BSM from Higgs precision physics

Higgs Couplings

2018, 30th November, Tokyo

Introduction

Is this the **END** of the story?

Of course, NO!!

 \cdots otherwise, we may loose the job.

BSM: Phenomena

What is the BSM? Which scale does the BSM appear?

Higgs Physics "lights" the way to BSM

Standard Model

Higgs Physics "lights" the way to BSM

Standard Model

Higgs is - Fermion (Compositeness) : Chiral Symmetry

- Gauge boson (Gauge-Higgs Unification): Gauge Symmetry

Plan of Talk

- I. Introduction
- II. Higgs is a key to open the BSM (Bottom-up)
 - Precise calculation of the Higgs properties
- III. Higgs is a key to open the BSM (Top-down)
 - SUSY VS Compositeness
- IV. Summary

Higgs Precision Physics is Important

H-COUP

Kanemura, Kikuchi, Sakurai, KY, Comp. Phys. Comm. 233, 134-144 (2018)

H-COUP

H-COUP is a calculation tool composed of a set of Fortran codes to compute the renormalized Higgs boson couplings with radiative corrections in various non-minimal Higgs models, such as the Higgs singlet model, four types of two Higgs doublet models and the inert doublet model. The impolved on-shell renormalization scheme is adopted, where the gauge dependence is eliminated.

Authors: Shinya Kanemura, Mariko Kikuchi, Kodai Sakurai and Kei Yagyu

The manual for H-COUP version 1.0 can be taken on <u>arXiv:1710.04603 [hep-ph]</u>.

Slide by Kodai Sakurai (talk at 29th Nov.)

 $\Delta R(h \rightarrow b\bar{b})$ vs $\Delta R(h \rightarrow \tau \bar{\tau})$

$$\Delta R(h \to XX) = \frac{\Gamma(h \to XX)_{EX}}{\Gamma(h \to XX)_{SM}} - 1$$

[S. Kanemura, M. Kikuchi, K. Mawatari, KS, K. Yagyu,] cos(β-α)<0

- Color plots : predictions at the 1-loop level for each model
- A contrast of color : values of mass of extra Higgs bosons
- Black line : predictions at the tree level ($tan\beta = 1,3$).

→ by the directions of deviations, 4 types of THDMs are discriminated.

8/10

Plan of Talk

- I. Introduction
- II. Higgs is a key to open the BSM (Bottom-up)
 - Precise calculation of the Higgs properties
- III. Higgs is a key to open the BSM (Top-down)
 - SUSY VS Compositeness
- IV. Summary

Higgs Potential

- □ Due to the shift symmetry of the NGB, the Higgs potential is 0 at any order of perturbation. \rightarrow Higgs boson is massless.
- □ We need to introduce an explicit breaking of G.
 - \rightarrow Higgs becomes pseudo-NGB with a finite mass.

```
Kaplan, PLB365, 259 (1991)
```

Explicit breaking can be introduced via partial compositeness mechanism.

Basic Rules for the Construction

- □ The structure of the Higgs sector is determined by the coset G/H.
- **\square** H should contain the custodial $SO(4) \simeq SU(2)_L \times SU(2)_R$ symmetry.
- □ The number of NGBs (dimG-dimH) must be 4 or lager.
- □ Explicit breaking of G must be introduced. Mrazek et al, N

Mrazek et al, NPB 853 (2011) 1-48

Properties of the 2HDM tell us the direction!

