Low Mass Higgs Boson Searches from ATLAS and CMS

Higgs Couplings 2018 Ryogoku, Tokyo, Japan November 29, 2018

Mark Neubauer

University of Illinois at Urbana-Champaign

Motivation

- Very narrow Higgs boson width ($\Gamma \sim 4$ MeV, $\Gamma/m_H = O(10^{-5})$) provides strong sensitivity to new physics ⇒ even small couplings of BSM particles to the Higgs boson (H) can lead to sizable $B(H \rightarrow BSM)$
 - O(1%) coupling to a singlet scalar field s can give $B(H \rightarrow ss) = O(10\%)!$
- Non-SM decays of the Higgs boson can be inferred from couplings measurements in the visible Higgs decay channels
 - e.g. ATLAS Run-2 measurement w/ 80 fb⁻¹: $B_{\rm BSM} < 26\%$ (<u>ATLAS-CONF-2018-031</u>) Or, $B_{\rm BSM}$ can be directly measured by observing $H \rightarrow ss \rightarrow ??$
- New scalars are a part of many BSM models
 - While there are many searches for heavy (>125 GeV) BSM particles, possible light BSM particles are not (yet!) well explored at colliders
 - The Higgs boson is a well-motivated portal to other BSM sectors (e.g. 2HDM+S interpretations in this talk) and represents a new tool for further discovery!

H(125)→*aa*→*bbbb*

If a pseudoscalar *a*-boson mixes with the Higgs boson and inherits its Yukawa couplings, then $a \rightarrow bb$ decays would be dominant for $m_a > 2m_b$

- Search using Higgs bosons produced in association with a vector boson
 - Final-state leptons provide a signature for trigger and background suppression
- Dominant backgrounds: $t\bar{t}$ +jets and V+jets
- BDT classifier used as a signal discriminant

H(125)→*aa*→*bbbb*

- No significant excess over SM prediction is observed
- Limits set as a function of m_a and $c\tau_a$ for

 $\sigma(pp \rightarrow VH) \times BR(H \rightarrow aa \rightarrow bbbb)$

and compared to the SM inclusive Higgs cross section $\sigma(pp \rightarrow VH)$

In some models, the proper decay length of the a-boson is from 10μm to kilometers

H(125)*→aa→γγjj*

Motivated by models where fermionic decays of the a-boson are suppressed ($a \rightarrow \gamma \gamma/gg$ only)

- Focus on VBF production mode to suppress backgrounds (require ≥ 4 jets)
- Trigger on di-photons
- Requirements on p_T^{j1} , m_{ii}^{VBF} , $m_{\gamma\gamma ii}$, $|m_{ii}-m_{\gamma\gamma}|$
- Dominant background is $\gamma\gamma$ +jets which is estimated using data-driven methods
- Signal extracted using counts in two uncorrelated observables in (di-)photon ID

H(125)→*aa*→*γγjj*

PRL B 782 (2018) 750

- No significant excess over SM prediction is observed
- · Limits set on

$$\sigma(pp \rightarrow H) \times BR(H \rightarrow aa \rightarrow \gamma \gamma gg)$$

as a function of m_a , normalized to the SM inclusive Higgs cross section $\sigma(pp \rightarrow H)$:

$$\sigma(pp \rightarrow H) \times BR(H \rightarrow aa \rightarrow \gamma \gamma gg)$$
: 3.1 — 9.0 pb

$H(125) \rightarrow aa/Z_{(d)}Z_{d} \rightarrow \ell\ell\ell\ell$

Search for a-boson through $H \rightarrow aa$ or Z_d : vector boson of dark sector $U(1)_d$

- Use combinations of lepton triggers
- Require 2 pairs of same-flavor, opposite-sign leptons (e/μ), Higgs mass window cut on m(4ℓ)
- Backgrounds: H→ZZ*→4ℓ and ZZ*→4ℓ
 - Estimated using simulation, validated in background-enriched regions

$H(125) \rightarrow aa/Z_{(d)}Z_{d} \rightarrow \ell\ell\ell\ell$

- No significant excess over SM prediction is observed
- Limits set on $H\rightarrow aa$ and $H\rightarrow Z_{(d)}Z_d$ as a function of m(a) and $m(Z_d)$

