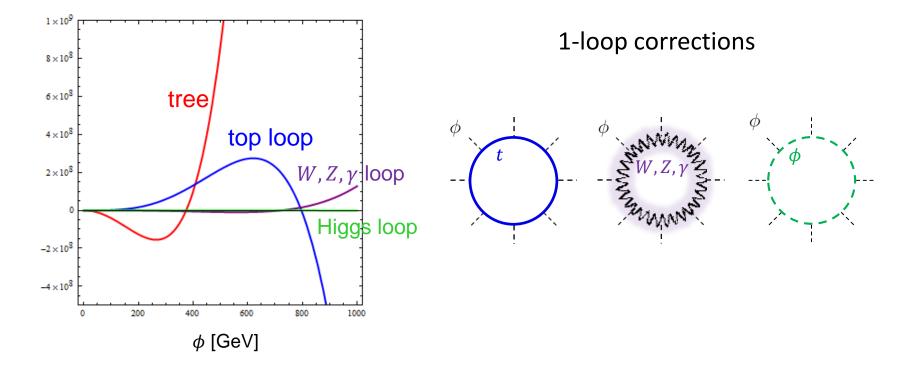
Top-quark mass and Yukawa coupling


Y. Sumino (Tohoku Univ.)

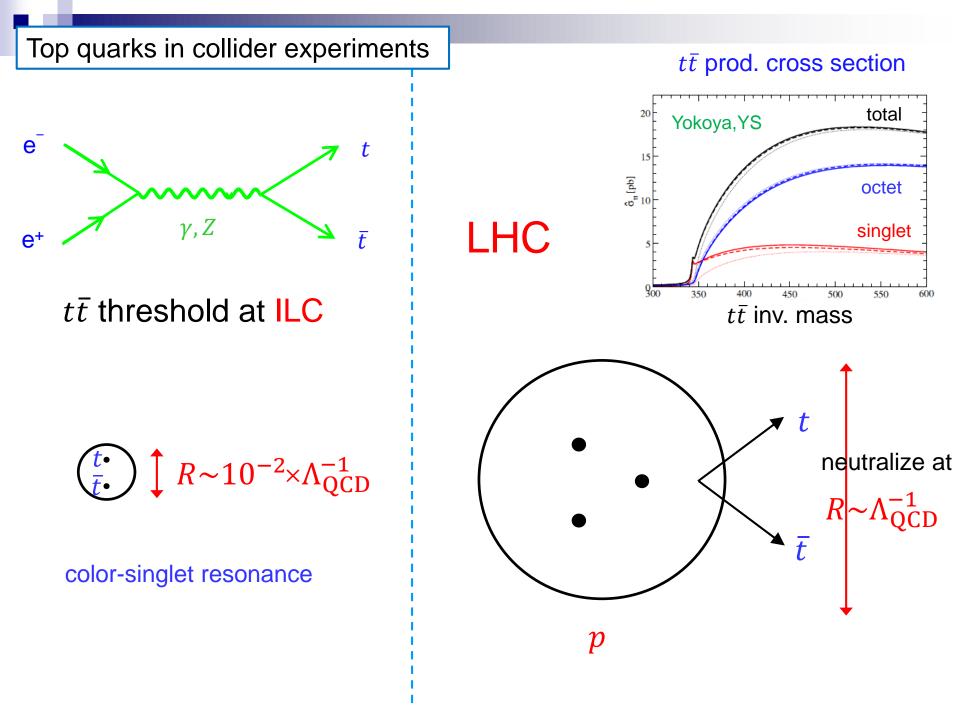
\Rightarrow Plan of Talk


- 1. What's top mass(+Yukawa coupling)? [Introduction]
- 2. Precision top mass determination at *ILC*
- 3. Top mass at *LHC*: status, problems, goals
- 4. Summary and Conclusions

