HH searches (non-resonant) at ATLAS & CMS

James Frost

on behalf of the ATLAS and CMS Collaborations (james.frost@physics.ox.ac.uk)

Friday 30th November 2018

James Frost (University of Oxford)

Higgs Couplings 2018

イロト イポト イヨト イヨト

Di-Higgs Searches

Di-Higgs production is an allowed, rare process in the SM - 33 fb at 13 TeV.

- Standard Model
 - Destructive interference between diagrams.
 - Opportunity to probe the Higgs trilinear coupling directly.
- Beyond Standard Model
 - Non-resonant enhancement in many BSM models.
 - Modifications to $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$.
- Very interesting place to investigate the Higgs sector.

Di-Higgs Final States

- Rich phenomenology.
- ATLAS & CMS have dedicated analysis for each sensitive final state.
- Most sensitive usually have high branching ratio and/or low backgrounds.

• Will be focusing on recent results with **36 fb**⁻¹ of 13 TeV data.

Sac

Outline

Di-Higgs Searches

- $\circ \ HH {\rightarrow} \ bb \ bb$
- $\circ \ \mathbf{H}\mathbf{H} \mathbf{\rightarrow} \tau\tau \ \mathbf{b}\mathbf{b}$
- $\circ \ \mathbf{H}\mathbf{H} {\rightarrow} \gamma\gamma \ \mathbf{b}\mathbf{b}$
- $\circ \ HH {\rightarrow} \ WW^* \ bb$
- Di-Higgs combinations
- Conclusions & Outlook
- ATLAS also has searches in the γγWW* [arXiv:1807.08567] and WW*WW* channels [arXiv:1811.11028].

Di-Higgs searches in the 4*b* final state

ATLAS HH→bbbb - 36 fb⁻¹

[arXiv:1804.06174]

Non-resonant search uses 'resolved' channel:

- Construct two Higgs boson candidates from the 4 jets identified most probably to contain a b-hadron.
- Two-b-jet triggers used.
- Dominant background is multijet events, estimated by a data-driven method
 - Shape estimated by a region with fewer b-tagged jets.
- tt
 t
 ind multijet normalisation determined simultaneously from 3 enriched data samples.

James Frost (University of Oxford)

Higgs Couplings 2018

A candidate resolved 4b event in 2016

James Frost (University of Oxford)

Higgs Couplings 2018

ATLAS HH→bbbb - 36 fb⁻¹

[arXiv:1804.06174]

- Limit on SM non-resonant di-Higgs production stronger than expected, due to deficit about m_{HH} ~ 400 GeV.
- Dominant uncertainty in the data-driven background normalisation and shape.
- Observed (exp.) 95% CL upper limit σ (pp \rightarrow HH \rightarrow bbbb) < 147 (234) fb. $\sigma_{HH}/\sigma_{HH}^{SM}$ limits:

Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
13.0	11.1	14.9	20.7	30.0	43.5
Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$

• I > • = • •

CMS Non-resonant Search for 4b [arXiv:1810.11854]

- Final state of 4 identified b-jets.
- B-jet identification and jet substructure techniques.
- Train BDT on jet, HH-decay kinematic and global event variables.
- Background model created by hemisphere mixing technique applied to signal region events, validated in data control regions.

CMS Non-resonant Search for 4b [arXiv:1810.11854]

- Two component fits to the binned BDT discriminant yield an upper limit on signal events and HH cross-section.
- Dominant systematics are those on the shape (30%) and normalisation (8.6%) of the background model.
- BDT discriminant values > 0.2 used for limit setting.
- Observed (Exp.) 95% CL upper limit $\sigma_{HH}/\sigma_{HH}^{SM} = 75$ (37). Cross-section limits (fb):

Category	Observed	Expected	-2 s.d.	-1 s.d.	+1 s.d.	+2 s.d.	
$\overline{SMHH} \to b\overline{b}b\overline{b}$	847	419	221	297	601	834	
						< ■ ト - ■	~ ~
mes Frost (University of Oxfor	d)	Higas Couplinas	2018	Fric	av 30th Nove	mber 2018	8/35

Di-Higgs Search to $\tau\tau$ bb - ATLAS [PRL 121 191801]

- Select final states with an e/μ and hadronically-decaying τ candidate (τ_{had}) or two τ_{had} candidates, in association with two b-jets and E_T^{miss} .
 - ► Yields two search channels(\(\tau_{lep}\)\tau_{had}\) and \(\tau_{had}\)\) with several discriminating kinematic variables.
 - τ_{lep}τ_{had} further split by trigger: single lepton / lepton + τ.
 - Dominant backgrounds: tt
 and Z+hf constrained at low BDT score and by enriched control regions.
 - BDT distributions in the 3 signal regions are fit.