Composite 2HDM (C2HDM)

De Curtis, Delle Rose, Moretti, KY, arXiv: 1803.01865 [hep-ph] (PLB)

 $\Box G \rightarrow H: SO(6) \rightarrow SO(4) \times SO(2)$

□ SO(6) generators (15): $T^A = \{T^a_{L,R}, \underline{T}_S, \underline{T}^{\hat{a}}_{1,2}\}$ (A=1-15, a=1-3, \hat{a} =1-4) 6 SO(4) 1 SO(2) 8 Broken

2 Higgs Doublets

14/19

115-plet:
$$\Sigma = U \Sigma_0 U^T$$

 $\Sigma \xrightarrow{}{g} \Sigma' = g \Sigma g^{-1}$
 $\Sigma_0 = i \sqrt{2} T_S = \begin{pmatrix} 0_{4 \times 4} & 0_{4 \times 2} \\ 0_{2 \times 4} & i \sigma_2 \end{pmatrix}$

$$\mathcal{L} = \mathcal{L}_{elem} + \mathcal{L}_{str} + \mathcal{L}_{mix}$$

$$\mathcal{L} = \mathcal{L}_{elem} + \mathcal{L}_{str} + \mathcal{L}_{mix}$$

$$\mathcal{L} = \mathcal{L}_{elem} + \mathcal{L}_{str} + \mathcal{L}_{mix}$$

 $SU(2) \times U(1)$ inv. effective Lagrangian (SM fields + form factors with Σ)

SU(2)×U(1) inv. effective Lagrangian (SM fields + form factors with Σ)

$$\mathcal{L} = \mathcal{L}_{elem} + \mathcal{L}_{str} + \mathcal{L}_{mix}$$

 $SU(2) \times U(1)$ inv. effective Lagrangian (SM fields + form factors with Σ)

Higgs potential (Coleman-Weinberg mechanism)

Higgs potential (Coleman-Weinberg mechanism)

Typical Prediction of Mass Spectrum

Correlation b/w f and m_A

De Curtis, Delle Rose, Moretti, KY, arXiv: 1803.01865 [hep-ph]

Correlation b/w m_A and $\kappa_V (= g_{hVV}/g_{hVV}^{SM})$

De Curtis, Delle Rose, Moretti, KY, arXiv: 1803.01865 [hep-ph]

MSSM: FeynHiggs v2.14.1

18/19

Summary

□ Higgs Physics is a "light" to show the scale and direction of the BSM.

- Particular structure of the Higgs sector appears from the BSM as the LE EFT.

■ Bottom-up: precise calculations of the Higgs property (coupling, BRs, …) in various

non-minimal Higgs sectors will tell us the scale of the 2nd Higgs boson and the

Effective Potential

□ The Higgs potential can be calculated as

$$V = \frac{9}{2} \int \frac{d^4k}{(2\pi)^4} \ln \det D_V^{-1} - 2N_c \int \frac{d^4k}{(2\pi)^4} \ln \det D_F^{-1}$$

$$2 \int (2\pi)^4 \frac{1}{4\Pi_0} \sin^2 \frac{\phi}{f}$$

$$\sim \frac{\Pi_1}{4\Pi_0} \sin^2 \frac{\phi}{f}$$

$$\sim \frac{M_1^2}{k^2} \sin^2 \frac{\phi}{f} \cos^2 \frac{\phi}{f}$$

$$\sim \frac{v}{f} = \sin \frac{\langle \phi \rangle}{f} = \sqrt{\frac{\beta - \alpha}{2\beta}}$$

 $m_h^2 = rac{2}{f^2} rac{eta^2 - lpha^2}{eta} \sim 8v^2 rac{eta}{f^4} = 8v^2 rac{b}{16\pi^2} ~~\sim (125~{
m GeV})^2 imes (0.2b)$

Little Higgs & (Holographic) CH

Review: Brando, Csaba, Javi, arXiv: 1401.2457 [hep-ph]

•
$$(246 \text{ GeV})^2 = v^2 = \frac{a}{b}f^2$$
 $(125 \text{ GeV})^2 = m_h^2 = 4bg_{\text{SM}}^2v^2$

Little Higgs Models : a ~ (1/16
$$\pi^2$$
), b ~ O(1)Natural VEV,v ~ f/4 π , m_h ~ 2vg_{sm}but tuning is needed for m_h

