The Future Frontier of Precision Higgs Physics

Ian Low
Argonne/Northwestern
November 28, 2018
The Higgs Coupling workshop was held in Tokyo back in 2012:

Higgs Identification with Current Data

Ian Low
Argonne/ Northwestern/ KITP Santa Barbara

Nov 19, 2012
Higgs Coupling 2012, Tokyo
The Higgs Coupling workshop was held in Tokyo back in 2012:

Higgs Identification with Current Data

Ian Low

Argonne/ Northwestern/ KITP Santa Barbara
It has been a long way since 2012: We have recently established ttH and bbH couplings!

ATLAS Preliminary
$\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1}$
$m_H = 125.09 \text{ GeV}, |y_H| < 2.5$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>κ_Z</th>
<th>κ_W</th>
<th>κ_t</th>
<th>κ_b</th>
<th>κ_τ</th>
<th>κ_g</th>
<th>κ_γ</th>
<th>B_{BSM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>$B_{BSM} = 0$</td>
<td>$</td>
<td>\kappa_V</td>
<td>\leq 1$</td>
<td>$B_{BSM} \geq 0$</td>
<td>$</td>
<td>\kappa_W</td>
<td>\leq 1$</td>
</tr>
</tbody>
</table>

CMS Preliminary
$35.9 \text{ fb}^{-1} (13 \text{ TeV})$

- Observed
- 1σ interval
- 2σ interval
Our understanding has gotten pretty sophisticated -- 10-parameter fit has been performed:

Table 15: Results of the ten-parameter fit of $\mu_F^f = \mu_{ggF+ttH}$ and $\mu_V^f = \mu_{VBF+VH}$ for each of the five decay channels, and of the six-parameter fit of the global ratio $\mu_V/\mu_F = \mu_{VBF+VH}/\mu_{ggF+ttH}$ together with μ_F^f for each of the five decay channels. The results are shown for the combination of ATLAS and CMS, together with their measured and expected uncertainties. The measured results are also shown separately for each experiment.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ATLAS+CMS Measured</th>
<th>ATLAS+CMS Expected uncertainty</th>
<th>ATLAS Measured</th>
<th>CMS Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_{\gamma\gamma}$</td>
<td>$1.05^{+0.44}_{-0.41}$</td>
<td>$^{+0.41}_{-0.38}$</td>
<td>$^{+0.69}_{-0.58}$</td>
<td>$^{+1.37}_{-0.56}$</td>
</tr>
<tr>
<td>μ_V^{ZZ}</td>
<td>$0.47^{+1.37}_{-0.92}$</td>
<td>$^{+1.16}_{-0.84}$</td>
<td>$^{+0.24}_{-0.93}$</td>
<td>$^{+1.45}_{-2.29}$</td>
</tr>
<tr>
<td>μ_V^{WW}</td>
<td>$1.38^{+0.41}_{-0.37}$</td>
<td>$^{+0.38}_{-0.35}$</td>
<td>$^{1.56}_{-0.46}$</td>
<td>$^{1.08}_{-0.58}$</td>
</tr>
<tr>
<td>$\mu_V^{\tau\tau}$</td>
<td>$1.12^{+0.37}_{-0.35}$</td>
<td>$^{+0.38}_{-0.35}$</td>
<td>$^{1.29}_{-0.53}$</td>
<td>$^{0.88}_{-0.45}$</td>
</tr>
<tr>
<td>μ_V^{bb}</td>
<td>$0.65^{+0.31}_{-0.29}$</td>
<td>$^{+0.32}_{-0.30}$</td>
<td>$^{0.50}_{-0.37}$</td>
<td>$^{0.85}_{-0.44}$</td>
</tr>
<tr>
<td>$\mu_V^{\gamma\gamma}$</td>
<td>$1.16^{+0.27}_{-0.24}$</td>
<td>$^{+0.25}_{-0.23}$</td>
<td>$^{1.30}_{-0.33}$</td>
<td>$^{1.00}_{-0.30}$</td>
</tr>
<tr>
<td>μ_V^{ZZ}</td>
<td>$1.42^{+0.37}_{-0.33}$</td>
<td>$^{+0.29}_{-0.25}$</td>
<td>$^{1.74}_{-0.44}$</td>
<td>$^{0.96}_{-0.41}$</td>
</tr>
<tr>
<td>μ_V^{WW}</td>
<td>$0.98^{+0.22}_{-0.20}$</td>
<td>$^{+0.21}_{-0.19}$</td>
<td>$^{1.10}_{-0.26}$</td>
<td>$^{0.84}_{-0.24}$</td>
</tr>
<tr>
<td>$\mu_V^{\tau\tau}$</td>
<td>$1.06^{+0.60}_{-0.56}$</td>
<td>$^{+0.56}_{-0.53}$</td>
<td>$^{1.72}_{-1.12}$</td>
<td>$^{0.89}_{-0.63}$</td>
</tr>
<tr>
<td>μ_V^{bb}</td>
<td>$1.15^{+0.99}_{-0.94}$</td>
<td>$^{+0.90}_{-0.86}$</td>
<td>$^{1.52}_{-1.09}$</td>
<td>$^{0.11}_{-1.90}$</td>
</tr>
</tbody>
</table>
We have measured many of the following couplings with uncertainties of 10 – 30 % or larger:

