Constraints on effective Lagrangians from ATLAS and CMS

Chris Hays, Oxford University on behalf of the ATLAS and CMS Collaborations

Higgs Couplings 2018 Tokyo Japan 27 November

Overview

The SM effective field theory

Effective Lagrangians

Constraints on Higgs couplings

Higgs boson measurements Electroweak measurements Top quark measurements

Chiral Electroweak Higgs effective field theory

Combination of Higgs boson measurements

The SM effective field theory

The SMEFT is a general framework for describing non-SM interactions at a high scale It assumes the low (electroweak) scale is governed by the SM

 $d\sigma(exp) = d\sigma(SM) + d\sigma(d < TeV^{-1})$

Expand in orders of the new-physics scale: $\int d\sigma (d < \text{TeV}^{-1}) = A_5 / \Lambda_{\text{NP}} + A_6 / \Lambda_{\text{NP}}^2 + ...$

The leading lepton-number-conserving term is A_6 / $\Lambda_{\rm NP}^2$

Due to interference between SM and short-distance amplitudes: $\mathcal{M}^{\dagger}(SM)\mathcal{M}(d < TeV^{-1})$

Higher-scale interactions are increasingly sensitive to higher-order terms in $1/\Lambda_{NP^n}$

Effective Lagrangians

We can calculate the leading new-physics contributions using an operator basis

 $\int d\sigma (d < \text{TeV}^{-1}) = A_5 / \Lambda_{\text{NP}} + A_6 / \Lambda_{\text{NP}}^2 + \dots$

 $A_6 = \Sigma c_i$, where c_i are coefficients of effective (dimension-6) Lagrangian operators

The complete basis of operators is large (**59 + h.c.** at this order) **2499** parameters for full flavour generality

Individual measurements constrain Effective Lagrangians Effective Lagrangians add a few relevant operators to the Lagrangian

Effective Lagrangians typically built from SMEFT operators using the leading *c_i* terms A first step towards constraining the complete basis set with combined measurements

$$\mathcal{L} = \mathcal{L}_{SM} + \sum c_i \mathcal{O}_{6i} / \Lambda_{NP}^2$$

Constraints on Higgs couplings

Higgs-boson measurements used to constrain operators with Higgs fields

Example operator set from the strongly-interacting light Higgs (SILH) basis:

Operator	Expression	HEL coefficient	Vertices	SILH: Contino. Ghezzi. Groiean.
O_g	$ H ^2 G^A_{\mu u} G^{A\mu u}$	$cG = \frac{m_W^2}{g_s^2} \bar{c}_g$	Hgg	Mühlleitner, & Spira
O_{γ}	$ H ^2 B_{\mu\nu} B^{\mu\nu}$	$cA = \frac{m_W^2}{{g'}^2} \bar{c}_{\gamma}$	$H\gamma\gamma, HZZ$	JHEF 07 (2013) 033
O_u	$y_u H ^2 \bar{u}_l H u_R + \text{h.c.}$	$cu = v^2 \bar{c}_u$	Htī	
O_{HW}	$i\left(D^{\mu}H\right)^{\dagger}\sigma^{a}\left(D^{\nu}H\right)W^{a}_{\mu\nu}$	$cHW = \frac{m_W^2}{g} \bar{c}_{HW}$	HWW, HZZ	
O_{HB}	$i (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu}$	$cHB = \frac{m_W^2}{g'} \bar{c}_{HB}$	HZZ	
O_W	$i \left(H^{\dagger} \sigma^{a} D^{\mu} H \right) D^{\nu} W^{a}_{\mu\nu}$	$CWW = \frac{m_W^2}{g} \bar{c}_W$	HWW, HZZ	ATLAS.
O_B	$i (H^{\dagger} D^{\mu} H) \partial^{\nu} B_{\mu u}$	$cB = \frac{m_W^2}{g'}\bar{c}_B$	HZZ	ATL-PHYS-PUB-2017-018

Here the impact on cross sections is determined using the 'HEL' FeynRules implementation

5

HEL:	
Alloul, Fuks, & Sanz	Cŀ
JHEP 04 (2014) 110	LHC

Impact on STXS: CH, Sanz, & Zemaityte .HCHXSWG-INT-2017-001

Constraints on Higgs couplings

Three approaches to constraints:

1 Relate model-independent unfolded differential cross sections to operator coefficients Model-independent measurements minimise assumptions in the relation

2 Relate exclusive cross sections (STXS) to operator coefficients Acceptance corrections in measurements are derived from the SM

3 Optimize for individual operator coefficients Results are confined to the specific Effective Lagrangian

Recent examples:	Channel	Approach	
	Η→γγ	1	
	H→ <i>llll</i>	3	ATLAS, JHEP 03 (2018) 095
	H→ <i>llll</i>	3	CMS, PLB 775 (2017) 1
	$H \rightarrow \gamma \gamma + H \rightarrow \ell \ell \ell \ell$	2	ATLAS, ATL-PHYS-PUB-2017-018
	H→bb	2	ATLAS, ATLAS-CONF-2018-053