(Holographic) Composite Higgs Models : a, b ~ $O(1/16\pi^2)$

$$v \sim f$$
, $m_h \sim vg_{sm}/2\pi$

Natural m_h, but tuning is needed for v

Based on the 4DCHM, De Curtis, Redi, Tesi, JHEP04 (2012) 042

$$\begin{array}{c} \mathcal{L}_{\text{elem}} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} + \bar{q}_{L} \, i \not \!\!\!D \, q_{L} + \bar{t}_{R} \, i \not \!\!D \, t_{R} \end{array} \\ \hline \mathbf{Elementary \, Sector} & \mathbf{Strong \, Sector} \\ & \mathbf{SU}(2)_{L} \times \mathsf{U}(1)_{\gamma} & \mathbf{Mixing} \\ W^{a}_{\mu}, \, q_{L}, \, t_{R} & \mathbf{Partial \, Compositeness} & \mathbf{SO}(6) \times \mathsf{U}(1)_{\chi} \\ & \rightarrow \mathrm{SO}(4) \times \, \mathrm{SO}(2) \times \mathsf{U}(1)_{\chi} \\ & \rho^{A}_{\mu}, \, \Psi^{6}, \, \Sigma \end{array}$$

Based on the 4DCHM, De Curtis, Redi, Tesi, JHEP04 (2012) 042

$$\begin{array}{l} \mathcal{L}_{\text{elem}} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} + \bar{q}_{L} \, i \not \!\!\!D \, q_{L} + \bar{t}_{R} \, i \not \!\!D \, t_{R} \\ \end{array} \\ \begin{array}{l} \textbf{Elementary Sector} & \textbf{Strong Sector} \\ \\ \textbf{SU}(2)_{L} \times \textbf{U}(1)_{\gamma} & \textbf{Mixing} \\ W^{a}_{\mu}, \, q_{L}, \, t_{R} & \textbf{Partial Compositeness} & \begin{array}{c} \textbf{SO}(6) \times \textbf{U}(1)_{\chi} \\ \rightarrow \textbf{SO}(4) \times \textbf{SO}(2) \times \textbf{U}(1)_{\chi} \\ \rho^{A}_{\mu}, \, \Psi^{6}, \, \Sigma \end{array} \right.$$

$$\begin{split} \mathcal{L}_{\rm str} &= \bar{\Psi}^6 (i \not\!\!\!D - m_{\Psi}) \Psi^6 - \bar{\Psi}^6_L (Y_1 \Sigma + Y_2 \Sigma^2) \Psi^6_R + \text{h.c.} \\ &- \frac{1}{4} \operatorname{tr} \rho^A_{\mu\nu} \rho^{A\,\mu\nu} + \frac{m^2_{\rho}}{2} (\rho^A)_{\mu} (\rho^A)^{\mu} + (\Sigma \cdot \rho) \text{ interactions} \end{split}$$

Based on the 4DCHM, De Curtis, Redi, Tesi, JHEP04 (2012) 042

C ₂ symmetry (to avoid FCNCs)	$egin{aligned} U(\phi_1^{\hat{a}},\phi_2^{\hat{a}}) & ightarrow C_2 U(\phi_1^{\hat{a}},\phi_2^{\hat{a}}) \ &\Sigma & ightarrow -C_2 \Sigma C_2 \ &\Psi^6 & ightarrow C_2 \Psi^6 \end{aligned}$	$C_2 = U(\phi_1^{\hat{a}}, -\phi_2^{\hat{a}})$ $C_2 = diag(1, 1, 1, 1, 1, -1)$			
Elementary Sector		Strong Sector			
$SU(2)_L \times U(1)_Y$	Mixing	SO(6)×U(1) _X → SO(4)× SO(2)×U(1) _X			
$W^a_\mu, \ q_L, t_R$	Partial Compositenes	s $ ho_{\mu}^{A},~\Psi^{6},~\Sigma$			
$W^a_\mu, \ q_L, \ t_R$	Partial Compositenes	s $ ho_{\mu}^{A}, \ \Psi^{6}, \ \Sigma$			