Couplings to massive gauge bosons
\[
\left(\frac{2m_W^2}{v} h W_\mu^+ W^- \mu + \frac{m_Z^2}{v} h Z_\mu Z^\mu \right)
\]

Couplings to massless gauge bosons
\[
+ c_g \frac{\alpha_s}{12\pi v} h G_{\mu\nu}^a G^{a\mu\nu} + c_\gamma \frac{\alpha}{8\pi v} h F_{\mu\nu} F^{\mu\nu} + c_{Z\gamma} \frac{\alpha}{8\pi v s_w} h F_{\mu\nu} Z^{\mu\nu}
\]
\[
c_g^{(SM)}(125 \text{ GeV}) = 1 , \quad c_\gamma^{(SM)}(125 \text{ GeV}) = -6.48 , \quad c_{Z\gamma}^{(SM)}(125 \text{ GeV}) = 5.48 .
\]

Couplings to fermions
\[
\sum_f \frac{m_f}{v} h \bar{f} f \quad \text{for } bb, tt, \text{ and } \tau\tau \text{ only!}
\]
We have measured many of the following couplings with uncertainties of 10 – 30% or larger:

Couplings to massive gauge bosons \(\rightarrow \left(\frac{2m_W^2}{v} h W_\mu^+ W^- \mu + \frac{m_Z^2}{v} h Z_\mu Z^\mu \right) \)

Couplings to massless gauge bosons \(\rightarrow \)

\[+ c_g \frac{\alpha_s}{12\pi v} h G_{\mu\nu}^a G^{a\mu\nu} + c_\gamma \frac{\alpha}{8\pi v} h F_{\mu\nu} F^{\mu\nu} + c_{Z\gamma} \frac{\alpha}{8\pi v s_w} h F_{\mu\nu} Z^{\mu\nu} \]

\[c_g^{(SM)}(125 \text{ GeV}) = 1 \quad c_\gamma^{(SM)}(125 \text{ GeV}) = -6.48 \quad c_{Z\gamma}^{(SM)}(125 \text{ GeV}) = 5.48 \, . \]

Couplings to fermions \(\rightarrow \sum_f \frac{m_f}{v} h \bar{f} f \) for \(bb, tt, \) and \(\tau\tau \) only!

Self-couplings is being probed in the double Higgs production channel:

\[\frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{v} h^3 + \frac{2m_h^2}{v^2} h^4 \]

- **Limits at 95% CL on self-coupling scale factor \(\kappa_h \):**
 - ATLAS: \(-5.0 < \kappa_h < 12.1\)
 - CMS: \(-11.8 < \kappa_h < 18.8\)

Rosati’s talk on Monday
What are we missing still?

\[L = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + i F D \phi + h.c. + \sum_i y_{ij} \phi_j + h.c. + \frac{1}{2} \phi^2 - V(\phi) \]
What are we missing still?

One obvious answer is Higgs couplings to first two generation fermions. → Quite a number of theoretical studies already.

Anything else??
In my view, one class of couplings that has not received enough attention is the HHVV coupling:

\[D_\mu H^\dagger D^\mu H \supset g^2 h^2 V_\mu V^\mu \]
In my view, one class of couplings that has not received enough attention is the HHVV coupling:

\[D_\mu H^\dagger D^\mu H \supset g^2 h^2 V_\mu V^\mu \]

This coupling can be probed by double Higgs production in the VBF channel!
HH in VBF can be viewed as part of the program to study $VV \rightarrow VV$ scattering. There are a few contributing diagrams:

The NNLO production rate:

<table>
<thead>
<tr>
<th>\sqrt{S} (TeV)</th>
<th>LO [fb]</th>
<th>NLO [fb]</th>
<th>NNLO [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>$1.858^{+0.374}_{-0.270}$</td>
<td>$1.976^{+0.078}_{-0.078}$</td>
<td>$1.986^{+0.045}_{-0.0}$</td>
</tr>
<tr>
<td>33</td>
<td>$11.234^{+0.878}_{-0.830}$</td>
<td>$12.002^{+0.562}_{-0.562}$</td>
<td>$12.041^{+0.359}_{-0.060}$</td>
</tr>
<tr>
<td>100</td>
<td>$75.36^{+4.91}_{-6.34}$</td>
<td>$79.82^{+3.92}_{-5.26}$</td>
<td>$80.05^{+3.92}_{-5.80}$</td>
</tr>
</tbody>
</table>

Table 1: The central values of the total cross section ($\kappa = 1$) and the errors due to scale uncertainty with $\kappa \in [1/4, 4]$ at the $\sqrt{S} = 14$, 33, and 100 TeV hadron colliders by using the MSTW2008 (68% C.L.) PDFs.