$H \rightarrow \gamma \gamma$ unfolded measurements

ATLAS measures five unfolded distributions in $H \rightarrow \gamma \gamma$ decay channel Dimension-6 ggH coefficient cG shows little kinematic dependence (Q² = m_H²) VVH coefficient cHW shows substantial dependence due to associated production

ATLAS, PRD 98 (2018) 052005

$H \rightarrow \gamma \gamma$ unfolded measurements

Cross sections calculated with the Effective Lagrangian include $|\mathcal{M}(d < \text{TeV}^{-1})|^2$ These terms provide sensitivity to CP-odd operators from CP-even measurements

The CP-even interference term provides discrimination between CP-even and CP-odd operators in an Effective Lagrangian with these dimension-6 operators

ATLAS, PRD 98 (2018) 052005

ATLAS measures a set of simplified template cross sections using multiple event categories A fit to the event categories constrains coefficients of an Effective Lagrangian

The operators of the Higgs Characterization Lagrangian can be expressed in terms of those of a dimension-6 basis (with some redundancy)

ATLAS constrains up to three parameters simultaneously

ATLAS, JHEP 03 (2018) 095

CMS uses multivariate discriminants to constrain parameters of a scattering amplitude

Category	VBF-jet	VH-jet	Untagged	
Target	$qq'VV \rightarrow qq'H \rightarrow (jj)(4\ell)$	$q\overline{q} \rightarrow VH \rightarrow (jj)(4\ell)$	$H\to 4\ell$	
Selection	\mathcal{D}_{2jet}^{VBF} or $\mathcal{D}_{2jet}^{VBF,BSM} > 0.5$	\mathcal{D}_{2jet}^{ZH} or $\mathcal{D}_{2jet}^{ZH,BSM}$ or	not VBF-jet	$\begin{bmatrix} \kappa^{VV}a^2 + \kappa^{VV}a^2 \end{bmatrix}$
		\mathcal{D}_{2jet}^{WH} or $\mathcal{D}_{2jet}^{WH,BSM} > 0.5$	not VH-jet	$A(\text{HVV}) \sim \left a_1^{\text{VV}} + \frac{\kappa_1 - q_1 + \kappa_2 - q_2}{(\Lambda^{\text{VV}})^2} \right m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^*$
f _{a3} obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0-}^{ ext{VBF+dec}}$, $\mathcal{D}_{CP}^{ ext{VBF}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0-}^{ ext{VH}+ ext{dec}}$, $\mathcal{D}_{CP}^{ ext{VH}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{ ext{O}-}^{ ext{dec}}$, $\mathcal{D}_{ ext{CP}}^{ ext{dec}}$	
f_{a2} obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{ ext{0}h+}^{ ext{VBF}+ ext{dec}}$, $\mathcal{D}_{ ext{int}}^{ ext{VBF}}$	$\mathcal{D}_{\mathrm{bkg}}$, $\mathcal{D}_{\mathrm{0}h+}^{\mathrm{VH+dec}}$, $\mathcal{D}_{\mathrm{int}}^{\mathrm{VH}}$	$\mathcal{D}_{\mathrm{bkg}},\mathcal{D}_{\mathrm{0}h+}^{\mathrm{dec}},\mathcal{D}_{\mathrm{int}}^{\mathrm{dec}}$	$+ u_2 J \mu \nu J + u_3 J \mu \nu J$
$f_{\Lambda 1}$ obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda1}^{ ext{VBF+dec}}$, $\mathcal{D}_{0h+}^{ ext{VBF+dec}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda1}^{ ext{VH+dec}}$, $\mathcal{D}_{0h+}^{ ext{VH+dec}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda1}^{ ext{dec}}$, $\mathcal{D}_{0h+}^{ ext{dec}}$	
$f_{\Lambda 1}^{Z\gamma}$ obs.	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{ ext{Z} \gamma, ext{VBF+dec}}$, $\mathcal{D}_{ ext{0}h+}^{ ext{VBF+dec}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda1}^{ ext{Z}\gamma, ext{VH+dec}}$, $\mathcal{D}_{ ext{0}h+}^{ ext{VH+dec}}$	$\mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{\Lambda 1}^{\mathrm{Z} \gamma, \mathrm{dec}}, \mathcal{D}_{\mathrm{0} h+}^{\mathrm{dec}}$	CMS, PLB 775 (2017) 1

$$\begin{split} L(\text{HVV}) &\sim a_1 \frac{m_Z^2}{2} \text{HZ}^{\mu} Z_{\mu} - \frac{\kappa_1}{(\Lambda_1)^2} m_Z^2 \text{HZ}_{\mu} \Box Z^{\mu} - \frac{1}{2} a_2 \text{HZ}^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_3 \text{HZ}^{\mu\nu} \tilde{Z}_{\mu\nu} \\ &+ a_1^{\text{WW}} m_W^2 \text{HW}^{+\mu} W_{\mu}^- - \frac{1}{(\Lambda_1^{\text{WW}})^2} m_W^2 \text{H} \left(\kappa_1^{\text{WW}} W_{\mu}^- \Box W^{+\mu} + \kappa_2^{\text{WW}} W_{\mu}^+ \Box W^{-\mu} \right) \\ &- a_2^{\text{WW}} \text{HW}^{+\mu\nu} W_{\mu\nu}^- - a_3^{\text{WW}} \text{HW}^{+\mu\nu} \tilde{W}_{\mu\nu}^- \\ &+ \frac{\kappa_2^{2\gamma}}{\left(\Lambda_1^{2\gamma}\right)^2} m_Z^2 \text{HZ}_{\mu} \partial_{\nu} F^{\mu\nu} - a_2^{2\gamma} \text{HF}^{\mu\nu} Z_{\mu\nu} - a_3^{2\gamma} \text{HF}^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_2^{\gamma\gamma} \text{HF}^{\mu\nu} F_{\mu\nu} - \frac{1}{2} a_3^{\gamma\gamma} \text{HF}^{\mu\nu} \tilde{F}_{\mu\nu} \end{split}$$