Role of top quark in the SM vacuum structure

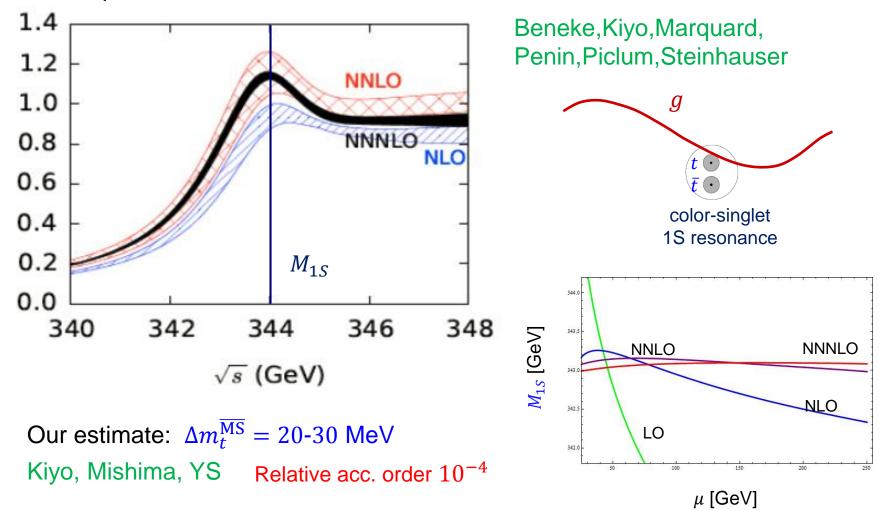
Tree+1-loop Higgs potential

Definitions of top-quark mass in pert. QCD



$$\overline{AS} \text{ mass } \overline{m} \equiv m_{\overline{MS}}(m_{\overline{MS}})$$
 $0 < \lambda_g < 1/\overline{m}$
 Q

 $m_{\sf bare}$


Not defined beyond pert. theory Perturbative uncertainty $O(\Lambda_{QCD}) \lesssim 1 \text{ GeV}$

Conceptually close to Yukawa coupling at scale $\mu \sim \overline{m}$

Precise m_t determination near $t\bar{t}$ threshold at e^+e^- collider

After decades of endeavor, $e^+e^- \rightarrow t\bar{t}$ cross section near threshold was computed.

$I(J^P) = 0(\frac{1}{2}^+)$ Particle Data Group 2018

Charge $=\frac{2}{3}e$ Top =+1

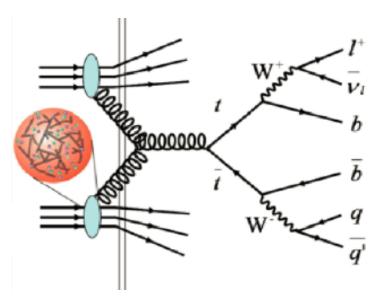
t-Quark Mass (Direct Measurements)

t

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
173.0 ± 0.4 OUR AVE	RAGE Error inclu	des scale facto	or of 1.3. See the ideogram
below.			
$172.95 \pm \ 0.77 {+} {0.97 \atop -} 0.93$	¹ SIRUNYAN	17L CMS	t-channel single top production
$172.84\pm~0.34\pm~0.61$	² AABOUD		combination of ATLAS
$172.44 \pm 0.13 \pm 0.47$	³ KHACHATRY	16AK CMS	combination of CMS
$174.30\pm~0.35\pm~0.54$	⁴ TEVEWWG	16 TEVA	Tevatron combination
$\bullet \bullet \bullet$ We do not use the	following data for a	averages, fits,	limits, etc. • • •
$173.72\pm~0.55\pm~1.01$	⁵ AABOUD	17AH ATLS	\geq 5 jets (2b)
$174.95 \pm 0.40 \pm 0.64$	⁶ ABAZOV	17B D0	ℓ + jets and dilepton channels
170.8 \pm 9.0	⁷ SIRUNYAN	17N CMS	jet mass in highly-boosted $t \overline{t}$

t-Quark Mass from Cross-Section Measurements

The top quark $\overline{\text{MS}}$ or pole mass can be extracted from a measurement of $\sigma(t\bar{t})$ by using theory calculations. We quote below the $\overline{\text{MS}}$ mass. See the review "The Top Quark" and references therein for more information.


VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
$160.0^{+4.8}_{-4.3}$	¹ ABAZOV	11s	D0	$\sigma(t\overline{t}) + { m theory}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

t-Quark Pole Mass from Cross-Section Measurements

VALUE (GeV)	DOCUMENT ID TE		COMMENT
173.1±0.9 OUR AVERAGE			
$173.2\!\pm\!0.9\!\pm\!0.8\!\pm\!1.2$	¹ AABOUD	17BC ATLS	$e+\mu+\geq 1b$ jets
170.6 ± 2.7	² SIRUNYAN	17w CMS	$\ell + \geq 1 j$
$172.8 {\pm} 1.1 {+} {3.3} {-} {3.1}$	³ ABAZOV	16F D0	$\ell\ell$, $\ell+jets$ channels
$173.8^{+1.7}_{-1.8}$	⁴ KHACHATRY.	16AW CMS	$e+\mu+ ot\!$
$173.7^{+2.3}_{-2.1}$	⁵ AAD	15BWATLS	$\ell {+} ot\!$
$172.9^{+2.5}_{-2.6}$	⁶ AAD	14AY ATLS	pp at $\sqrt{s}=$ 7, 8 TeV