$$\begin{split} \mathcal{L}_{\text{str}} &= \bar{\Psi}^6 (i \not\!\!\!D - m_{\Psi}) \Psi^6 - \bar{\Psi}^6_L (Y_1 \Sigma + Y_2 \Sigma^2) \Psi^6_R + \text{h.c.} \\ &- \frac{1}{4} \operatorname{tr} \rho^A_{\mu\nu} \rho^{A\,\mu\nu} + \frac{m^2_{\rho}}{2} (\rho^A)_{\mu} (\rho^A)^{\mu} + (\Sigma \cdot \rho) \text{ interactions} \end{split}$$

Based on the 4DCHM, De Curtis, Redi, Tesi, JHEP04 (2012) 042

Embeddings into SO(6) multiplets : $W^a_\mu \in W^A_\mu ~~ q_L \in q_L^6$ $t_R \in t_R^6$ **Strong Sector Elementary Sector** $SO(6) \times U(1)_{\chi}$ $SU(2)_L \times U(1)_Y$ **Mixing** \rightarrow SO(4)× SO(2)×U(1)_x $W^a_\mu, \ q_L, \, t_R$ $ho_{\mu}^{A}, \ \Psi^{6}, \ \Sigma$ Partial Compositeness

$$\mathcal{L}_{\text{mix}} = (f^2 g_\rho g_W) W^A_\mu \rho^{A\mu} + (\Delta_L \bar{q}^6_L \Psi^6_R + \Delta_R \bar{t}^6_R \Psi^6_L + \text{h.c.})$$

2-site model: Gauge sector

De Curtis, Redi, Tesi, JHEP04 (2012) 042

Fermion Sector: 5-plet (MCHM₅)

De Curtis, Redi, Tesi, JHEP04 (2012) 042

D SO(5)×U(1)_X invariant Lagrangian:

Left-Right structure: One of the solutions to get div. free potential

- 2 flavour case (I, J=1,2)
- \rightarrow Minimal choice for UV div. free potential.

$$Y^{21} = M_{\Psi}^{21} = \Delta_L^2 = \Delta_R^1 = 0$$

Explicit Realization: 2-site model

De Curtis, Redi, Tesi, JHEP04 (2012) 042

6 + 4 NGBs are absorbed into the longitudinal components of gauge bosons of adj[SO(6)].

S, T parameter

□ Contribution from modified Higgs couplings (1-loop)

$$\Delta \widehat{S} = \frac{g^2}{192\pi^2} \xi \log\left(\frac{m_\rho^2}{m_H^2}\right) \simeq 1.4 \times 10^{-3} \xi \qquad \text{Here, } \Lambda = m_\rho = 3 \text{ TeV}$$

$$\xi = v^2/f^2$$

$$\Delta \widehat{T} = -\frac{3g'^2}{64\pi^2} \xi \log\left(\frac{m_\rho^2}{m_H^2}\right) \simeq -3.8 \times 10^{-3} \xi.$$

 $\xi < 0.05 @2\sigma (0.08 @3\sigma)$ f < 1.1TeV @2 σ (870 GeV @3 σ)

S, T parameter

□ Contribution from heavy resonances

Direct search constraint

ATL-PHYS-PROC-2017-114

Numerical Analysis

f VS tanβ

De Curtis, Delle Rose, Moretti, KY, arXiv: 1803.01865 [hep-ph]

Correlation b/w m_A and mass differences

Masses of heavy top partners

De Curtis, Delle Rose, Moretti, KY, arXiv: 1803.01865 [hep-ph]

C2HDM

MSSM

Naïve Dimensional Analysis

Effective Lagrangian (Fermion)

