\mathcal{S}}(1/r^2)}{r} + kr$$

- Strings **break** once V(r) large enough to form new quark-antiquark pairs
- Effect of gluons: "kinks" in strings
- Lower energy threshold: formation of hadrons
- Invented at Lunds universitet, Sweden, used in Pythia



 $\wedge \wedge \wedge$ 

## **Cluster Model**



- Color flow during hadronization governed by pre-confinement property of QCD → tendency for partons to form color-neutral clusters (B. R. Webber, <u>Nucl. Phys. B238 (1984) 492</u>)
  - Gluons (color-anticolor): splitting into quark-antiquark pairs → new clusters with color partners
  - Clusters decay into hadrons according to available phase space
  - Advantage: (essentially) no tunable parameters

#### Used in Herwig



after: Ellis et al., QCD and Collider Physics

# **Underlying Event**





- Total parton-parton cross section  $\otimes$  PDF at the LHC larger than total proton-proton cross section
- Reason: several parton-parton collisions within the same proton-proton collision
- Definition: underlying event = all interactions except hard scattering process (which includes initial state and final state radiation, and beam remnant)
- MC codes include underlying event models (tuned to data)

# **Hard-Scattering Matrix Elements**



- First generation of MC codes: LO ME for 2→1 and 2→2 processes → available for all SM and BSM processes
- Improvement I: LO matrix elements for important 2→n processes, mostly: additional real emission of quarks/ gluons → jets (approximation of higher orders)
- Improvement II: NLO matrix elements (= real emission + virtual corrections = loops) → 2019: available for all SM processes and many BSM processes
- Improvement III: automation of ME computations (especially at NLO)





# Modern MC Frameworks

- General-purpose SMC codes: Pythia, Herwig, Sherpa
- LO for 2→n processes → combination with SMC (non-trivial)
  - ALPGEN
  - MadGraph5\_aMC@NLO (MG5aMC)
  - Sherpa (2→n processes included in SMC)
  - **NLO** (comb. with SMC even less trivial)

#### POWHEG BOX

#### MG5aMC



#### Further examples:

- Modern SMC codes also allow using external ME providers (e.g.: <u>OpenLoops</u>, <u>GoSam</u>, MG5aMC)
- Specialized MC code for important processes (e.g. <u>VBFNLO</u> = parton-level MC for processes with electroweak bosons)

# **Double Counting and MC Matching**





- Real emission from both LO  $2 \rightarrow n$  matrix element (ME) and parton shower (PS)  $\rightarrow$  **double counting** 
  - Solution: **matching** between ME and PS, **removal** of overlap
  - Matching algorithms:
    - MLM matching (Mangano), e.g. in ALPGEN, MG5aMC
  - CKKW(-L) matching (Catani, Krauss, Kuhn, Webber; Lönnblad), e.g. in Sherpa, MG5aMC

#### How to Match



General idea: use ME (PS) only in those areas of phase space where ME (PS) works best

| Matrix Element                              | Parton Shower                          |
|---------------------------------------------|----------------------------------------|
| fixed order                                 | resummation                            |
| numerically expensive                       | numerically cheap                      |
| number of final-state particles limited     | arbitralily many final-state particles |
| works best for hard, well-separated partons | works best for soft/collinear partons  |

# **NLO Generators and NLO Merging**



- NLO matrix elements: **real** and **virtual** corrections
- Problem: real emission does not only include hard, well separated partons, radiation may also be soft/collinear
  - Different separation between NLO ME and PS compared to LO
  - Correct for two-fold double counting: real emission & parton shower, virtual corrections and Sudakov form factor
  - Double counting removed by NLO merging algorithms (several methods)



# **Short Summary**



- MC generators may be classified by:
  - Available physics processes
  - **Highest order** in perturbation theory for hard scattering matrix elements
  - **Number** of outgoing particles
  - Partonic or hadronic final state
  - **"Link"** (=matching/merging) between matrix element and parton shower
- Classes of MC generators:
  - Pure parton-level MC generator (LO or NLO)
  - General-purpose parton shower MC generator (SMC)
  - LO matrix element provider combined with parton shower (ME+PS)
  - NLO matrix element provider combined with parton shower (NLO+PS)





# **PHYSICS OBJECTS**

**27** 27/01/2019

Tools and Techniques for High- $p_T$  Physics

Ulrich Husemann Institute of Experimental Particle Physics

#### **Reminder: Cross Section Formula**



Ulrich Husemann



# **Reminder: Collider Kinematics**





#### Coordinate system:

- Right-handed system, origin: center of detector = nominal collision point
- Cartesian coordinates: z axis along counter-clockwise beam direction, x axis pointing towards center of the ring, y axis pointing upwards
- Polar coordinates: polar angle θ

   angle with z axis, azimuthal
   angle φ in xy plane, measured
   from x axis

# **Reminder: Collider Kinematics**



- Typical hadron collider observables:
  - Partonic center-of-mass frame unknown → use transverse quantities (invariant under Lorentz boosts along beam axis)
  - Particle-level observables: transverse momentum and pseudorapidity

$$p_T = \sqrt{p_x^2 + p_y^2}$$
  $\eta = -\ln \tan\left(\frac{\theta}{2}\right)$ 

 $\rightarrow$  four-momenta of particles: particle mass (hypothesis), *p*<sub>T</sub>, *η*, *φ* 