• • We do not use the following data for averages, fits, limits, etc. • • •

• PDF
 • hadronization

All masses measured in hadron collider exp.

 $I(J^P) = 0(\frac{1}{2}^+)$ Particle Data Group 2018

 $Charge = \frac{2}{3} e \qquad Top = +1$

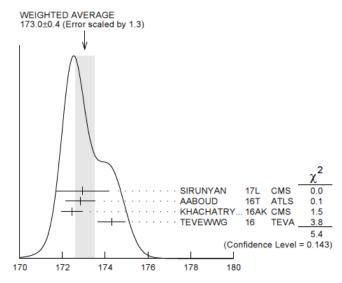
t-Quark Mass (Direct Measurements)

t

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
173.0 \pm 0.4 OUR AVE	RAGE Error inclu	ides scale facto	or of 1.3. See the ideogram
below.			
$172.95 \pm 0.77 {+} {0.97 \atop -} 0.93$	¹ SIRUNYAN	17L CMS	t-channel single top production
$172.84 \pm \ 0.34 \pm \ 0.61$	² AABOUD		combination of ATLAS
$172.44 \pm 0.13 \pm 0.47$			combination of CMS
$174.30 \pm 0.35 \pm 0.54$	⁴ TEVEWWG	16 TEVA	Tevatron combination
• • • We do not use the	following data for	averages, fits,	limits, etc. • • •
$173.72 \pm 0.55 \pm 1.01$	⁵ AABOUD	17AH ATLS	\geq 5 jets (2b)
$174.95 \pm 0.40 \pm 0.64$	⁶ ABAZOV	17B D0	ℓ + jets and dilepton channels
$170.8~\pm~9.0$	⁷ SIRUNYAN	17N CMS	jet mass in highly-boosted $t \bar{t}$

t-Quark Mass from Cross-Section Measurements

The top quark $\overline{\text{MS}}$ or pole mass can be extracted from a measurement of $\sigma(t\bar{t})$ by using theory calculations. We quote below the $\overline{\text{MS}}$ mass. See the review "The Top Quark" and references therein for more information.


VALUE (GeV)	DOCUMENT ID		TECN	COMMENT	
160.0+4.8	¹ ABAZOV	11s	D0	$\sigma(t\overline{t})$ + theory	

• • We do not use the following data for averages, fits, limits, etc. • • •

t-Quark Pole Mass from Cross-Section Measurements

VALUE (GeV)	DOCUMENT ID TECN		COMMENT
173.1±0.9 OUR AVERAGE			
$173.2\!\pm\!0.9\!\pm\!0.8\!\pm\!1.2$	¹ AABOUD	17BC ATLS	$e+\mu+\geq$ 1 b jets
170.6 ± 2.7	² SIRUNYAN	17w CMS	$\ell + \geq 1j$
$172.8 {\pm} 1.1 {+} {3.3} {-} {3.1}$	³ ABAZOV	16F D0	$\ell\ell$, ℓ +jets channels
$173.8^{+1.7}_{-1.8}$	⁴ KHACHATRY	16AW CMS	$e + \mu + ot\!$
$173.7^{+2.3}_{-2.1}$	⁵ AAD	15BWATLS	$\ell + \not\!$
$172.9^{+2.5}_{-2.6}$	⁶ AAD	14AY ATLS	pp at $\sqrt{s}=$ 7, 8 TeV

• • We do not use the following data for averages, fits, limits, etc. • • •

t-Quark Mass (Direct Measurements) (GeV)

All masses measured in hadron collider exp.