Amplitude can be related to parameters of an effective Lagrangian

CMS, PRD 92 (2015) 012004

$H \rightarrow \gamma \gamma$ and $H \rightarrow \ell \ell \ell \ell$ combination

ATLAS combines the measurements from multiple event categories Categories are combined into STXS to constrain six coefficients of an Effective Lagrangian

$H \to \gamma \gamma$	$H \rightarrow ZZ^* \rightarrow 4\ell$		
$t\bar{t}H+tH$ leptonic (two tHX and one $t\bar{t}H$ categories)	$t\bar{t}H$		ATI AS Preliminary
$t\bar{t}H+tH$ hadronic (two tHX and four BDT $t\bar{t}H$ categories)	VH leptonic	cG [10 ⁻⁴]	
VH dilepton	2-jet VH		√s = 13 TeV, 36.1 fb ⁻ '
VH one-lepton, $p_{T}^{\ell + E_{T}^{mass}} \ge 150 \text{ GeV}$	2-jet VBF, $p_{\rm T}^{j1} \ge 200 \text{ GeV}$		
VH one-lepton, $p_{\rm T}^{\ell + E_{\rm T}^{\rm mass}} < 150 {\rm ~GeV}$	2-jet VBF, p_T^{j1} <200 GeV		
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss} \ge 150 {\rm ~GeV}$	1-jet ggF, $p_{\rm T}^{4\ell} \ge 120 {\rm GeV}$	cA[10 ⁻⁴]	
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss} < 150 {\rm GeV}$	1-jet ggF, 60 GeV< $p_{\rm T}^{4\ell}$ <120 GeV		
$VH + VBF p_T^{jf} \ge 200 \text{ GeV}$	1-jet ggF, $p_{\rm T}^{4\ell}$ <60 GeV		
VH hadronic (BDT tight and loose categories)	0-jet ggF	cu	
VBF, $p_{\rm T}^{\gamma\gamma jj} \ge 25$ GeV(BDT tight and loose categories)			
VBF, $p_{\rm T}^{\bar{\gamma}\gamma jj}$ <25 GeV(BDT tight and loose categories)			
ggF 2-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 \text{ GeV}$			
ggF 2-jet, $120 \text{ GeV} \le p_{\text{T}}^{\gamma\gamma} < 200 \text{ GeV}$		cHW [10 ⁻¹]	
ggF 2-jet, 60 GeV $\leq p_{\rm T}^{\gamma\gamma} < 120$ GeV			
ggF 2-jet, $p_{T_{T_{T}}}^{\gamma\gamma} < 60 \text{ GeV}$			
ggF 1-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 \text{ GeV}$			
ggF 1-jet, 120 GeV $\leq p_T^{\gamma\gamma} < 200$ GeV		СНВ[10]	
ggF 1-jet, 60 GeV $\leq p_{T}^{\prime\prime}$ <120 GeV			
ggF 1-jet, $p_{\rm T}^{\prime\prime}$ < 60 GeV			
ggF 0-jet (central and forward categories)		cWW - cB [10 ⁻¹]	

ATLAS, ATL-PHYS-PUB-2017-018

Parameter value

2

Observed HEL constraints with $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$

-2

0

14

ATLAS, ATLAS-CONF-2018-053

$$\bar{c}_{HW} = \frac{m_W^2}{g} \frac{c_{HW}}{\Lambda^2}, \quad \bar{c}_{HB} = \frac{m_W^2}{g'} \frac{c_{HB}}{\Lambda^2}, \quad \bar{c}_W = \frac{m_W^2}{g} \frac{c_W}{\Lambda^2}, \quad \bar{c}_B = \frac{m_W^2}{g'} \frac{c_B}{\Lambda^2}$$

Electroweak measurements

Measurements of gauge boson production sensitive to operators affecting Higgs physics Higgs doublet provides longitudinal degrees of freedom to the electroweak bosons