Ling et. al.: 1401.7754
There has been a number of collider studies on HH in VBF both at the LHC and at future colliders:

Dolan et. al.: 1310.1084; Dolan et. al.: 1506.08008; Bishara et. al.: 1611.03860; Arganda et. al.: 1807.09736; Killian et. al.: 1808.05534

These studies are useful, and could be refined further, for a number of reasons.
Recall that establishing and studying HVV couplings is among the top priority of the Higgs program at the LHC:

\[
L(HVV) \sim a_1 \frac{m_Z^2}{2} HZ^\mu Z_\mu - \frac{\kappa_1}{(\Lambda_1)^2} m_Z^2 HZ_\mu \Box Z^\mu - \frac{1}{2} a_2 HZ^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_3 HZ^{\mu\nu} \tilde{Z}_{\mu\nu}
\]

\[
+ a_1^{WW} m_W^2 H W^{+\mu} W^-_\mu - \frac{1}{(\Lambda_{WW}^1)^2} m_W^2 H \left(\kappa_1^{WW} W^-_\mu \Box W^{+\mu} + \kappa_2^{WW} W^+_{\mu} \Box W^{-\mu} \right)
\]

\[
- a_2^{WW} H W^{+\mu\nu} W^-_{\mu\nu} - a_3^{WW} H W^{+\mu\nu} \tilde{W}^\nu_{\mu\nu}
\]

\[
+ \frac{\kappa_2^{Z\gamma}}{(\Lambda_{Z\gamma}^1)^2} m_Z^2 H Z_\mu \partial_{\nu} F^{\mu\nu} - a_2^{Z\gamma} H F^{\mu\nu} Z_{\mu\nu} - a_3^{Z\gamma} H F^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_2^{\gamma\gamma} H F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} a_3^{\gamma\gamma} H F^{\mu\nu} \tilde{F}_{\mu\nu},
\]

The goal of the program includes both the coupling strength and the tensor structure.
There’s still significant room for anomalous HVV couplings even today:

Table 6: Summary of allowed 68% CL (central values with uncertainties) and 95% CL (in square brackets) intervals on anomalous coupling parameters $f_{ai} \cos(\phi_{ai})$ obtained from the on-shell data analysis of the Run 1 and Run 2 combined dataset.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{a3} \cos(\phi_{a3})$</td>
<td>$-0.0001^{+0.0005}_{-0.0015}$ $[-0.16, 0.09]$</td>
<td>$0.0000^{+0.0019}_{-0.0019}$ $[-0.082, 0.082]$</td>
</tr>
<tr>
<td>$f_{a2} \cos(\phi_{a2})$</td>
<td>$0.0004^{+0.0026}_{-0.0007}$ $[-0.006, 0.025]$</td>
<td>$0.0000^{+0.0030}_{-0.0023}$ $[-0.021, 0.035]$</td>
</tr>
<tr>
<td>$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$</td>
<td>$0.0000^{+0.0035}_{-0.0008}$ $[-0.21, 0.09]$</td>
<td>$0.0000^{+0.0012}_{-0.0006}$ $[-0.059, 0.032]$</td>
</tr>
<tr>
<td>$f_{\Lambda 1}^{Z, \gamma} \cos(\phi_{\Lambda 1}^{Z, \gamma})$</td>
<td>$0.0000^{+0.035}_{-0.009}$ $[-0.17, 0.61]$</td>
<td>$0.0000^{+0.009}_{-0.010}$ $[-0.10, 0.34]$</td>
</tr>
</tbody>
</table>
A similar program to study HHVV coupling should be pursued --

Reason 1:
Among the least understood/measured coupling of the 125 GeV Higgs!
A similar program to study HHVV coupling should be pursued --

Reason 1:
Among the least understood/measured coupling of the 125 GeV Higgs!