Kanemura, Kaneta, Machida, Shindou, PRD91 (2014) 115016

Model	κ_V	c_{hhVV}	κ_{hhh}	c_{hhhh}	κ_t	κ_b	c_{hhtt}	c_{hhbb}
MCHM ₄	$\sqrt{1-\xi}$	$1-2\xi$	$\sqrt{1-\xi}$	$1 - \frac{7}{3}\xi$	$\sqrt{1-\xi}$	$\sqrt{1-\xi}$	$-\xi$	$-\xi$
MCHM ₅	$\sqrt{1-\xi}$	$1-2\xi$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\tfrac{1-28\xi/3+28\xi^2/3}{1-\xi}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
MCHM ₁₀	$\sqrt{1-\xi}$	$1-2\xi$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\frac{1{-}28\xi/3{+}28\xi^2/3}{1{-}\xi}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
MCHM ₁₄	$\sqrt{1-\xi}$	$1-2\xi$	H_1	H_2	F_3	$\frac{1-2\xi}{\sqrt{1-\xi}}$	F_6	-4ξ
MCHM5-5-10	$\sqrt{1-\xi}$	$1-2\xi$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\tfrac{1-28\xi/3+28\xi^2/3}{1-\xi}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\sqrt{1-\xi}$	-4ξ	$-\xi$
MCHM ₅₋₁₀₋₁₀	$\sqrt{1-\xi}$	$1-2\xi$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\frac{1{-}28\xi/3{+}28\xi^2/3}{1{-}\xi}$	$\sqrt{1-\xi}$	$\sqrt{1-\xi}$	$-\xi$	$-\xi$
MCHM ₅₋₁₄₋₁₀	$\sqrt{1-\xi}$	$1-2\xi$	H_1	H_2	F_5	$\sqrt{1-\xi}$	F_8	$-\xi$
MCHM ₁₀₋₅₋₁₀	$\sqrt{1-\xi}$	$1-2\xi$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\frac{1{-}28\xi/3{+}28\xi^2/3}{1{-}\xi}$	$\sqrt{1-\xi}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$-\xi$	-4ξ
MCHM ₁₀₋₁₄₋₁₀	$\sqrt{1-\xi}$	$1-2\xi$	H_1	H_2	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
MCHM ₁₄₋₁₋₁₀	$\sqrt{1-\xi}$	$1-2\xi$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\tfrac{1-28\xi/3+28\xi^2/3}{1-\xi}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	$\frac{1-2\xi}{\sqrt{1-\xi}}$	-4ξ	-4ξ
MCHM ₁₄₋₅₋₁₀	$\sqrt{1-\xi}$	$1-2\xi$	H_1	H_2	F_4	$\frac{1-2\xi}{\sqrt{1-\xi}}$	F_7	-4ξ

M

M

Fingerprinting is possible among various MCHMs!

Effective Lagrangian (Gauge)

$$\begin{split} \mathcal{L}_{\text{eff}} \supset \frac{P_{T}^{\mu\nu}}{2} [\Pi_{0}(p^{2})A_{\mu}^{A}A_{\nu}^{A} + \Pi_{1}(p^{2})\Sigma^{T}A_{\mu}^{A}A_{\nu}^{A}\Sigma] \\ \xrightarrow{\Sigma \to \Sigma_{0}} \frac{P_{T}^{\mu\nu}}{2} [\Pi_{0}(p^{2})A_{\mu}^{a}A_{\nu}^{a} + [\Pi_{0}(p^{2}) + \frac{1}{2}\Pi_{1}(p^{2})]A_{\mu}^{\hat{a}}A_{\nu}^{\hat{a}}] \\ -\frac{p^{2}}{g_{A}^{2}} + \frac{m_{\rho}^{2}p^{2}}{g_{\rho}^{2}(p^{2}-m_{\rho}^{2})} - \frac{p^{2}}{g_{A}^{2}} + \frac{m_{\rho}^{2}[p^{2}-(m_{\rho}^{2}-m_{\rho}^{2})]}{g_{\rho}^{2}(p^{2}-m_{\rho}^{2})} \qquad 2\text{-site model} \\ \mathcal{L}_{\text{eff}} \xrightarrow{A_{\mu}^{A} \to W_{\mu}^{a}} \xrightarrow{\frac{P_{T}^{\mu\nu}}{2}} [\Pi_{0}(p^{2}) + \frac{1}{4}\Pi_{1}(p^{2})\sin^{2}\frac{\phi}{f}]W_{\mu}^{a}W_{\nu}^{a} \\ &= \frac{P_{T}^{\mu\nu}}{2}[p^{2}\Pi_{0}(0)' + \frac{1}{4}\Pi_{1}(0)\sin^{2}\frac{\phi}{f}]W_{\mu}^{a}W_{\nu}^{a} + \cdots \\ \frac{1/g^{2}}{V_{\text{sm}}^{2}} \qquad \text{Consistent with the NL}\SigmaM \end{split}$$