I > <
 I >
 I

→ Ξ → < Ξ</p>

Di-Higgs Search to $\tau\tau$ bb - ATLAS [PRL 121 191801]

		Observed	-1σ	Expected	$+1\sigma$
	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96
⁷ lep ⁷ had	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
7 had 7 had	$\sigma/\sigma_{\rm SM}$	16.4	12.5	17.4	24.2
a 1:	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
Combination	$\sigma/\sigma_{\rm SM}$	12.7	10.7	14.8	20.6

James Frost (University of Oxford)

Higgs Couplings 2018

 $\exists \rightarrow$

CMS Search for HH \rightarrow bb $\tau\tau$

[PLB 778(2018)101]

- Select events with 1+ isolated τ_{had} with a second lepton of opposite charge (e/μ or τ_{had}).
- Categorise according to 1/2 b-jets.
- Boosted category for events with a Higgs-bb jet candidate.
- BDT discriminant trained on kinematic variables used to reduce the *tt* background in the semi-leptonic channel.

- Z/γ^* +jets and multijet processes estimated with control regions.
- M_{T2} used for signal-background separation bounded by the top mass for $t\bar{t}$ processes.
- Observed (Expected) 95% CL upper limit $\sigma_{HH}/\sigma_{HH}^{SM} = 30(25)$.

Di-Higgs searches in $\gamma\gamma$ bb - CMS [arXiv:1806.00408]

- Perform a 2D fit of the diphoton and di(b)jet invariant mass distributions.
- Estimate the nγ+jet continuum from the mass sidebands.
- Single Higgs production contributes to the background.
- Further event classification according to the HH pair reduced mass, and the purity.
- Signal purity estimated by a BDT using jet b-tagging scores, the HH system helicity angles and H candidate p_T.

[arXiv:1806.00408]

- High-mass, high purity category dominates for SM non-resonant production.
- Analysis is statistically limited largest systematic from signal shape functional form.
- Observed (expected) 95% CL upper limit σ (pp \rightarrow HH \rightarrow $\gamma\gamma$ bb) < 2.0 fb (1.6 fb), 24 (19)x σ_{HH}^{SM} .
- 95% CL limits on coupling: $-11 < \kappa_{\lambda} < 17.$

TH 1.

ATLAS Di-Higgs search in bb $\gamma\gamma$ [JHEP 11(2018)040]

- Select events with 2 isolated photons and two jets with an invariant mass compatible with m_H and at least one b-tag.
- Categorise according to the number of b-tagged jets.
- Kinematic selection further optimised for SM non-resonant HH production; second looser selection for non-SM couplings.
- The diphoton mass spectrum is fit.

(Control region used for fit function optimisation)

・ 同 ト ・ ヨ ト ・ ヨ

ATLAS Di-Higgs search in bb $\gamma\gamma$ [JHEP 11(2018)040]

- Good agreement between the data and the background expectation.
- Best-fit Higgs boson pair cross-section consistent with zero in loose/tight selection.

	Observed	Expected	-1σ	$+1\sigma$
$\sigma_{gg \to HH}$ [pb]	0.73	0.93	0.66	1.4
As a multiple of $\sigma_{\rm SM}$	22	28	20	40

• 95% CL limits on coupling: -8.2 < κ_{λ} < 13.2, in line with expectation.

Di-Higgs Searches for bbWW

CMS search in the $bbl\nu l\nu$ final state

[JHEP01(2018)054]

- Covers HH \rightarrow bbWW \rightarrow bb $l\nu l\nu$ and HH \rightarrow bbZZ \rightarrow bb $l\nu l\nu$ processes.
- Large irreducible background from $t\bar{t}$ and Drell-Yan processes.
- Deep Neural Network used to aid discrimination of signal against background.
- No significant excess over background prediction.
- Observed (exp.) 95% CL upper limit σ (pp \rightarrow HH \rightarrow bb/ ν / ν) < 72 (81) fb, 79x (89x) σ_{HH}^{SM} .