Reason 2:
HVV and HHVV couplings together sheds light on the UV nature of the 125 GeV Higgs.
Let me elaborate –
Suppose the SM is just an effective description:

\[\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^4} \mathcal{O}_i^{(n-4)} \]
Let me elaborate –

Suppose the SM is just an effective description:

\[\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^n} \mathcal{O}_i^{(n-4)} \]

At the weak scale, the HVV and HHVV couplings deviate from their SM expectations, both in coupling strength and the tensor structure,

\[\mathcal{L}^{(2)} = \frac{1}{2} \partial_\mu h \partial^\mu h + b_{nh} \left(\frac{h}{v} \right)^n \left(m_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2} m_Z^2 Z_\mu Z^\mu \right) \]
Let me elaborate –
Suppose the SM is just an effective description:

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^n} \mathcal{O}_i^{(n-4)}$$

At the weak scale, the HVV and HHVV couplings deviate from their SM expectations, both in coupling strength and the tensor structure,

$$\mathcal{L}^{(2)} = \frac{1}{2} \partial_\mu h \partial_\mu h + b_{hh} \left(\frac{h}{v} \right)^n \left(m_W^2 W_\mu^+ W_\mu^- + \frac{1}{2} m_Z^2 Z_\mu Z^\mu \right)$$

There are also operators carrying “four-derivative”:

$$\frac{h}{v} V_{1\mu} \mathcal{D}^{\mu\nu} V_{2\nu}, \quad \frac{h}{v} V_{1\mu\nu} V_{2\mu}^{\nu}, \quad \mathcal{D}^{\mu\nu} = \partial_\mu \partial_\nu - \eta^{\mu\nu} \partial^2$$

$$\frac{h^2}{v^2} V_{1\mu} \mathcal{D}^{\mu\nu} V_{2\nu}, \quad \frac{h^2}{v^2} V_{1\mu\nu} V_{2\mu}^{\nu}, \quad \frac{\partial_\mu h \partial_\nu h}{v^2} V_{1\mu} V_{2\nu}$$
In a given BSM model, coefficients of these corrections can be calculated.

Generically, these coefficients are independent parameters depending on various masses and couplings in the UV model.
In a given BSM model, coefficients of these corrections can be calculated.

Generically, these coefficients are independent parameters depending on various masses and couplings in the UV model.

However, there is a special class of models where these anomalous HVV and HHVV couplings are controlled by only a small number of parameters because there is a symmetry relating the coefficients.

\[\mathcal{L}^{(2)} = \frac{1}{2} \partial_\mu h \partial^\mu h + b_{nh} \left(\frac{h}{v} \right)^n \left(m^2_W W^+ W^- + \frac{1}{2} m^2_Z Z^\mu Z_\mu \right) \]
In a given BSM model, coefficients of these corrections can be calculated.

Generically, these coefficients are independent parameters depending on various masses and couplings in the UV model.

However, there is a special class of models where these anomalous HVV and HHVV couplings are controlled by only a small number of parameters because there is a symmetry relating the coefficients.

\[
\mathcal{L}^{(2)} = \frac{1}{2} \partial_\mu h \partial^\mu h + b_{nh} \left(\frac{h}{v} \right)^n \left(m_W^2 W_\mu W_-^{\mu} + \frac{1}{2} m_Z^2 Z_\mu Z^{\mu} \right)
\]

\[
b_h = 1 - 2\xi \\
b_{3h} = -\frac{4}{3} \xi \sqrt{1 - \xi} \\
b_{5h} = \frac{4}{15} \xi^2 \sqrt{1 - \xi} \\
... \\
\]

\[
b_{2h} = 2\sqrt{1 - \xi} \\
b_{4h} = \frac{1}{3} \xi (2\xi - 1) \\
b_{6h} = \frac{2}{45} \xi^2 (1 - 2\xi) \\
... \\
\]
For this class of theories, the two-derivative Lagrangian can be written in a compact way:

\[\mathcal{L}^{(2)} = \frac{1}{2} \partial_\mu h \partial^\mu h + \frac{g^2 f^2}{4} \sin^2 (\theta + h/f) \left(W^+_{\mu} W^{-\mu} + \frac{1}{2 \cos^2 \theta_W} Z_\mu Z^{\mu} \right) \]

\[\sin^2 \theta = \xi = \frac{v^2}{f^2} \]

In the unitary gauge, the "symmetry" that enforces this particular form is highly disguised and non-trivial.
For this class of theories, the two-derivative Lagrangian can be written in a compact way:

\[
\mathcal{L}^{(2)} = \frac{1}{2} \partial_\mu h \partial^\mu h + \frac{g^2 f^2}{4} \sin^2(\theta + h/f) \left(W^+_\mu W^-\mu + \frac{1}{2 \cos^2 \theta_W} Z_\mu Z^\mu \right)
\]

\[
\sin^2 \theta = \xi = \frac{v^2}{f^2}
\]

In the unitary gauge, the “symmetry” that enforces this particular form is highly disguised and non-trivial.

