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125 GeV) = 2.76 GeV.

The 1s and 2s CL regions in the (M, e) fit are shown in Fig. 10 (left). The results of the fit
using the six parameter k model are plotted versus the particle masses in Fig. 10 (right), and
the result of the (M, e) fit is also shown for comparison. For the b quark, since the best fit point
for kb is negative, the absolute value of this coupling modifier is shown. In order to show both
the Yukawa and vector boson couplings in the same plot, a “reduced” vector boson couplingp

kVmV/v is shown.
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Figure 10: Likelihood scan in the M-e plane (left). The best fit point and the 1s and 2s CL
regions are shown, along with the SM prediction. Result of the phenomenological (M, e) fit
overlayed with the resolved k-framework model (right).

8.2 Generic model within k-framework with effective loops

The results of the fits to the generic k model where the ggH and H ! gg loops are scaled using
the effective coupling modifiers kg and kg are given in Fig. 11 and Table 8. In this parametriza-
tion, additional contributions from BSM decays are allowed for by rewriting the total width of
the Higgs boson, relative to its SM value, as,

GH

GSM
H

=
k2

H
1 � (Bundet + Binv)

, (7)

where kH is defined in Table 6.

Two different model assumptions are made concerning the BSM branching fraction. In the first
parametrization, it is assumed that BBSM = Binv + Bundet = 0, whereas in the second, Binv
and Bundet are allowed to vary as POIs, and instead the constraint |kW|, |kZ|  1 is imposed.
This avoids a complete degeneracy in the total width where all of the coupling modifiers can
be scaled equally to account for a non-zero Bundet. The parameter Bundet represents the total
branching fraction to any final state that is not detected by the channels included in this com-
bined analysis. The likelihood scan for the Binv parameter in this model, and the 2D likelihood
scan of Binv vs. Bundet are given in Fig. 12. The 68 and 95% CL regions for Fig. 12 (right) are
determined as the regions for which q(Bundet,Binv) < 2.28 and 5.99, respectively. The 95%
CL upper limits of Binv < 0.22 and Bundet < 0.38 are determined, corresponding to the value
for which q < 3.84 [106]. The uncertainty in the measurement of kt is reduced by nearly 40%
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8.1 Generic model within k-framework assuming resolved loops

Under the assumption that there are no BSM particles contributing to the ggH production or
H ! gg decay loops, these processes can be expressed in terms of the coupling modifiers to
the SM particles as described previously. There are six free coupling parameters: kW, kZ, kt,
kt, kb, and kµ. Without loss of generality, the value of kt is restricted to be positive, while both
negative and positive values of kW, kZ and kb are allowed. In this model, the rates of the ggH
and H ! gg processes, which occur through loop diagrams at leading order, are resolved,
meaning that they are described by the functions of kW, kZ, kt, and kb given in Table 6. The
results of the fits with this parametrization are given in Fig. 9 and Table 7.
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Figure 9: Summary of the k-framework model assuming resolved loops and BBSM = 0. The
points indicate the best fit values while the thick and thin horizontal bars show the 1s and 2s
CL intervals, respectively. In this model, the ggH and H ! gg loops are resolved in terms of
the remaining coupling modifiers. For this model, both positive and negative values of kW, kZ,
and kb are considered. Negative values of kW in this model are disfavored by more than 2s.

The rate of the H ! ZZ decay and ZH production depend only on the absolute value of kZ.
The interference between the two diagrams shown in Fig. 3, however, allows contributions
from the gg ! ZH production mode to break the degeneracy between the signs, leading to a
positive value of kZ being preferred. As these contributions are typically small compared to
other production modes, the 1s and 2s intervals also include negative values of kZ. Although
a negative value of kb is preferred in this model, the difference in q between the best fit point
and the minimum in the region kb > 0 is smaller than 0.1.

An additional fit is performed using a phenomenological parametrization relating the masses
of the fermions and vector bosons to the corresponding k modifiers using two parameters,
denoted M and e [127, 128]. In such a model one can relate the coupling modifiers to M and
e as kF = v me

f /M1+e for fermions and kV = v m2e
V /M1+2e for vector bosons. Here, v =

246.22 GeV, is the SM Higgs boson vacuum expectation value [129]. The SM expectation, ki = 1,
is recovered when (M, e) = (v, 0).