ATLAS WWbb search for $bbl\nu qq$ [arXiv:1811.04671]

- First ATLAS look at 1-lepton final state.
- Select events passing e/μ triggers, with two b-tagged jets, construct W boson candidate from untagged jets, reconstruct W_{lept} with l+E_T^{miss}.
- Further kinematic requirements suppress *tt*; constraints from data control regions.
- Observed 95% CL upper limit σ (pp \rightarrow HH \rightarrow bb/ ν qq) < 2.5 pb, \sim 300x σ_{HH}^{SM} , (same exp. limit)
- Coupling limit: $-11 < \kappa_{\lambda} < 17$ at 95% CL.

ATLAS Search in WW*WW*

[arXiv:1811.11028]

/ 35

- Search for final states with 2 SS, 3 or 4 leptons.
- Z veto applied in 2-,3-lepton selection.

James Frost

 Irreducible EW backgrounds dominate.

- Non-prompt backgrouds estimated from 'anti-tight' selections.
- No significant excess observed.

	Observed	Observed Expected l			limit on $\sigma/\sigma_{\rm SM}$			
	limit on $\sigma/\sigma_{\rm SM}$	Median	$+2\sigma$	$+1\sigma$	-1σ	-2σ		
2 leptons	170	150	290	210	100	78		
3 leptons	420	270	690	420	200	150		
4 leptons	340	400	880	590	290	210		
Combined	160	120	230	170	83	62		
					т <u>ше</u> т т	<u> </u>	1	
Iniversity of Oxford	Higgs	Couplings 20		Fr	riday 30th	November 2018		

Combining di-Higgs Results ATLAS & CMS CMS-PAS-HIG-17-030 ATLAS-CONF-2018-043

- ATLAS and CMS have both recently combined their most sensitive di-Higgs channels.
 - ATLAS: bbbb, $bb\tau\tau$, $bb\gamma\gamma$
 - CMS: bbγγ, bbττ, bbbb, bbWW
- SM Higgs boson decay branching fractions are assumed.

CMS Combination

- Observed upper limit slightly weaker than expectation, due to upward data fluctuations.
- Combined observed (exp.) upper limit: 22.22 (12.8) σSM_{HH}.

Towards the Higgs Coupling

CMS combinations

CMS-PAS-HIG-17-030

- Dominant systematics inherited from the channels: \sim 10% (bbbb, bbau au), \sim 5% $(bb\gamma\gamma).$
- Exclusion limits primarily follow the HH production cross-section (e.g. larger c-s for $\kappa_{\lambda} < 0$, so stronger limit).

I > <
 I >
 I

- Minimum at maximal destructive interference between the two diagrams.
- Weaker limits where the *m_{HH}* spectrum is softer.
- 95% CL observed (expected) limit on κ_{λ} : -11.8 < κ_{λ} < 18.8 $(-7.1 < \kappa_{\lambda} < 13.6)$

James Frost (University of Oxford)

used to keep sensitivity to lower at high κ_{λ} .

• For each κ_{λ} value, the kinematic distributions, signal acceptances and the m_{HH} spectrum are computed.

Towards the Higgs Coupling

ATLAS combinations

p^{Higgs}

Search channel	Allowed κ_λ interval at 95% CL								
	obs.		exp.			exp. stat.			
$HH \rightarrow b\bar{b}b\bar{b}$	-10.9	-	20.1	-11.6	-	18.7	-9.9		16.4
$HH \rightarrow b\bar{b}\tau^+\tau^-$	-7.3	-	15.7	-8.8	_	16.7	-7.8	-	15.4
$HH \rightarrow b\bar{b}\gamma\gamma$	-8.1	-	13.2	-8.2	-	13.2	-7.7	-	12.7
Combination	-5.0	-	12.1	-5.8	-	12.0	-5.2	-	11.4

Higgs Couplings 2018

Conclusions and Outlook

- The LHC and the ATLAS and CMS experiments are performing very well during LHC Run-2.
- Wide range of results available using 13 TeV data from 2015 & 2016.
- The di-Higgs programs at ATLAS and CMS are very active across a broad range of final states.
- Not sensitive to SM production yet, but limits from combinations increasingly stringent.
- Much to come in the future, Run-3 and HL-LHC
 - ► ATLAS and CMS now have ~ 150 fb⁻¹ of data recorded from LHC Run-2.
 - Many powerful 13 TeV results to come!

∃ ⊳.