Traditionally constrain triple-gauge couplings with an effective Lagrangian with form factors Can relate coefficients to those of dimension-6 operators from an SMEFT basis

$$\begin{split} i\mathcal{L}_{\text{eff}}^{WWV} &= g_{WWV} \left\{ \begin{bmatrix} g_{1}^{V} V^{\mu} (W_{\mu\nu}^{-} W^{+\nu} - W_{\mu\nu}^{+} W^{-\nu}) & & O_{B} = (D_{\mu}H)^{\dagger} B^{\mu\nu} D_{\nu}H, \\ & + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{\lambda_{V}}{m_{W}^{2}} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^{-} \end{bmatrix} \right\} \\ & - \begin{bmatrix} \tilde{\kappa}_{V} \\ \frac{1}{2} W_{\mu\nu}^{-} W_{\nu}^{+} \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} & & O_{\tilde{W}} = (D_{\mu}H)^{\dagger} \tilde{W}^{\mu\nu} D_{\nu}H, \\ & - \begin{bmatrix} \tilde{\kappa}_{V} \\ \frac{1}{2} W_{\mu\nu}^{-} W_{\nu}^{+} \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} & & O_{\tilde{W}} = (D_{\mu}H)^{\dagger} \tilde{W}^{\mu\nu} D_{\nu}H, \\ & O_{\tilde{W}} = (D_{\mu}H)^{\dagger} \tilde{W}^{\mu\nu} D_{\mu} D_{\mu} D_{\mu} \\ & O_{\tilde{W}} = (D_{\mu}H)^{\dagger} \tilde{W}^{\mu\nu} D_{\mu} D_{\mu} D_{\mu} D_{\mu} \\ & O_{\tilde{W}} = (D_{\mu}H)^{\dagger} \tilde{W}^{\mu\nu} D_{\mu} D_{\mu}$$

Electroweak measurements

Many diboson and vector-boson fusion measurements constrain triple-gauge couplings Constraints typically extracted from fits to reconstruction-level distributions Fiducial and differential measurements also provided for external fits

Electroweak measurements

Experiments now quote TGC constraints in terms of SMEFT coefficients Most recently in measurements of vector-boson fusion W/Z production

Electroweak m

Experiments now quote TGC constraints in ter Most recently in measurements of vector-bos

Coupling constant	Expected 95% CL interval (TeV $^{-2}$)	Observed 95% CL interval (TeV $^{-2}$)
c_{WWW}/Λ^2	[-3.7, 3.6]	[-2.6, 2.6]
c_W/Λ^2	[-12.6, 14.7]	[-8.4, 10.1]

CMS, 1712.09814 (2017)

Top quark measurements

Top quark production sensitive to many dimension-6 operators In a global analysis the production operators need to be constrained to access ttH operator

Representative set of operators affecting tt & tW production (Warsaw basis):

$$O_{\phi q}^{(3)} = (\phi^{+}\tau^{I}D_{\mu}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q),$$

$$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W_{\mu\nu}^{I},$$

$$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G_{\mu\nu}^{A},$$

$$O_{G} = f_{ABC}G_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu},$$

$$O_{u(c)G} = (\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G_{\mu\nu}^{A},$$

CMS, CMS PAS TOP-17-020 (2017)

Top quark measurements

CMS constrains six operator coefficients by fitting to signal regions in tt and tW production