Effective Lagrangian (Fermion)

 $\mathcal{L}_{\text{eff}} \supset \bar{q}_L^5[M_0(p^2) + M_1(p^2)\Sigma\Sigma^T]t_R^5 + \text{h.c.}$ (+ LL-term + RR-term)

$$\frac{1}{q_L^5 \to q_L} \xrightarrow{\frac{\sin \frac{\phi}{f} \cos \frac{\phi}{f}}{\sqrt{2}}} \bar{q}_L M_1(p^2) \hat{\Phi} t_R + \text{h.c.} \qquad \hat{\Phi} = \frac{1}{\phi} \Phi$$

$$t_R^5 \to t_R \qquad \qquad M_1(p^2) = F(M_{\Psi}^{11}, M_{\Psi}^{22}, M_{\Psi}^{12}) - F(M_{\Psi}^{11}, M_{\Psi}^{22}, M_{\Psi}^{12} + Y^{12})$$
2-site model
$$F(m_1, m_2, m_3) = -\frac{\Delta_L \Delta_R m_1 m_2 m_3}{(p^2 - m_1^2)(p^2 - m_2^2) - p^2 m_3^2}$$

$$m_t \xrightarrow{p^2 \to 0} \frac{s_{\langle \phi \rangle / f} c_{\langle \phi \rangle / f}}{\sqrt{2}} \frac{\Delta_L \Delta_R Y^{12}}{M_{\Psi}^{11} M_{\Psi}^{22}} \qquad \qquad \sin \frac{\langle \phi \rangle}{f} \cos \frac{\langle \phi \rangle}{f}$$

$$g_{ht\bar{t}} / g_{ht\bar{t}}^{SM} = \frac{1 - 2\xi}{\sqrt{1 - \xi}} \qquad \xi = \frac{\langle \phi \rangle^2}{f^2} \qquad t_L \xrightarrow{\Delta_L} \frac{\Delta_L}{\psi_R^{\dagger} + Y^{12}} \psi_L^{\delta} \qquad \qquad 14$$

Composite 2HDMs

□ G/H: SO(6)/SO(4)×SO(2), SU(5)/SU(4)×U(1), Sp(6)/Sp(4)×SU(2), SO(9)/SO(8)

 \rightarrow 8 NGBs

Mrazek, Pomarol, Rattazi, Redi, Serra, Wulzer NPB 853 (2011) 1-48

Possible G invariant operators classified by the spurion

□ Previous works:

technique in the $SO(6)/SO(4) \times SO(2)$ model.

De Curtis, Delle Rose, Moretti, KY, arXiv: 1803.01865 [hep-ph]

• 2-site model is implemented in the $SO(6)/SO(4) \times SO(2)$ model

- Unbroken (Dark Matter)
 - Spontaneously broken
 - (No FCNC; light extra Higgses)
- Hardly broken:
- (Yukawa Alignment; heavy extra Higgses)

 $\square Z_2-like symmetry$ in the strong sector