BACKUP SLIDES

James Frost (University of Oxford)

Higgs Couplings 2018

Friday 30th November 2018 23 / 35

э

590

・ 同 ト ・ ヨ ト ・ ヨ ト

Signal Acceptance with κ_{λ} ATLAS-CONF-2018-043

590

→ Ξ → < Ξ</p>

I > <
 I >
 I

ATLAS HH→bbbb - 36 fb⁻¹

Varying κ_{λ}

Sac

[arXiv:1804.06174]

CMS Non-resonant Search for 4b [arXiv:1810.11854]

James Frost (University of Oxford)

э Friday 30th November 2018 26/35

Sac

I > <
 I >
 I

Di-Higgs Search to $\tau\tau$ bb - ATLAS [PRL 121 191801] Varying κ_{λ}

Variable	$\tau_{\rm lep} \tau_{\rm had}$ channel (SLT resonant)	$\tau_{\rm lep} \tau_{\rm had}$ channel (SLT non-resonant & LTT)	$\tau_{\rm had}\tau_{\rm had}$ channel
m_{HH}	\checkmark	\checkmark	\checkmark
$m_{\tau\tau}^{MMC}$	\checkmark	\checkmark	\checkmark
m_{bb}	\checkmark	\checkmark	\checkmark
$\Delta R(\tau, \tau)$	\checkmark	\checkmark	\checkmark
$\Delta R(b,b)$	\checkmark	\checkmark	\checkmark
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark		
$E_{\rm T}^{\rm miss} \phi$ centrality	\checkmark		\checkmark
m_{T}^{W}	\checkmark	\checkmark	
$\Delta \phi(H,H)$	\checkmark		
$\Delta p_{\rm T}({\rm lep}, \tau_{\rm had-vis})$	\checkmark		
Sub-leading $b\text{-jet}\ p_{\mathrm{T}}$	\checkmark		

3

イロト イポト イヨト イヨト

	$\tau_{\rm lep} \tau_{\rm had}$	σ σ shannal	
	(SLT)	(LTT)	7 _{had} 7 _{had} channel
$t\overline{t}$	18.2 ± 4.2	23.2 ± 1.7	4.5 ± 1.4
Single top	6.4 ± 1.3	3.7 ± 1.2	1.06 ± 0.57
Multi-jet fake- τ_{had}	-	-	3.89 ± 0.87
$t\bar{t}$ fake- $\tau_{\rm had}$	-	-	1.9 ± 1.4
$Fake-\tau_{had}$	12.0 ± 2.3	6.6 ± 1.5	-
$Z \to \tau \tau + (cc, bc, bb)$	10.2 ± 2.6	7.7 ± 3.1	12.6 ± 3.6
Other	3.89 ± 0.69	1.51 ± 0.36	1.09 ± 0.32
SM Higgs	1.94 ± 0.43	0.58 ± 0.14	1.54 ± 0.41
Total Background	52.7 ± 4.5	39.5 ± 3.0	26.7 ± 3.5
Data	45	47	20
NR HH	0.49 ± 0.07	0.16 ± 0.02	0.55 ± 0.10

イロト イポト イヨト イヨト

3

Di-Higgs Search to $\tau\tau$ bb - ATLAS [PRL 121 191801] Systematics

Source	Uncertainty (%)
Total	± 54
Data statistics	± 44
Simulation statistics	± 16
Experimental Uncertainties	
Luminosity	± 2.4
Pileup reweighting	± 1.7
$ au_{ m had}$	± 16
Fake- τ estimation	± 8.4
b-tagging	\pm 8.3
Jets and $E_{\rm T}^{\rm miss}$	± 3.3
Electron and muon	± 0.5
Theoretical and Modeling Uncertainties	
Тор	± 17
Signal	\pm 9.3
$Z \to \tau \tau$	\pm 6.8
SM Higgs	± 2.9
Other backgrounds	± 0.3

James Frost (University of Oxford)

Higgs Couplings 2018

3

DQC

・ロト ・四ト ・ヨト・ヨト・

Systematic uncertainty	Value	Processes
Luminosity	2.5%	all but multijet, $\mathrm{Z}/\gamma^* o \ell \ell$
Lepton trigger and reconstruction	2–6%	all but multijet
τ energy scale	3-10%	all but multijet
Jet energy scale	2–4%	all but multijet
b tag efficiency	2-6%	all but multijet
Background cross section	1-10%	all but multijet, $\mathrm{Z}/\gamma^* o \ell \ell$
$Z/\gamma^* \to \ell\ell$ SF uncertainty	0.1-2.5%	$\mathrm{Z}/\gamma^* ightarrow \ell\ell^{-1}$
Multijet normalization	5-30%	multijet
Scale unc.	+4.3%/-6.0%	signals
Theory unc.	5.9%	signals