 $I(J^P) = O(\frac{1}{2}^+)$ Particle Data Group 2018

 $Charge = \frac{2}{3} e \qquad Top = +1$

t-Quark Mass (Direct Measurements)

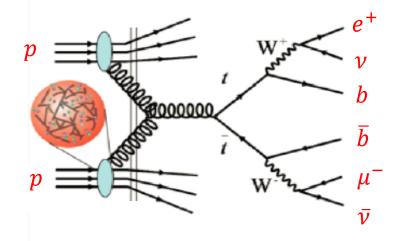
t

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT		
173.0 ± 0.4 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.					
$172.95 \pm 0.77 {+} {0.97 \atop -} 0.93$	¹ SIRUNYAN	17L CMS	t-channel single top production		
$172.84 \pm \ 0.34 \pm \ 0.61$			combination of ATLAS		
$172.44 \pm 0.13 \pm 0.47$			combination of CMS		
$174.30\pm~0.35\pm~0.54$	⁴ TEVEWWG	16 TEVA	Tevatron combination		
\bullet \bullet \bullet We do not use the	following data for	averages, fits,	limits, etc. • • •		
$173.72 \pm 0.55 \pm 1.01$	⁵ AABOUD	17AH ATLS	\geq 5 jets (2b)		
$174.95 \pm 0.40 \pm 0.64$	⁶ ABAZOV	17B D0	ℓ + jets and dilepton channels		
$170.8~\pm~9.0$	⁷ SIRUNYAN	17N CMS	jet mass in highly-boosted $t\bar{t}$		

t-Quark Mass from Cross-Section Measurements

The top quark $\overline{\text{MS}}$ or pole mass can be extracted from a measurement of $\sigma(t\bar{t})$ by using theory calculations. We quote below the $\overline{\text{MS}}$ mass. See the review "The Top Quark" and references therein for more information.

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
160.0 + 4.8	¹ ABAZOV	11s	D0	$\sigma(t\overline{t})$ + theory

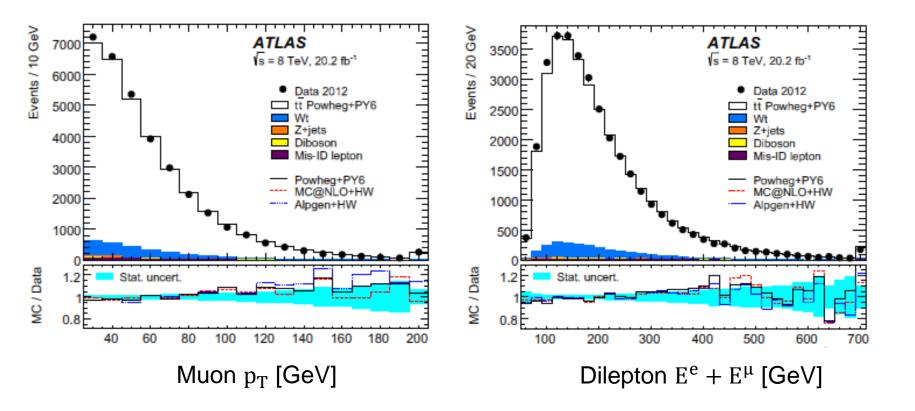

• • We do not use the following data for averages, fits, limits, etc. • • •

t-Quark Pole Mass from Cross-Section Measurements

VALUE (GeV)	DOCUMENT ID T		COMMENT
173.1±0.9 OUR AVERAGE			
$173.2 \!\pm\! 0.9 \!\pm\! 0.8 \!\pm\! 1.2$	¹ AABOUD	17BC ATLS	$e+\mu+\geq 1b$ jets
170.6 ± 2.7	² SIRUNYAN	17w CMS	$\ell + \geq 1j$
$172.8 {\pm} 1.1 {+} {3.3} {-} {3.1}$	³ ABAZOV	16F D0	$\ell\ell$, ℓ +jets channels
$173.8^{+1.7}_{-1.8}$	⁴ KHACHATRY	16AW CMS	$e+\mu+ ot\!$
$173.7^{+2.3}_{-2.1}$	⁵ AAD	15BWATLS	$\ell {+} ot\!$
$172.9^{+2.5}_{-2.6}$	⁶ AAD	14AY ATLS	pp at $\sqrt{s}=$ 7, 8 TeV

• • We do not use the following data for averages, fits, limits, etc. • • •

 m_t^{pole} determination at LHC using lepton distributions in dilepton channel

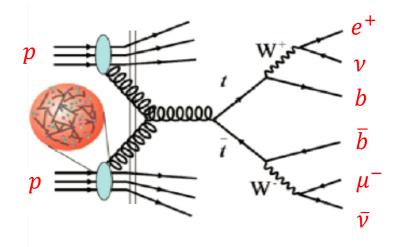

 $\sqrt{s} = 8 \text{ TeV}$

 $m_t^{\text{pole}} = 173.2 \pm 0.9 \pm 0.8 \pm 1.2 \text{ GeV}$ = 173.2±1.6 GeV

The pole mass is extracted from a fit of NLO predictions to 8 lepton differential distributions in dileptonic $t\bar{t}$ events, while simultaneously constraining uncertainties due to PDFs and QCD scales.