One way to “detect” the presence of such disguised symmetry is to measure HVV and HHVV couplings to see if they are controlled by the same parameter.
More concretely, consider the following “anomalous” HVV and HHVV couplings:

$$\mathcal{L}_{NL} = \sum_i \frac{m_W^2}{m_\rho^2} \left(C_i^h \mathcal{I}_i^h + C_i^{2h} \mathcal{I}_i^{2h} + C_i^{3V} \mathcal{I}_i^{3V} \right)$$

<table>
<thead>
<tr>
<th>\mathcal{I}_i^h</th>
<th>\mathcal{I}_i^{2h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $\frac{h}{v} Z_\mu D^{\mu\nu} Z_\nu$</td>
<td>(1) $\frac{h^2}{v^2} Z_\mu D^{\mu\nu} Z_\nu$</td>
</tr>
<tr>
<td>(2) $\frac{h}{v} Z_{\mu\nu} Z^{\mu\nu}$</td>
<td>(2) $\frac{h^2}{v^2} Z_{\mu\nu} Z^{\mu\nu}$</td>
</tr>
<tr>
<td>(3) $\frac{h}{v} Z_\mu D^{\mu\nu} A_\nu$</td>
<td>(3) $\frac{h^2}{v^2} Z_\mu D^{\mu\nu} A_\nu$</td>
</tr>
<tr>
<td>(4) $\frac{h}{v} Z_{\mu\nu} A^{\mu\nu}$</td>
<td>(4) $\frac{h^2}{v^2} Z_{\mu\nu} A^{\mu\nu}$</td>
</tr>
</tbody>
</table>

Some examples of “Universal Relations” are

$$\frac{C_3^{2h}}{C_3^h} = \frac{C_4^{2h}}{C_4^h} = \frac{1}{2} \cos \theta = \frac{1}{2} \sqrt{1 - \xi}$$

$$\frac{s_{2w} C_1^{2h} - c_{2w} C_3^{2h}}{s_{2w} C_1^h - c_{2w} C_3^h} = \frac{s_{2w} C_2^{2h} - c_{2w} C_4^{2h}}{s_{2w} C_2^h - c_{2w} C_4^h} = \frac{\cos 2\theta}{2 \cos \theta} \approx \frac{1}{2} \left(1 - \frac{3}{2} \xi \right)$$

Z. Yin, D. Liu and IL: 1805.00489; 1809.09126
There are several more “Universal Relations” among HVV and HHVV couplings that are controlled by a single parameter ξ.

In particular, ξ is already constrained by current measurements on HZZ and HWW coupling strengths:

$\xi = 0.1$

$\xi = 0.2$

$\xi = -0.2$

$\xi = -0.4$

ξ can be either positive or negative!

Z. Yin, D. Liu and IL: 1809.09126
Simultaneous measurements on HVV and HHVV coupling tensor structures allows to detect the presence of new symmetry relating the multi-Higgs couplings to electroweak gauge bosons.

But what is this “symmetry”?
Simultaneous measurements on HVV and HHVV coupling tensor structures allows to detect the presence of new symmetry relating the multi-Higgs couplings to electroweak gauge bosons.

But what is this “symmetry”?

Observation:
Secretly this is a symmetry relating multi-Higgs self-interactions – Recall in the unitary gauge the longitudinal components of the W/Z gauge bosons are related to the 125 GeV Higgs by SU(2)\(\times\)U(1).
In fact, everyone knows an example of such a symmetry. (Sometimes, you don’t know what you know...)
In fact, everyone knows an example of such a symmetry. (Sometimes, you don’t know what you know...)

The example is pions in low-energy QCD. There are many ways to write down the effective Lagrangian of pions. One possibility is

\[U(x) = \frac{1}{f} \left[\sigma(x) + i\vec{\tau} \cdot \vec{\pi}(x) \right], \quad \sigma(x) = \sqrt{f^2 - \vec{\pi}^2(x)}, \]

\[\mathcal{L}^{(2)} = \frac{1}{4} f^2 \text{Tr}[D_\mu U (D^\mu U)^\dagger] \]

When expanding the two-derivative Lagrangian order-by-order in “f”, all “multi-pion” vertices are controlled by one single parameter “f”.
In fact, everyone knows an example of such a symmetry. (Sometimes, you don’t know what you know…)

The example is pions in low-energy QCD. There are many ways to write down the effective Lagrangian of pions. One possibility is

\[U(x) = \frac{1}{f} \left[\sigma(x) + i\vec{\tau} \cdot \vec{\pi}(x) \right], \quad \sigma(x) = \sqrt{f^2 - \vec{\pi}^2(x)}, \]

\[\mathcal{L}^{(2)} = \frac{1}{4} f^2 \text{Tr}[D_\mu U(D^\mu U)^+] \]

When expanding the two-derivative Lagrangian order-by-order in “f”, all “multi-pion” vertices are controlled by one single parameter “f”.