3

DQC

イロト イポト イヨト イヨト

ATLAS Di-Higgs search in bb $\gamma\gamma$ [JHEP 11(2018)040]

Source of syster	% effect relative to nominal i Non-resonant analysis				in the 2-tag (1-tag) category Resonant analysis: BSM <i>HH</i>				
		SM H	H signal	Single- H bkg		Loose selection		Tight selection	
Luminosity Trigger Pile-up modelling	r S	$\pm 2.1 \\ \pm 0.4 \\ \pm 3.2$	(± 2.1) (± 0.4) (± 1.3)	$\pm 2.1 \\ \pm 0.4 \\ \pm 2.0$	$\begin{array}{l}(\pm \ 2.1)\\(\pm \ 0.4)\\(\pm \ 0.8)\end{array}$	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 4.2)	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 3.8)
Photon	identification isolation energy resolution energy scale	± 2.5 ± 0.8	(±2.4) (±0.8) -	± 1.7 ± 0.8	(± 1.8) (± 0.8) - -	$\pm 2.6 \\ \pm 0.8 \\ \pm 1.0 \\ \pm 0.9$	$\begin{array}{c} (\pm 2.6) \\ (\pm 0.8) \\ (\pm 1.3) \\ (\pm 3.0) \end{array}$	$\pm 2.5 \\ \pm 0.9 \\ \pm 1.8 \\ \pm 0.9$	$\begin{array}{c} (\pm 2.5) \\ (\pm 0.9) \\ (\pm 1.2) \\ (\pm 2.4) \end{array}$
Jet	energy resolution energy scale	$^{\pm 1.5}_{\pm 2.9}$	(± 2.2) (± 2.7)	$^{\pm 2.9}_{\pm 7.8}$	$(\pm \ 6.4) \\ (\pm \ 5.6)$	$^{\pm 7.5}_{\pm 3.0}$	(± 8.5) (± 3.3)	$^{\pm 6.4}_{\pm 2.3}$	(± 6.4) (± 3.4)
Flavour tagging	<i>b</i> -jets <i>c</i> -jets light-jets		(± 2.5) (± 1.0) (± 5.0)		$\begin{array}{c} (\pm \ 1.4) \\ (\pm 11.6) \\ (\pm \ 2.2) \end{array}$	± 3.4	(±2.6) - -	± 2.5	(±2.6) - -
Theory	$PDF+\alpha_S$ Scale EFT	$\pm 2.3 \\ +4.3 \\ -6.0 \\ \pm 5.0$	(± 2.3) (+4.3) (-6.0) (± 5.0)	$\pm 3.1 \\ +4.9 \\ +7.0$	(± 3.3) (+ 5.3) (+ 8.0) n/a		n/a n/a n/a n/a	1 1 1 1	1/a 1/a 1/a 1/a

Э

590

・ 同 ト ・ ヨ ト ・ ヨ ト

CMS Search in $\gamma\gamma$ bb

[arXiv:1806.00408]

Phot	ons	Jets			
Variable	ariable Selection		Selection		
$p_{\mathrm{T}}^{\gamma 1}$	$> m_{\gamma\gamma}/3$	$p_{\rm T}$ [GeV]	>25.		
$p_{\mathrm{T}}^{\gamma 2}$	$> m_{\gamma\gamma}/4$	$\Delta R_{\gamma i}$	> 0.4		
$ \eta $	<2.5	$ \eta $	$<\!2.4$		
$m_{\gamma\gamma}$ [GeV]	[100, 180]	m _{jj} [GeV]	[70, 190]		

I > <
 I >
 I

Analysis	Region	Classification MVA	$M_{\rm X}$
Nonresonant	High-mass	HPC: MVA > 0.97	$\widetilde{M} > 250 C dV$
		MPC: $0.6 < MVA < 0.97$	$M\chi > 550 \text{GeV}$
	Low-mass	HPC: MVA > 0.985	$\widetilde{M} < 250 \text{ GeV}$
		MPC: $0.6 < MVA < 0.985$	$M_{\rm X} < 350 {\rm Gev}$

James Frost	(University of Oxford)	
-------------	------------------------	--

1

590

CMS Search in $\gamma\gamma$ bb

[arXiv:1806.00408]