Three operators sensitive to flavour

Eff. coupling	Channel	Observed	Expected
	ee	$-0.14^{+0.51}_{-0.82}$ $[-1.14$, 0.83]	$0.00^{+0.59}_{-0.90}$ [-1.20 , 0.88]
Ca	eμ	$-0.18^{+0.42}_{-0.73}$ [-1.01 , 0.70]	$0.00^{+0.51}_{-0.82}$ [-1.08 , 0.77]
CG	μμ	$-0.14^{+0.44}_{-0.75}$ [-1.06 , 0.75]	$0.00^{+0.57}_{-0.88}$ [-1.16 , 0.85]
	Combined	$-0.18^{+0.42}_{-0.73}$ [-1.01 , 0.70]	$0.00^{+0.51}_{-0.82}$ [-1.07 , 0.76]
	ee	$1.12^{+2.89}_{-1.18}$ [-4.03 , 4.37]	$0.00^{+1.74}_{-2.53}$ [-6.40 , 3.27]
$C^{(3)}$	eμ	$-0.70^{+0.59}_{-2.16}$ $[-3.74$, 1.61]	$0.00^{+1.12}_{-1.34}$ [-2.57 , 2.15]
$C_{\phi q}$	μμ	$1.13^{+2.86}_{-0.87}$ [-3.58 , 4.46]	$0.00^{+1.92}_{-2.20}$ [-4.68 , 3.66]
	Combined	$-1.52^{-0.33}_{-2.71}$ [-3.82 , 0.63]	$0.00^{+0.88}_{-1.05}$ [-2.04 , 1.63]
	ee	$6.18^{+7.81}_{-3.02}$ [-4.16 , 8.95]	$0.00^{+6.81}_{-2.02}$ [-3.33, 8.12]
Curr	eμ	$1.64^{+5.59}_{-0.80}$ [-1.89 , 6.68]	$0.00^{+6.19}_{-1.40}$ [-2.39 , 7.18]
C_{tW}	μμ	$-1.40^{+7.79}_{-3.00}$ $[-4.23$, 9.01]	$0.00^{+6.97}_{-2.18}$ [-3.63 , 8.42]
	Combined	$2.38^{+4.57}_{+0.22}$ [-0.96 , 5.74]	$0.00^{+5.93}_{-1.14}$ [-1.91 , 6.70]
	ee	$-0.19^{+0.02}_{-0.40}$ $[-0.65$, 0.22]	$0.00^{+0.21}_{-0.22}$ [-0.44 , 0.41]
Cra	eμ	$-0.03^{+0.11}_{-0.19}$ $[-0.34$, 0.27]	$0.00^{+0.15}_{-0.17}$ [-0.34 , 0.29]
C_{tG}	μμ	$-0.15^{+0.02}_{-0.34}$ $[-0.53$, $0.19]$	$0.00^{+0.18}_{-0.19}$ [-0.40 , 0.35]
	Combined	$-0.13^{+0.02}_{-0.27}$ [-0.41 , 0.17]	$0.00^{+0.14}_{-0.15}$ [-0.30 , 0.28]
	ee	$-0.017^{+0.22}_{-0.22}$ [-0.37,0.37]	$0.00^{+0.29}_{-0.29}$ [-0.42 , 0.42]
C c	eμ	$-0.017^{+0.17}_{-0.17}$ [-0.29 ,0.29]	$0.00^{+0.26}_{-0.26}$ [-0.38 , 0.38]
CuG	μμ	$-0.017^{+0.17}_{-0.17}$ [-0.29 ,0.29]	$0.00^{+0.27}_{-0.27}$ [-0.38 , 0.38]
	Combined	$-0.017^{+0.13}_{-0.13}$ [-0.22 ,0.22]	$0.00^{+0.21}_{-0.21}$ [-0.30 , 0.30]
	ee	$-0.032^{+0.47}_{-0.47}$ [-0.78 ,0.78]	$0.00^{+0.63}_{-0.63}$ [-0.92 , 0.92]
Crc	eμ	$-0.032^{+0.34}_{-0.34}$ [-0.60 ,0.60]	$0.00^{+0.56}_{-0.56}$ [-0.81 , 0.81]
	μμ	$-0.032^{+0.36}_{-0.36}$ [-0.63,0.63]	$0.00^{+0.58}_{-0.58}$ [-0.84 , 0.84]
	Combined	$-0.032^{+0.26}_{-0.26}$ [-0.46 ,0.46]	$0.00^{+0.46}_{-0.46}$ [-0.65 , 0.65]

Eff coupling	Channol	Categories				
EII. Couping	Charmer	1-jet,0-tag	1-jet,1-tag	2-jets,1-tag	n-jets,1-tag	\geq 2-jets,2-tags
	ee	-	Yield	Yield	-	Yield
C _G	eμ	Yield	Yield	Yield	-	Yield
	μμ	-	Yield	Yield	-	Yield
	ee	-	NN ₁₁	NN ₂₁	-	Yield
$C_{\phi a}^{(3)}, C_{tW}, C_{tG}$	еµ	NN ₁₀	NN_{11}	NN ₂₁	-	Yield
41	μμ	-	NN ₁₁	NN ₂₁	-	Yield
	ee	-	-	-	NN _{FCNC}	-
C_{uG}, C_{cG}	еµ	-	-	-	NN _{FCNC}	-
	μμ	-	-	-	NN _{FCNC}	-

Top quark measurements

ATLAS individually constrains four operator coefficients by fitting to signal regions in ttZ production

Operator	Expression				
(2)		Coefficient	Expected limits	Observed limits	Previous constraints
$O_{\phi Q}^{(3)}$	$i\frac{1}{2}(\phi^{\dagger}D_{\mu}\phi)(\bar{Q}\gamma^{\mu}\tau^{I}Q)$		at 68% and 95 % CL	at 68% and $95~\%$ CL	at 95 % CL
$O_{\phi O}^{(1)}$	$i\frac{1}{2}(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{Q}\gamma^{\mu}Q)$	$(C_{\phi Q}^{(3)} - C_{\phi Q}^{(1)})/\Lambda^2$	[-2.1, 1.9], [-4.6, 3.7]	[-1.0, 2.7], [-3.4, 4.3]	[-3.4, 7.5]
ψQ	(1)	$C_{\phi t}/\Lambda^2$	[-3.8, 2.8], [-23, 5.0]	[-2.0, 3.6], [-27, 5.7]	[-2.0, 5.7]
$O_{\phi t}$	$l\frac{1}{2}(\phi^{\dagger}D_{\mu}\phi)(t\gamma^{\mu}t)$	C_{tB}/Λ^2	[-8.3, 8.6], [-12, 13]	[-11, 10], [-15, 15]	[-16, 43]
O_{tW}	$y_t g_w (\bar{Q}\sigma^{\mu\nu}\tau^I t)\tilde{\phi}W^I_{\mu\nu}$				
O_{tB}	$y_t g_Y (\bar{Q}\sigma^{\mu\nu}t) \tilde{\phi} B_{\mu\nu}$				
	· · ·	$\overrightarrow{0}$ = $\overrightarrow{\mathbf{A} \mathbf{I} \mathbf{L} \mathbf{A} \mathbf{S}}$ Pl > $\overrightarrow{\mathbf{V}}$ = 13 Te	\bullet Uava \bullet Dava \bullet Dava \bullet	LAS, ATL <mark>AS</mark> CONF	-2018 <u>-</u> 047 (2018)
		ш (post-fit)	Othe	r 🗾 tĪH	-
			Char	ge-flips γ+X	-