Largely indep. of jet profiles (e.g. Missing p_T cut is not used)

Leptonic observables vs. MC predictions


MC input $m_t = 172.5 \text{ GeV}$

Pert. QCD prediction for $t\bar{t}$ cross sections at LHC

NNLO+NNLL predictions

Czakon, Heymes, Mitov (prod) Gao, Papanastasiou (prod+decay)

More to come soon.

How to ideally compare with pert. QCD?

Model dependences should be largely eliminated. *hadronization, PDF*

- Hadronic inclusive obs. $\sum |had.\rangle \langle had. | = \sum |q,g\rangle \langle q,g| = 1$ (More accurately, OPE formulation desirable.)
- Uncertainty due to PDF can be eliminated (in principle).
 Weight fn. method Kawabata, Shimizu, YS, Yokoya
- Roles of MC simulation needs to be reconsidered.

OPE formulation (idea)

$$\frac{1}{\sigma} \frac{d\sigma(pp \to t\bar{t} \to l\nu X)}{d\Phi(l)} = \frac{1}{\sigma} \int d\Phi(had) \langle pp | l\nu X \rangle \langle l\nu X | pp \rangle$$
$$= \frac{1}{\sigma} \int d\Phi(had) H^{\mu\nu} L_{\mu\nu}$$
$$\int d\Phi(had) H^{\mu\nu}(pp \to X) = \text{Identify OPE in terms of EF}$$
by integr.-by-region method

Similar to DIS in *ep* collision

EFT

- Precise treatment of IR contributions ٠
- Simplification by EFT and inclusive calc. ٠

Summary and Conclusions

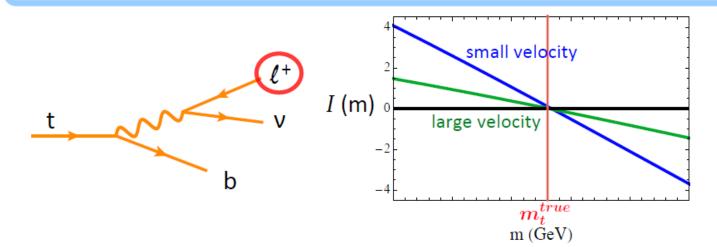
- Accurate view on current status of top mass determination is important.
 def./assumptions w.r.t. pert. QCD
- $\overline{\text{MS}}$ mass determination at $e^+e^- \rightarrow t\bar{t}$ near threshold is ideal. $O(10^{-4})$ acc.
- At LHC ∆m_t much below 1 GeV is currently challenging.
 Color charge distribution around octet tt̄ introduces unsuppressed/uncontrolled IR physics.
- For determination of well-defined top mass at LHC, use of leptonic obs. combined with NNLO prediction analysis is optimal.
 PDF indep. property can be exploited in addition. (Weight fn. method) OPE is desirable to control IR contributions precisely.