Sources of systematic uncertainties	Туре	Value (%)
Integrated luminosity	Normalization	2.5
Photon related uncertainties		
Diphoton selection (with trigger uncertainties and PES)	Normalization	2.0
Photon identification	Normalization	1.0
PES $\left(\frac{\Delta m_{\gamma\gamma}}{m_{\gamma\gamma}}\right)$	Shape	0.5
PER $\left(\frac{\Delta \sigma_{\gamma\gamma}}{\sigma_{\gamma\gamma}}\right)$	Shape	5.0
Jet related uncertainties		
Dijet selection (JES+JER)	Normalization	0.5
$JES\left(\frac{\Delta m_{\parallel}}{m_{\parallel}}\right)$	Shape	1.0
$\text{JER}\left(\frac{\Delta \sigma_{ij}}{\sigma_{ii}}\right)$	Shape	5.0
Resonant analysis specific uncertainties		
Mass window selection (JES+JER)	Normalization	3.0
Classification MVA (HPC)	Normalization	11 - 19
Classification MVA (MPC)	Normalization	3–9
Nonresonant analysis specific uncertainties		
\widetilde{M}_X Classification	Normalization	0.5
Classification MVA (HPC)	Normalization	11-19
Classification MVA (MPC)	Normalization	3–9
Theoretical uncertainties in the SM single-Higgs boson prod	luction	
QCD missing orders (ggH, VBF H , VH, ttH)	Normalization	0.4 - 5.8
PDF and α_S uncertainties (ggH, VBF H , VH, ttH)	Normalization	1.6-3.6
Theoretical uncertainty bbH	Normalization	20
Theoretical uncertainties in the SM HH boson production		
QCD missing orders	Normalization	4.3-6
PDF and α_S uncertainties	Normalization	3.1
m _t effects	Normalization	5

3

<ロト < 回 > < 回 > < 回 > .

[arXiv:1811.11028]

Two-lepton selection

m_X	Channel	$\Delta R_{\ell_2 j}$	$\Delta R_{\ell_1 j}$	$m_{\ell\ell}~[{\rm GeV}]$	$m_{\ell_1 j j} ~[{\rm GeV}]$
	ee	[0.20, 1.40]	[0.20, 1.15]	[55, 270]	[40, 285]
Non-res.	μμ	[0.20, 1.05]	[0.20, 0.75]	[60, 250]	[30, 310]
	$e\mu$	[0.20, 1.15]	[0.20, 0.80]	[75, 250]	[35, 350]

Three-lepton selection

m_X	Variable	$N_{\rm SFOS}=0$	$N_{\rm SFOS}=1,2$
	$\Delta R_{\ell_2 \ell_3}$	[2.47, 5.85]	[2.16, 3.50]
Non res	$m_{\ell_2 \ell_3}$ [GeV]	[10, 70]	[10, 70]
ron-res.	$m_{\ell_3 j j}$ [GeV]	[50, 110]	[50, 115]
	$m_{\ell_3 j}$ [GeV]	[15, 50]	[15, 45]

Four-lepton selection

Event selection in the four lepton channel		
4 leptons with $p_T > 10$ GeV and $\sum q_i = 0$		
Trigger		
Trigger matched lepton		
$p_T^{\ell_{matched}} > 22, 25, 27 \text{ GeV} (depending on data period trigger)$		
$m_{\ell\ell} > 4 \text{ GeV} (\text{for all SFOS pairs})$		
$N_{b-tag} = 0$		
$m_{\ell_0\ell_1} > 10~{ m GeV}$		
$N_{ m SFOS} = 0,1$ selection		
$ m_{\ell_2 \ell_3} - m_Z > 5 \text{ GeV}$		
$m_{4\ell} < 180~{\rm GeV} \qquad \qquad m_{4\ell} > 180~{\rm GeV}$		
$N_{ m SFOS}=2$ selection		
$m_{\ell_2\ell_3} < 70~{\rm GeV}, m_{\ell_2\ell_3} > 110~{\rm GeV}$		
$m_{4\ell} < 180~{\rm GeV} \qquad \qquad m_{4\ell} > 180~{\rm GeV}$		
$\Delta \phi_{\ell_2 \ell_3} < 2.6 \text{ rad}$ $m_{\ell_0 \ell_1} < 70 \text{ GeV}, m_{\ell_0 \ell_1} > 110 \text{ GeV}$		

・ 同 ト ・ ヨ ト ・ ヨ ト