Chiral Electroweak Higgs effective field theory

Alternatively treat Higgs boson as (non-SM) electroweak singlet & expand in chiral dimensions

$$\begin{aligned} \mathcal{L}_{2} &= -\frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \sum_{\psi=q_{L}, l_{L}, u_{R}, d_{R}, e_{R}} \bar{\psi} i \not\!\!\!D \psi \\ &+ \frac{v^{2}}{4} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle \left(1 + F_{U}(h) \right) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) \\ &- v \left[\bar{q}_{L} \left(Y_{u} + \sum_{n=1}^{\infty} Y_{u}^{(n)} \left(\frac{h}{v} \right)^{n} \right) U P_{+} q_{R} + \bar{q}_{L} \left(Y_{d} + \sum_{n=1}^{\infty} Y_{d}^{(n)} \left(\frac{h}{v} \right)^{n} \right) U P_{-} q_{R} \\ &+ \bar{l}_{L} \left(Y_{e} + \sum_{n=1}^{\infty} Y_{e}^{(n)} \left(\frac{h}{v} \right)^{n} \right) U P_{-} l_{R} + \text{h.c.} \end{aligned} \right] \qquad \qquad U = \exp(2i\varphi^{a}T^{a}/v) \end{aligned}$$

At LO Higgs interactions can be expressed as SM-like interactions with different numerical coefficients

e.g. Buchalla, Capozi, Celis, Heinrich, & Scyboz, JHEP 09 (2018) 057

Kappa multipliers to Lagrangian operators

The dominant effects of new physics are in the Higgs sector in the non-linear-EFT scenario Constrained experimentally using multiplicative κ parameters to the Higgs SM-like interactions

Production modes

$$\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = \begin{cases} \kappa_g^2(\kappa_b, \kappa_t, m_H) \\ \kappa_g^2 \end{cases}$$

$$\frac{\sigma_{VBF}}{\sigma_{VBF}^{SM}} = \kappa_{VBF}^2(\kappa_W, \kappa_Z, m_H) \\
\frac{\sigma_{WH}}{\sigma_{WH}^{SM}} = \kappa_W^2 \\$$

$$\frac{\sigma_{ZH}}{\sigma_{ZH}^{SM}} = \kappa_Z^2 \\$$

$$\frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}} = \kappa_t^2$$

Detectable decay modes

$$\begin{split} \frac{\Gamma_{\rm WW}^{(*)}}{\Gamma_{\rm WW}^{(*)}} &= \kappa_{\rm W}^2 \\ \frac{\Gamma_{\rm ZZ}^{(*)}}{\Gamma_{\rm ZZ}^{(*)}} &= \kappa_{\rm Z}^2 \\ \frac{\Gamma_{\rm b\overline{b}}}{\Gamma_{\rm b\overline{b}}^{\rm SM}} &= \kappa_{\rm b}^2 \\ \frac{\Gamma_{\rm \tau^-\tau^+}}{\Gamma_{\rm \tau^-\tau^+}^{\rm SM}} &= \kappa_{\rm \tau}^2 \\ \frac{\Gamma_{\rm \gamma\gamma}}{\Gamma_{\rm \gamma\gamma}^{\rm SM}} &= \left\{ \begin{array}{c} \kappa_{\rm \gamma}^2(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm \tau},\kappa_{\rm W},m_{\rm H}) \\ \kappa_{\rm \gamma}^2 \end{array} \right. \end{split}$$

See also talk from S. Rosati

Combination of many ATLAS production and decay channels constrains κ parameters

Analysis	Integrated luminosity (fb ⁻¹)
$H \rightarrow \gamma \gamma$ (including $t\bar{t}H, H \rightarrow \gamma \gamma$)	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H \to \tau \tau$	36.1
$VH, H \rightarrow b\bar{b}$	36.1
$H \rightarrow \mu \mu$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1