➡ Model indep. analysis

Ŋ9

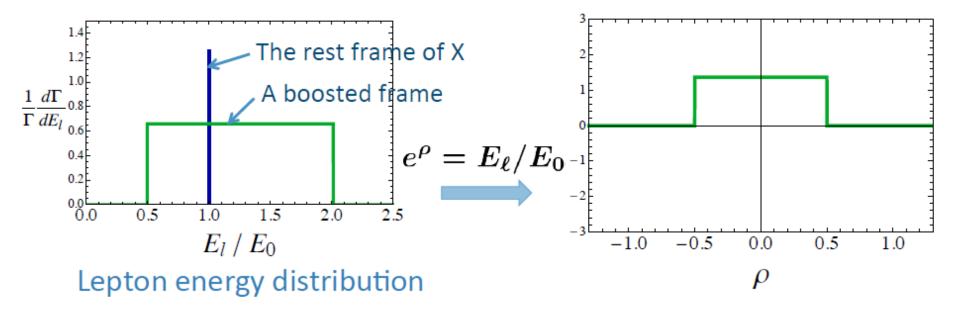
Kawabata, Shimizu, YS, Yokoya

Slides from S. Kawabata's talks TopWG@CERN2014,TopWS2015

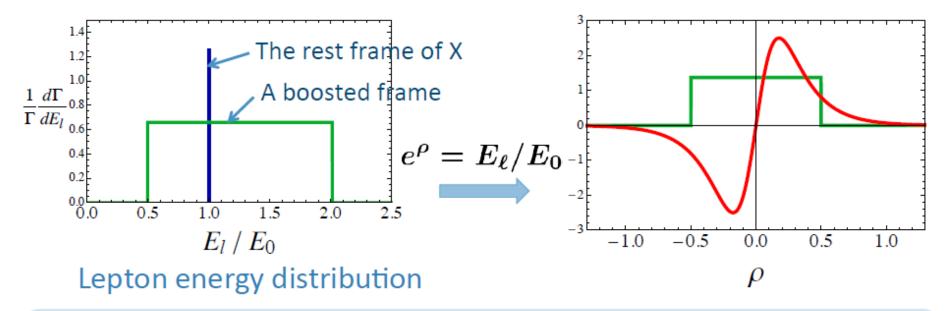

Weight functions and the weighted integrals

 $I(m) \equiv \int dE_l D(E_l) W(E_l, m)$

Lepton energy distribution in the lab. frame


There exist an infinite number of weight functions which satisfy

 $I(m = m_t^{true}) = 0$ for an arbitrary velocity distribution of top quarks


Construction of weight functions

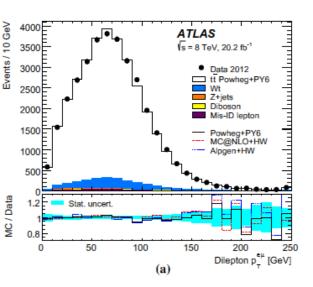
For a two-body decay : $X \rightarrow l + Y$ (X is scalar or unpolarized)

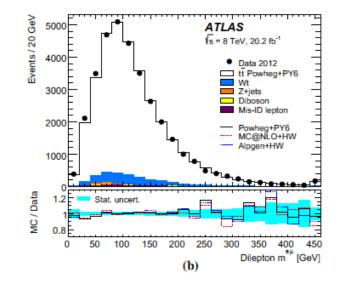
Construction of weight functions

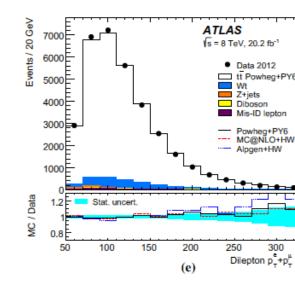
For a two-body decay : $X \rightarrow l + Y$ (X is scalar or unpolarized)

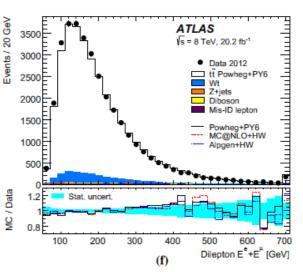
$$\int dE_l \, D(E_l) \, W(E_l, m_X^{true}) = 0 \iff \int d
ho$$
 (even func. of ho)(odd func. of $ho) = 0$
 $d
ho \propto e^{-
ho} dE_l$

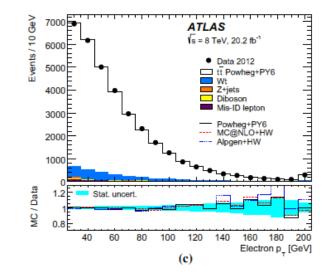
 $W(E_l, m_X^{true}) = \left. \mathrm{e}^{ho}(\mathrm{odd} \; \mathrm{func.} \; \mathrm{of} \;
ho) \right|_{\mathrm{e}^
ho = E_l/E_0}$

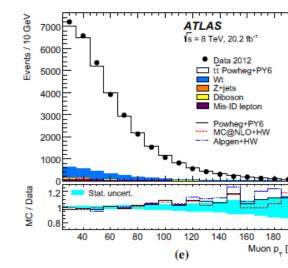

Possible OPE formulation (idea)