This is similar to the case we discussed in Higgs:

\[\mathcal{L}^{(2)} = \frac{1}{2} \partial_\mu h \partial^\mu h + \frac{g^2 f^2}{4} \sin^2(\theta + h/f) \left(W_\mu^+ W^{-\mu} + \frac{1}{2 \cos^2 \theta_W} Z_\mu Z^\mu \right) \]
Pions are (pseudo)-Nambu-Goldstone bosons arising from the chiral symmetry breaking:

$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$

The “symmetry” enforcing relations among multi-pion vertices is the result of degenerate vacua and the unbroken $SU(2)_V$ isospin symmetry.
Pions are (pseudo)-Nambu-Goldstone bosons arising from the chiral symmetry breaking:

$$\text{SU}(2)_L \times \text{SU}(2)_R \rightarrow \text{SU}(2)_V$$

The “symmetry” enforcing relations among multi-pion vertices is the result of degenerate vacua and the unbroken $\text{SU}(2)_V$ isospin symmetry.

Similarly, if we detect relations among HVV and HHVV couplings, it’s the clearest signal that the 125 GeV Higgs is a (pseudo-)Nambu-Goldstone boson!

Nowadays this class of theories is generically referred to as “composite Higgs models.”
Here is a survey of existing models from 5 years ago. They differ in the symmetry breaking pattern \((G/H)\) they choose.

<table>
<thead>
<tr>
<th>(G)</th>
<th>(H)</th>
<th>(C)</th>
<th>(N_G)</th>
<th>(r_H = r_{SU(2) \times SU(2)}(r_{SU(2) \times U(1)}))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(5)</td>
<td>SO(4)</td>
<td>✓</td>
<td>4</td>
<td>(4 = (2, 2))</td>
<td>11</td>
</tr>
<tr>
<td>SU(3) \times U(1)</td>
<td>SU(2) \times U(1)</td>
<td>5</td>
<td>(2_{\pm 1/2} + 1_0)</td>
<td>10, 35</td>
<td></td>
</tr>
<tr>
<td>SU(4)</td>
<td>Sp(4)</td>
<td>✓</td>
<td>5</td>
<td>(5 = (1, 1) + (2, 2))</td>
<td>29, 47, 64</td>
</tr>
<tr>
<td>SU(4)</td>
<td>[SU(2)]^2 \times U(1)</td>
<td>✓*</td>
<td>8</td>
<td>((2, 2)_{\pm 2} = 2 \cdot (2, 2))</td>
<td>65</td>
</tr>
<tr>
<td>SO(7)</td>
<td>SO(6)</td>
<td>✓</td>
<td>6</td>
<td>(6 = 2 \cdot (1, 1) + (2, 2))</td>
<td></td>
</tr>
<tr>
<td>SO(7)</td>
<td>G_2</td>
<td>✓*</td>
<td>7</td>
<td>(7 = (1, 3) + (2, 2))</td>
<td>66</td>
</tr>
<tr>
<td>SO(7)</td>
<td>SO(5) \times U(1)</td>
<td>✓*</td>
<td>10</td>
<td>(10_0 = (3, 1) + (1, 3) + (2, 2))</td>
<td></td>
</tr>
<tr>
<td>SO(7)</td>
<td>[SU(2)]^3</td>
<td>✓*</td>
<td>12</td>
<td>((2, 2, 3) = 3 \cdot (2, 2))</td>
<td></td>
</tr>
<tr>
<td>Sp(6)</td>
<td>Sp(4) \times SU(2)</td>
<td>✓</td>
<td>8</td>
<td>((4, 2) = 2 \cdot (2, 2))</td>
<td>65</td>
</tr>
<tr>
<td>SU(5)</td>
<td>SU(4) \times U(1)</td>
<td>✓*</td>
<td>8</td>
<td>(4_{-5} + 4_{+5} = 2 \cdot (2, 2))</td>
<td>67</td>
</tr>
<tr>
<td>SU(5)</td>
<td>SO(5)</td>
<td>✓*</td>
<td>14</td>
<td>(14 = (3, 3) + (2, 2) + (1, 1))</td>
<td>9, 47, 49</td>
</tr>
<tr>
<td>SO(8)</td>
<td>SO(7)</td>
<td>✓</td>
<td>7</td>
<td>(7 = 3 \cdot (1, 1) + (2, 2))</td>
<td></td>
</tr>
<tr>
<td>SO(9)</td>
<td>SO(8)</td>
<td>✓</td>
<td>8</td>
<td>(8 = 2 \cdot (2, 2))</td>
<td>67</td>
</tr>
<tr>
<td>SO(9)</td>
<td>SO(5) \times SO(4)</td>
<td>✓*</td>
<td>20</td>
<td>((5, 4) = (2, 2) + (1 + 3, 1 + 3))</td>
<td>34</td>
</tr>
<tr>
<td>[SU(3)]^2</td>
<td>SU(3)</td>
<td></td>
<td>8</td>
<td>(8 = 1_0 + 2_{\pm 1/2} + 3_0)</td>
<td>8</td>
</tr>
<tr>
<td>[SO(5)]^2</td>
<td>SO(5)</td>
<td>✓*</td>
<td>10</td>
<td>(10 = (1, 3) + (3, 1) + (2, 2))</td>
<td>32</td>
</tr>
<tr>
<td>SU(4) \times U(1)</td>
<td>SU(3) \times U(1)</td>
<td>7</td>
<td>(3_{-1/3} + 3_{+1/3} + 1_0 = 3 \cdot 1_0 + 2_{\pm 1/2})</td>
<td>35, 41</td>
<td></td>
</tr>
<tr>
<td>SU(6)</td>
<td>Sp(6)</td>
<td>✓*</td>
<td>14</td>
<td>(14 = 2 \cdot (2, 2) + (1, 3) + 3 \cdot (1, 1))</td>
<td>30, 47</td>
</tr>
<tr>
<td>[SO(6)]^2</td>
<td>SO(6)</td>
<td>✓*</td>
<td>15</td>
<td>(15 = (1, 1) + 2 \cdot (2, 2) + (3, 1) + (1, 3))</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 1: Symmetry breaking patterns \(G \rightarrow H\) for Lie groups. The third column denotes whether the breaking pattern incorporates custodial symmetry. The fourth column gives the dimension \(N_G\) of the coset, while the fifth contains the representations of the GB’s under \(H\) and \(SO(4) \cong SU(2)_L \times SU(2)_R\) (or simply \(SU(2)_L \times U(1)_Y\) if there is no custodial symmetry). In case of more than two \(SU(2)\)’s in \(H\) and several different possible decompositions we quote the one with largest number of bi-doublets.
The “universal relations” we proposed are independent of the symmetry breaking pattern G/H, under some minimal and widely adopted assumptions. (Goldstone self-interactions only depend on H, but not on G.)