$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ^* \rightarrow 4\ell$	$H \rightarrow WW^*$	$H \rightarrow \tau \tau$	$H \rightarrow b\bar{b}$
$t\bar{t}H$ leptonic (3 categories)	$t\bar{t}H$ leptonic	$t\bar{t}H$ multilepton 1 ℓ + 2 τ_{had}		$t\bar{t}H \ 1 \ \ell$, boosted
$t\bar{t}H$ hadronic (4 categories)	$t\bar{t}H$ hadronic	$t\bar{t}H$ multilepton 2 opposite-sign ℓ		$t\bar{t}H \ 1 \ \ell$, resolved (11 categories)
		$t\bar{t}H$ multilepton 2 same-sign ℓ (categorian	pries for 0 or 1 τ_{had})	$t\bar{t}H \ 2 \ \ell \ (7 \ categories)$
		$t\bar{t}H$ multilepton 3 ℓ (categories for 0 d	or 1 τ_{had})	
		$t\bar{t}H$ multilepton 4 ℓ		
VH 2 ℓ	VH leptonic			$2 \ell, 75 \le p_{\rm T}^V < 150 \text{ GeV}, N_{\rm jets} = 2$
$VH \ 1 \ \ell, p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}} \ge 150 \ \mathrm{GeV}$	0-jet, $p_{\rm T}^{4\ell} \ge 100 \text{ GeV}$			$2 \ell, 75 \le p_{\rm T}^V < 150 {\rm GeV}, N_{\rm jets} \ge 3$
$VH \ 1 \ \ell, p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{mass}}} < 150 \ \mathrm{GeV}$				$2 \ell, p_{\rm T}^V \ge 150 \text{ GeV}, N_{\rm jets} = 2$
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss} \ge 150 {\rm GeV}$				$2 \ell, p_{\rm T}^V \ge 150 \text{ GeV}, N_{\rm jets} \ge 3$
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss} < 150 {\rm GeV}$				$1 \ell p_{\rm T}^V \ge 150 \text{ GeV}, N_{\rm jets} = 2$
$VH + VBF p_T^{jf} \ge 200 \text{ GeV}$				$1 \ell p_{\rm T}^{\tilde{V}} \ge 150 \text{ GeV}, N_{\rm iets} = 3$
<i>VH</i> hadronic (2 categories)	2-jet, $m_{ii} < 120 \text{ GeV}$			$0 \ell, p_{\rm T}^V \ge 150 \text{ GeV}, N_{\rm jets} = 2$
_				$0 \ell, p_{\rm T}^V \ge 150 \text{ GeV}, N_{\rm jets} = 3$
VBF, $p_{\rm T}^{\gamma\gamma jj} \ge 25$ GeV (2 categories)	2-jet VBF, $p_{\rm T}^{j1} \ge 200 \text{GeV}$	2-jet VBF	$VBF p_{T}^{\tau\tau} > 140 \text{ GeV}$	
VBF, $p_{T}^{\dot{\gamma}\gamma j j}$ <25 GeV (2 categories)	2-jet VBF, $p_{T}^{j_{1}} < 200 \text{ GeV}$		$(\tau_{\rm had}\tau_{\rm had} \text{ only})$	
			VBF high- m_{ii}	
			VBF low- m_{jj}	
2-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 \text{ GeV}$	1-jet, $p_{\rm T}^{4\ell} \ge 120 {\rm GeV}$	1-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\rm T}^{\ell_2} < 20 \text{ GeV}$	Boosted, $p_{\rm T}^{\tau\tau} > 140 \text{ GeV}$	
2-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma} < 200$ GeV	1-jet, 60 GeV $\leq p_{\rm T}^{4\ell} < 120$ GeV	1-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$	Boosted, $p_{\rm T}^{\tau\tau} \le 140 {\rm GeV}$	
2-jet, 60 GeV $\leq p_{\rm T}^{\gamma \gamma} < 120$ GeV	1-jet, $p_{\rm T}^{4\ell} < 60 {\rm GeV}$	1-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} < 20 \text{ GeV}$	-	
2-jet, $p_{\rm T}^{\gamma\gamma} < 60 \text{ GeV}$	0-jet, $p_{\rm T}^{4\ell} < 100 {\rm GeV}$	1-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$		
1-jet, $p_{\rm T}^{\dot{\gamma}\gamma} \ge 200 {\rm GeV}$	-	0-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\rm T}^{\hat{\ell}_2} < 20 \text{ GeV}$		
1-jet, 120 GeV $\leq p_T^{\gamma\gamma} < 200$ GeV		0-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\rm T}^{\ell_2} \ge 20 \text{ GeV}$		
1-jet, 60 GeV $\leq p_{\rm T}^{\gamma\gamma}$ < 120 GeV		0-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} < 20 \text{ GeV}$		
1-jet, $p_{\rm T}^{\gamma\gamma}$ < 60 GeV		0-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$		
0-jet (2 categories)		-		

ATLAS combination constrains seven κ parameters and BSM branching fraction

26

Combination of many CMS production and decay channels constrains eight κ parameters