Energy/momentum-sum observables: missing transverse momentum

$$\mathbf{p}_{T}^{\text{miss}} = -\sum_{\text{rec. particles}} \begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix} \rightarrow E_{T}^{\text{miss}} \equiv p_{T}^{\text{miss}} \equiv \text{MET} \equiv \left| \mathbf{p}_{T}^{\text{miss}} \right|$$

### **Event Selection**



Example of cut-based event selection: top lepton+jets selection



- "Art" of data analysis: select events such that signal and background are optimally separated
  - **Optimization** of selection:
    - Criterion: signal/background ratio N<sup>sig</sup>/N<sup>bkg</sup>
    - Criterion: signal significance  $N^{\text{sig}}/\sqrt{N^{\text{sig}} + N^{\text{bkg}}}$
    - Note: use simulated data for optimization, never optimize the signal on data!
  - Many methods, from simple ("cuts") to sophisticated (multivariate methods)

## Background



- Physics: which processes cannot be distinguished from signal?
- **Instrumental** backgrounds:
  - Detector noise
  - Misidentified objects ("fakes"), e.g. jet misreconstructed as electron
- Example: most important background processes in Higgs and top physics
  - W and Z boson production in association with jets ("W/Z+jets")
  - QCD multijets



# **Hierarchy of Analysis Objects**



- Most important physics objects:
  - **Muon**: matching tracks in tracking detector and muon detector
  - **Electron**: ECAL cluster matched to track
  - Photon: ECAL cluster without track, conversion into e+e-
  - **Charged hadron**: HCAL cluster matched to track
  - **Neutral hadron**: HCAL cluster without track
  - Jet: bundles of calorimeter clusters and/or tracks/hadrons
  - **b-Jet**: jet containing B-hadrons
  - Hadronic tau: thin jet-like bundle, e.g. one or three charged hadrons
- All physics objects must be calibrated:
  - General rule: know where to trust your simulation (and where not)
  - In practice: mixture of **MC-based** and **data-driven** methods

### **Muon Reconstruction**



- Typical muon reconstruction strategies (CMS jargon):
  - Standalone muons: only reconstructed with muon detector
  - **Tracker** muons: track segment in tracker, "stub" in muon detector
  - **Global** muons: track segments in tracker and muon detector combined



# **Muon Identification**



- Muon identification (ID) algorithms:
  - Criteria: quality of track fit, number of tracker layers with hits, impact parameters w.r.t. primary vertex, low energy deposit in calorimeters (MIP)
  - Muons from electroweak decays (e.g. W, Z): improved ID using track or calorimeter isolation (low transverse momentum sum of tracks/energy deposits around muon)
  - Today: combined in **multivariate muon ID** variable
- Muon selection: pre-defined working points,
  - Typically: "loose" for high efficiency, "tight" for high purity
  - Advantage: muon ID efficiency determined centrally, e.g. by tag&probe method (→ next slide)





# **Tag&Probe Method**



- Kinematic constraint: muon pair invariant mass in window around Zboson mass (width ≥ natural width ⊕ detector resolution)
- **Tag&probe** algorithm:
  - **"Tag**" muon: **strict** selection, e.g. muon trigger and clean reconstruction
  - "Probe" muon: opposite charge, looser selection criteria (e.g. no trigger)
  - **Tag&probe efficiency** (often as a function of kinematics, e.g.  $p_T$  and  $\eta$ ):

 $\epsilon_{tag\&probe} = \frac{N_{tag\&probe}}{N_{tag}}$  (proper determination of uncertainties  $\rightarrow$  tutorial)

Compute tag&probe efficiency in data and simulation: determine correction factor ("scale factor") for simulation (again: as a function of kinematics)

$$\mathsf{SF} = \frac{\epsilon_{\mathsf{tag&probe}}^{\mathsf{data}}}{\epsilon_{\mathsf{tag&probe}}^{\mathsf{MC}}}$$

### **Electron Reconstruction and ID**



- Typical electron reconstruction strategy:
  - Clustering of energy deposits in calorimeter cells
     Matching of track and cluster
     Bremsstrahlung recovery
     electron trajectory
- Electron identification:
  - Criteria: number of tracker layers with hits, impact parameter w.r.t. primary vertex, shape of electromagnetic shower, leakage into HCAL, ...
  - Isolation: similar to muons
  - Today: combined in multivariate electron ID variable (loose, tight, ...)





- Hierarchy of analysis objects:
  - Hits/clusters → tracking and calorimeter objects → physics objects (charged leptons, jets, b-jets, boosted objects ...)
  - Lepton ID: **multivariate** discriminant, isolation
- All objects must be properly calibrated:
  - Tracks: alignment of tracking detectors
  - Leptons: **scale factors**, e.g. via tag&probe method