Motivated by lepton-specific BSM models where a-boson decays to muons are sizable (e.g. type-III 2HDM+S)

- Signature: $2\mu + 2b$ -tagged jets
- Single μ trigger: $p_T > 24$ to 26 GeV (run-dependent)
- Main backgrounds: DY($\mu\mu$) and $t\bar{t}$ production
 - m_H window, E_T^{miss} < 60 GeV to suppress ttbar
- Use a kinematic kit (KF) which exploits the symmetry of *H*→aa decays
 - m_{uu} mass resolution is 10x better than m_{bb}
 - Fit b-jet energies compatible with m_{μμ} = m_{bb}
 ⇒ 2x improvement of m_{bbμμ} resolution

<u>arXiv:1807.00539</u>

- No significant excess over SM prediction is observed
- · Limits set for:
 - BR($H\rightarrow aa\rightarrow bb\mu\mu$) as a function of m_a , given the SM Higgs cross section:

$$10^{-4} - 10^{-3}$$
 for $m_a = [20, 60]$ GeV

• Visible cross section for new physics times branching ratio to the $bb\mu\mu$ final state: 0.1 — 0.73 pb for m_a = [18, 62] GeV

- Signature: 2μ + 2 b-tagged jets
- Di- μ trigger with $p_{T} > 17$ and 8 GeV
- Main backgrounds: DY(μμ) and ttbar production
 - $E_{T}^{\text{miss}} < 60 \text{ GeV to suppress } t\bar{t}$
- Select events with $m_{\mu\mu} = m_{bb}$ and $m_{bb\mu\mu} = m_H$ through a $\chi^2 < 2$ cut with
 - $\chi^2 = (m_{bb} m_{\mu\mu})^2 / \sigma_{bb}^2 + (m_{bb\mu\mu} 125 \text{ GeV})^2 / \sigma_H^2$
- Events categorized by b-tagging quality
 - TL, TM, TT (T=tight, M=medium, L=loose)

CMS-PAS-HIG-18-01

 No significant excess over SM prediction is observed

• BR Limits vary from 2×10^{-4} to 10^{-3} depending on m_2

Also derived limits on type-III 2HDM+S considering bbττ signal as bbμμ mis-ID

H(125)→*aa*→*bbττ*

- Signature: 2τ + at least one *b*-jet
 - $\tau\tau$ categorized by $e\mu$, $e\tau_h$, $\mu\tau_h$
- Dominant backgrounds: $\mathsf{DY}(\tau\tau)$ and $\,t\,ar{t}\,$
 - Events with jet→r_h mis-id (from W+jets, top, QCD multijets production) are also significant
- Signal extracted with binned ML fit to $M^{vis}(\tau\tau)$ to probe m_a = [15, 60] GeV

H(125)→*aa*→*bb*ττ

No significant excess over SM prediction is observed

 Combined limits vary from 3% to 12% depending on m₂

$H(125) \rightarrow aa \rightarrow \mu\mu\tau\tau$

<u>arxiv:1805.04868</u>

Analysis Overview

Four different final states considered:

$$\mu\mu$$
+e μ , $\mu\mu$ +e $\tau_{\rm h}$, $\mu\mu$ + $\mu\tau_{\rm h}$, $\mu\mu$ + $\tau_{\rm h}$

- Events from H→aa→4τ are considered in the signal
- Dominant backgrounds from events with jet→τ_h mis-ID
 - Z+jets, WZ+jets, ZZ*→2ℓ2q, ttbar, QCD multijets
- Signal extracted w/ unbinned ML fit to $M^{vis}(\mu\mu)$ to probe $m_a = [15.0, 62.5]$ GeV

$H(125) \rightarrow aa \rightarrow \mu\mu\tau\tau$

- No significant excess over SM prediction is observed
- Combined limit for $m_a = 60 \text{ GeV}$:

$$\sigma \times BR(H \rightarrow aa \rightarrow \mu\mu\tau\tau) = 1.2 \times 10^{-4} \times \sigma_{SM}$$

μμ Resonances in μμ+bj

Analysis Overview

- Search for $\mu\mu$ resonances in range $m(\mu\mu) \in [12, 70]$ GeV
- Two signal regions defined:
 - SR1: μμ + a central b-jet + at least one forward jet
 - SR2: μμ + 2 central jets (≥ 1 b-tag) and no forward jets + E_T^{miss}