Production and decay tags		Expected signal composition	Number of categories	Mass resolution
$H \rightarrow \gamma \gamma$, Section 3.1				
	Untagged	74–91% ggH	4	
$\gamma\gamma$	VBF	51-80% VBF	3	
	VH hadronic	25% WH, 15% ZH	1	
	WH leptonic	64-83% WH	2	\approx 1–2%
, ,	ZH leptonic	98% ZH	1	
	VH $p_{\rm T}^{\rm miss}$	59% VH	1	
	ttH	80–89% ttH, ≈8% tH	2	
$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, See	ction 3.2	,		
	Untagged	≈95% ggH	3	
	VBF 1, 2-jet	≈11–47% VBF	6	
	VH hadronic	≈13% WH. ≈10% ZH	3	
4µ, 2e2µ/2µ2e, 4e	VH leptonic	≈46% WH	3	≈1–2%
	VH n ^{miss}	≈56% ZH	3	
	#H	≈71% ttH	3	
$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$.	Section 3.3		-	
	ooH 0, 1, 2-jet	\approx 55–92% ggH up to \approx 15% H $\rightarrow \tau\tau$	17	
$e\mu/\mu e$	VBF 2-iet	$\approx 47\%$ VBF up to $\approx 25\%$ H $\rightarrow \tau\tau$	2	
00+1/1/	ggH 0 1-jet	~84_94% ggH	-	
ο <i>μ</i> ±ij	VH 2-jet	20% VH 21% H $\rightarrow \tau\tau$	1	$\approx 20\%$
eμ+jj 20	WH loptopic	$\sim 22/6$ VII, $\simeq 21/6$ II $\rightarrow \ell \ell$	2	
5e 1l	ZH loptonic	$\sim 50\%$ W11, up to 19% 11 $\rightarrow 11$	2	
$\frac{4\ell}{U}$	ZITTeptonic	$85-90\%$ ZII, up to 14% II $\rightarrow tt$	2	
$\Pi \rightarrow \iota \iota$, section 3.4	0 ist	\sim 70 08% and 20% H \rightarrow WW in all	4	
	VPE	$\approx 70-98\%$ gg11, 29\% 11 \rightarrow WW III e μ $\approx 25.60\%$ V/RE 42% H \rightarrow W/W in e μ	4	$\sim 10.20\%$
$e\mu$, $e\iota_h$, $\mu\iota_h$, $\iota_h\iota_h$	V Dr Received	$\approx 33-60\%$ VDF, 42% II \rightarrow VVV III e μ	4	~10-20 %
VU production with I	Joosteu	\approx 40-05 / $_{0}$ gg11, 45 / $_{0}$ 11 \rightarrow WW III e μ	4	
	$1 \rightarrow bb$, Section 5.5	~ 1000/ VII 9E0/ 7II	1	
$\Sigma(\nu\nu)$ bb		~100% VII, 65% ZII	1	
VV (<i>LV</i>)DD	WH leptonic	≈100% VH, ≈97% WH	2	$\approx 10\%$
$Z(\ell \ell)bb$	Low- $p_{\rm T}(V)$ ZH leptonic	$\approx 100\%$ ZH, of which $\approx 20\%$ ggZH	2	
	High- $p_{\rm T}(V)$ ZH leptonic	$\approx 100\%$ ZH, of which $\approx 36\%$ ggZH	2	
Boosted H Production	H with $H \rightarrow bb$, Section 3.6			100/
$\frac{H \rightarrow DD}{H \rightarrow DD}$	$p_{\rm T}({\rm H})$ bins	≈72–79% ggH	6	≈10%
ttH production with F	$1 \rightarrow \text{leptons}, \text{ Section 3.7.1}$		10	
	2ℓss	WW/ $\tau\tau \approx 4.5, \approx 5\%$ tH	10	
	31	WW : $\tau\tau$: ZZ \approx 15 : 4 : 1, \approx 5% tH	4	
$H \rightarrow WW, \tau\tau, ZZ$	4	WW : $\tau\tau$: ZZ \approx 6 : 1 : 1, \approx 3% tH	1	
	$1\ell+2\tau_h$	96% ttH with H $\rightarrow \tau \tau$, \approx 6% tH	1	
	$2\ell ss+1\tau_h$	$\tau\tau$: WW \approx 5 : 4, \approx 5% tH	2	
	$3\ell+1\tau_h$	$\tau\tau$: WW : ZZ \approx 11 : 7 : 1, \approx 3% tH	1	
ttH production with F	$1 \rightarrow bb$, Section 3.7.2			
	$tt \rightarrow jets$	\approx 83–97% ttH with H \rightarrow bb	6	
$H \rightarrow bb$	$tt \rightarrow 1\ell$ +jets	\approx 65–95% ttH with H \rightarrow bb, up to 20% H \rightarrow WW	18	
	$tt \rightarrow 2\ell$ +jets	\approx 84–96% ttH with H \rightarrow bb	3	
Search for $H \rightarrow \mu\mu$, S	Section 3.8			
μμ	S/B bins	56–96% ggH, 1–42% VBF	15	≈1–2%
Search for invisible H	decays, Section 3.9			
	VBF	52% VBF, 48% ggH	1	
$H \rightarrow invisible$	$ggH + \ge 1$ jet	80% ggH, 9% VBF	1	
	VH hadronic	54% VH, 39% ggH	1	
	ZH leptonic	$\approx 100\%$ ZH, of which 21% ggZH	1	

Also constrains BSM branching fraction & invisible decay

CMS, 1809.10733 (2018)

Combination of CMS differential cross sections used to study pairs of κ parameters Low p_T^H sensitive to b & c quark loops in gluon fusion Constraints on pairs of parameters dominated by rate (through total width)

Also study ttH + ggF and ttH + bbH pairs of coupling modifiers

CMS, CMS PAS HIG-17-028 (2018)

See also talk from A. de Wit

Summary

SM effective field theory operators now broadly used to interpret Higgs, Electroweak and top measurements at the LHC

Extensive combination frameworks applied to Higgs measurements to constrain effective couplings

These are the ingredients to a global SM EFT fit

Global fit will require expanded coordination of experimental combination across measurements and theoretical feedback on fit strategies and uncertainties