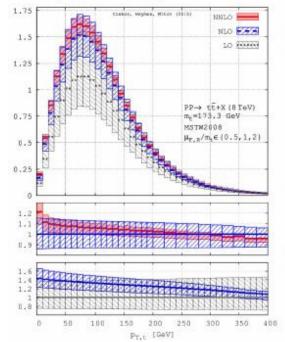

$$\frac{d\sigma(pp \to t\bar{t} \to l\nu X)}{d\Phi(l)} = \int d\Phi(had) \langle pp|l\nu X \rangle \langle l\nu X|pp \rangle$$
$$= \underbrace{\int d\Phi(had) \ H^{\mu\nu} \ L_{\mu\nu}}_{\int d\Phi(had) \ H^{\mu\nu}(pp \to X)} = \text{Identify OPE in terms of EFT}$$
by integr.-by-region method


similar to DIS in ep collision

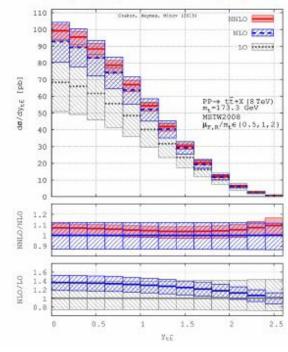

\Rightarrow Plan of Talk


- 1. Introduction
- 2. Top mass determination at ILC
- 3. Top mass determination at LHC: Use of leptonic observables
- (4. A future direction for precision QCD)
- 5. Summary and Conclusions



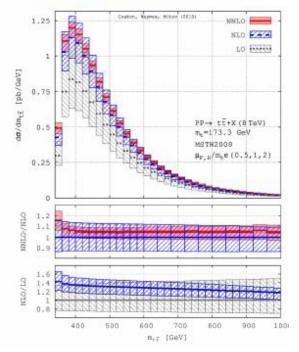


MC input $m_t = 172.5 \text{ GeV}$

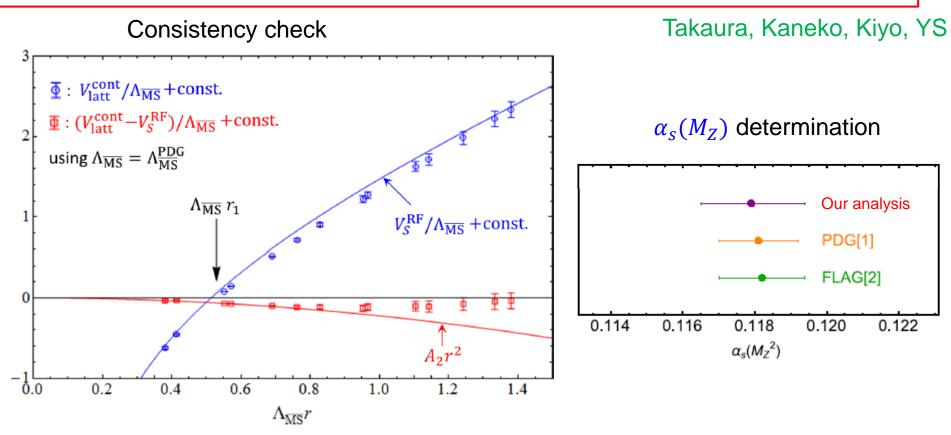

Pert. QCD prediction for $t\bar{t}$ cross sections at LHC

NNLO predictions

P_{T} ot the top



Rapidity of the top-pair



Czakon, Heymes, Mitov

Invariant mass

e Direction for Precision QCD: OPE with renormalon subtraction

 $V_{\text{QCD}}(r)$ [JLQCD: $n_f = 3$, {64³×128, 48³×96, 32³×64}] consistent with OPE at $r\Lambda_{\overline{\text{MS}}} \leq 0.8$ after renormalon subtraction.

the OPE structure

 $V_{\text{QCD}}(r) = V_S^{RF}(r) + \delta E_{US}^{RF}(r)$ NNNLL fit fn: $A_0 + A_2 r^2$

Summary and Conclusions

- Need to understand current status of top mass determinations def./assumptions
- $\overline{\text{MS}}$ mass determination at $e^+e^- \rightarrow t\bar{t}$ near threshold would be ideal.
- At LHC ∆m_t much below 1 GeV would be difficult to achieve.
 Color charge distribution around octet tt̄ would introduce unsuppressed/uncontrolled IR physics.
- For measurement of well-defined top mass at LHC, use of leptonic observables combined with NNLO prediction + model indep. analysis is ideal.
- Steps taken towards high precision QCD (results in foreseeable future)