An excess $(4.2\sigma \text{ in SR1}, 2.9\sigma \text{ in SR2})$ of events is seen at 28 GeV in 8 TeV

data ⇒ Not confirmed in 13 TeV data analyzed thus far (36 fb⁻¹)

NEW ZTT Resonances in TT+bj

VLQ, $m_B = 170 \text{ GeV}$, $\sigma B = 20 \text{ pb}$ $-m_X = 40 \text{ GeV}$

Signature: 2τ + at least 1 b-jet (b) + an additional jet, which can be central (c) or forward (f)

 $\tau\tau$ categorized by $e\tau_{\rm b}$, $\mu\tau_{\rm b}$ Search for light pseudoscalar Higgs boson $A(\tau\tau)$

 m_{T} < 40 GeV to suppress ttbar production

• p_{τ}^{miss} consistent with τ decays

Search for $X(\tau\tau)$ produced via decay of vector-like quark (B)

- $m_{\rm T}$ < 60 GeV to suppress ttbar production
- 2 event jet-based categories:

1b1c 1b1f

NEW ZTT Resonances in TT+bj

- No significant excess over SM prediction is observed in $bbA(\tau\tau)$ or $X(\tau\tau)bj$ searches
- Limits set on $\sigma \times BR(A/X \rightarrow \tau \tau)$ vs m_{Δ} and m_{χ}

NEW

Search for $X \rightarrow \gamma \gamma$: $m_x = [65, 120]$ GeV

- Trigger on di-photons with luminosity-dependent thresholds
- Require two isolated photons that pass a BDT-based identifier
- A multivariate event classifier is used to discriminate resonant (X) from continuum di-photon production
 - "Class 0" has highest expected sensitivity, "2" the lowest
- Background is modelled by fitting analytic functions to the observed diphoton mass distributions

No significant ($>3\sigma$) excess over SM prediction is observed

Combined 8+13 TeV results show an excess at ~95 GeV at the level of 2.8σ local (1.3σ global) significance

Search for $X \rightarrow \gamma \gamma$: $m_x = [65,110]$ GeV

- Trigger on di-photons with luminosity-dependent thresholds
- Require two well-identified, isolated photons
 - Split in categories for photon conversions (CC, UC, UU): CC has more DY background
- Main backgrounds: SM $\gamma\gamma/j\gamma/jj$, Z boson (e $\rightarrow\gamma$ fakes)
 - Model non-resonant (continuum) and resonant g
 DY backgrounds using data-driven approaches

<u> TLAS-CONF-2018-025</u>

 No evidence for significant excess beyond the SM using a narrow-width approximation to interpret the data

Conclusions and Outlook

ATLAS and CMS performed many searches for exotic decays of the 125 GeV Higgs boson and new low-mass particles decaying to photons and leptons

⇒ Presented in this talk:

$$H(125) \rightarrow aa \rightarrow bbbb$$
 $H(125) \rightarrow aa \rightarrow bb\mu\mu$ $H(125) \rightarrow aa \rightarrow \gamma\gamma jj$ $H(125) \rightarrow aa \rightarrow bb\tau\tau$ $H(125) \rightarrow aa/Z_{(d)}Z_{d} \rightarrow \ell\ell\ell$ $H(125) \rightarrow aa \rightarrow \mu\mu\tau\tau$

$$H(125) \rightarrow aa \rightarrow bb\mu\mu$$
 $H(125) \rightarrow aa \rightarrow bb\tau\tau$
 $H(125) \rightarrow aa \rightarrow \mu\mu\tau\tau$

No statistically significant excess is observed in any of these searches

- ⇒ Limits are set on cross section × branching fraction and interpreted in the context of BSM models such as the 2HDM+S
- Proton-proton collisions recently ended with ~160 fb⁻¹ delivered to each of ATLAS and CMS, so more data is in hand to be analyzed for many searches
- ⇒ Stay tuned for more results from Run-II of the LHC

Bonus Material

Figure 6: Observed upper limits on $\mathcal{B}(h \to a_1 a_1)$ in the plane of $(m_{a_1}, \tan \beta)$ for type-III 2HDM+S, including $\mu^+ \mu^- \tau^+ \tau^-$ signal that is misidentified as $\mu^+ \mu^- b \overline{b}$.