There are many of them:

$$\text{UR1 : } \frac{C_6^h - C_4^h / t_w}{\delta \tilde{k}_\gamma} = \frac{2c_w^2 C_2^h - c_2w C_4^h / t_w}{\delta \tilde{k}_\gamma} = \cos \theta \approx 1 - \frac{1}{2} \xi,$$

$$\text{UR2 : } \frac{c_2w C_3^h}{t_w} - 2c_w^2 C_1^h = 4c_w^2 \tilde{g}_1^Z \cos \theta + \frac{1}{t_w} C_3^h \cos^2 \theta,$$

$$\text{UR3 : } C_5^h = -2c_w^2 \tilde{g}_1^Z \cos \theta + \frac{1}{2t_w} C_3^h \sin^2 \theta,$$

$$\text{UR4 : } \frac{C_3^{2h}}{C_3^h} = \frac{C_4^{2h}}{C_4^h} = \frac{1}{2} \cos \theta,$$

$$\text{UR5 : } \frac{C_5^{2h} - C_3^{2h} / 2t_w}{C_5^h - C_3^h / 2t_w} = \frac{C_6^{2h} - C_4^{2h} / t_w}{C_6^h - C_4^h / t_w} = \frac{\cos 2\theta}{2 \cos \theta} \approx \frac{1}{2} \left(1 - \frac{3}{2} \xi \right),$$

$$\text{UR6 : } \frac{s_2w C_1^{2h} - c_2w C_3^{2h}}{s_2w C_1^h - c_2w C_3^h} = \frac{s_2w C_2^{2h} - c_2w C_4^{2h}}{s_2w C_2^h - c_2w C_4^h} = \frac{\cos 2\theta}{2 \cos \theta} \approx \frac{1}{2} \left(1 - \frac{3}{2} \xi \right)$$

Z. Yin, D. Liu and IL: 1805.00489; 1809.09126
As a preliminary study, let’s consider UR1 which only involves HVV and TGC:

\[
UR1 : \frac{N_{UR1}}{\delta \kappa_\gamma} = \sqrt{1 - \xi}
\]

<table>
<thead>
<tr>
<th>I^h_i</th>
<th>$\frac{m_W^2}{m_\rho^2} C_i^h$ (ILC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $hZ_\mu D^{\mu \nu} Z_\nu / v$</td>
<td>5.83×10^{-4}</td>
</tr>
<tr>
<td>(2) $hZ_{\mu \nu} Z^{\mu \nu} / v$</td>
<td>3.93×10^{-4}</td>
</tr>
<tr>
<td>(3) $hZ_\mu D^{\mu \nu} A_\nu / v$</td>
<td></td>
</tr>
<tr>
<td>(4) $hZ_{\mu \nu} A^{\mu \nu} / v$</td>
<td>3.88×10^{-4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I^{3V}_i</th>
<th>$\frac{m_W^2}{m_\rho^2} C_i^{3V}$ (ILC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\delta g^Z_1)i g c_w W_+^{\mu \nu} W^-\mu Z\nu + h.c.$</td>
<td>6.1×10^{-4}</td>
</tr>
<tr>
<td>$(\delta \kappa_\gamma)i e W_+^\mu W^-_\nu A^{\mu \nu}$</td>
<td>6.4×10^{-4}</td>
</tr>
</tbody>
</table>

Table 7: Prospective 1σ uncertainty at the future lepton colliders, taken from Ref. [50].
(a) Measured ξ as a function of $\delta\kappa_\gamma$, using N_{UR1} as an input.

(b) Measured ξ as a function of N_{UR1}, using $\delta\kappa_\gamma$ as an input.

Figure 5: Using UR1 to measure ξ, where the blue and red bands correspond to the 1σ and 2σ region on the measurement.
To test these relations requires high precision, high enough to be sensitive to effects of dim-8 operators –

Predictions from SMEFT with unconstrained coefficients:

\[
\frac{s_{2w} C_1^{2h} - c_{2w} C_3^{2h}}{s_{2w} C_1^h - c_{2w} C_3^h} \approx \frac{1}{2} \left(1 + \frac{\alpha_W^8 + \alpha_B^8 + \alpha_{HW}^8 + \alpha_{HB}^8}{\alpha_W + \alpha_B + \alpha_{HW} + \alpha_{HB}} \xi \right),
\]

\[
\frac{s_{2w} C_2^{2h} - c_{2w} C_4^{2h}}{s_{2w} C_2^h - c_{2w} C_4^h} \approx \frac{1}{2} \left(1 + \frac{\alpha_{HW}^8 + \alpha_{HB}^8}{\alpha_{HW} + \alpha_{HB}} \xi \right).
\]

Prediction from Universal Relations:

\[
\text{UR7 : } \frac{s_{2w} C_1^{2h} - c_{2w} C_3^{2h}}{s_{2w} C_1^h - c_{2w} C_3^h} = \frac{s_{2w} C_2^{2h} - c_{2w} C_4^{2h}}{s_{2w} C_2^h - c_{2w} C_4^h} = \frac{\cos 2\theta}{2 \cos \theta} \approx \frac{1}{2} \left(1 - \frac{3}{2} \xi \right)
\]
To test these relations requires high precision, high enough to be sensitive to effects of dim-8 operators –

Predictions from SMEFT with unconstrained coefficients:

\[
\frac{s_{2w} C_1^{2h} - c_{2w} C_3^{2h}}{s_{2w} C_1^h - c_{2w} C_3^h} \approx \frac{1}{2} \left(1 + \frac{\alpha_W^8 + \alpha_B^8 + \alpha_{HW}^8 + \alpha_{HB}^8}{\alpha_W + \alpha_B + \alpha_{HW} + \alpha_{HB}} \xi \right),
\]

\[
\frac{s_{2w} C_2^{2h} - c_{2w} C_4^{2h}}{s_{2w} C_2^h - c_{2w} C_4^h} \approx \frac{1}{2} \left(1 + \frac{\alpha_{HW}^8 + \alpha_{HB}^8}{\alpha_{HW} + \alpha_{HB}} \xi \right).
\]

Prediction from Universal Relations:

\[
\text{UR7 : } \frac{s_{2w} C_1^{2h} - c_{2w} C_3^{2h}}{s_{2w} C_1^h - c_{2w} C_3^h} = \frac{s_{2w} C_2^{2h} - c_{2w} C_4^{2h}}{s_{2w} C_2^h - c_{2w} C_4^h} = \frac{\cos 2\theta}{2 \cos \theta} \approx \frac{1}{2} \left(1 - \frac{3}{2} \xi \right)
\]

This would be a nice playground to introduce new analysis techniques such as AI and ML?
More generally, the HHVV coupling can be probed in the following channels:

(a) Double Higgs production through vector boson fusion at a hadron collider.

(b) Double Higgs production through vector boson fusion at a lepton collider.

(c) Double Higgs production in association with a vector boson.

(d) Off-shell Single Higgs decay.
The rate at future colliders:

\[\sigma \propto \left[\frac{1}{\sqrt{s}} \right] ^2 \]

This is the future frontier of precision Higgs physics!
Concluding Remarks:

• HHVV coupling is the least studied coupling in Higgs physics. HH production in VBF channel will play a central role.

• Need to verify the tensor structure of the coupling, in the same fashion as in the studies of HVV coupling.

• Simultaneous measurements of HVV, HHVV and TGCs provide a unique window into the pNGB nature of the 125 GeV Higgs.

• The required precision to test the universal relations is high. Need to introduce advanced analysis techniques.