The lepton and vector boson mass values are taken from Ref. [129], while the top quark mass is
taken to be 172.5 GeV for consistency with theoretical calculations used in setting the SM pre-
dictions. The bottom quark mass is evaluated at the scale of the Higgs boson mass, mb(mH =
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Figure 10: Likelihood scan in the M-e plane (left). The best fit point and the 1s and 2s CL
regions are shown, along with the SM prediction. Result of the phenomenological (M, e) fit
overlayed with the resolved k-framework model (right).

8.2 Generic model within k-framework with effective loops

The results of the fits to the generic k model where the ggH and H ! gg loops are scaled using
the effective coupling modifiers kg and kg are given in Fig. 11 and Table 8. In this parametriza-
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points indicate the best fit values while the thick and thin horizontal bars show the 1s and 2s
CL intervals, respectively. In this model, the ggH and H ! gg loops are resolved in terms of
the remaining coupling modifiers. For this model, both positive and negative values of kW, kZ,
and kb are considered. Negative values of kW in this model are disfavored by more than 2s.

The rate of the H ! ZZ decay and ZH production depend only on the absolute value of kZ.
The interference between the two diagrams shown in Fig. 3, however, allows contributions
from the gg ! ZH production mode to break the degeneracy between the signs, leading to a
positive value of kZ being preferred. As these contributions are typically small compared to
other production modes, the 1s and 2s intervals also include negative values of kZ. Although
a negative value of kb is preferred in this model, the difference in q between the best fit point
and the minimum in the region kb > 0 is smaller than 0.1.

An additional fit is performed using a phenomenological parametrization relating the masses
of the fermions and vector bosons to the corresponding k modifiers using two parameters,
denoted M and e [127, 128]. In such a model one can relate the coupling modifiers to M and
e as kF = v me

f /M1+e for fermions and kV = v m2e
V /M1+2e for vector bosons. Here, v =

246.22 GeV, is the SM Higgs boson vacuum expectation value [129]. The SM expectation, ki = 1,
is recovered when (M, e) = (v, 0).

The lepton and vector boson mass values are taken from Ref. [129], while the top quark mass is
taken to be 172.5 GeV for consistency with theoretical calculations used in setting the SM pre-
dictions. The bottom quark mass is evaluated at the scale of the Higgs boson mass, mb(mH =
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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the Large Hadron
Collider (LHC)[1, 2] opened a new era in high-energy particle physics. The study of the
properties of this particle provides strong evidence that it is the Higgs boson of the Standard
Model (SM), i.e., a scalar CP-even state whose couplings to the other known particles have
a SM-like structure and strengths proportional to their masses. In particular, ATLAS and
CMS performed both independent [3, 4] and combined [5] studies on the Higgs couplings
in the so-called -framework [6, 7], where the predicted SM Higgs strengths ci are rescaled
by overall factors i. In the combined analysis based on 7 and 8 TeV data sets [5] the
couplings with the vector bosons have been found to be compatible with those expected
from the SM, i.e., V = 1 (V = W,Z), within a ⇠ 10% uncertainty, while in the case of
the heaviest SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among the different
i that improve the sensitivity of experimental analyses are often assumed, yet lead to a
loss of generality. The precision of the current measurements therefore still leaves room for
Beyond-the-Standard-Model (BSM) scenarios involving modifications of the Higgs boson
couplings to the vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the second run of
the LHC at

p
s = 13 TeV centre-of-mass energy will be the precise determination of the

properties and the interactions of the SM particles, in particular those of the Higgs boson,
in order to constrain effects from New Physics (NP). The increase of the production cross
sections together with a larger integrated luminosity, which is expected to reach 300 fb�1

per experiment at the end of the Run II and up to 3000 fb�1 in the case of the following
High Luminosity (HL) option, will allow to probe the couplings of the Higgs boson with
the other SM particles with much higher accuracy. In particular, present estimates [8, 9],
suggest that at the end of Run II the Higgs boson couplings to the vector bosons are
expected to reach a ⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the
heavy fermions could reach ⇠ 10� 15% precision. Similar estimates for the end of the HL
option indicate a reduction of these numbers by at least a factor ⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in the scalar
potential

V (H) =

m2
H

2

H2
+ �3vH

3
+ �4H

4

is in a completely different situation. In the SM, the potential is fully determined by only
two parameters, v = (

p
2Gµ)

�1/2 and the coefficient of the (�

†
�)

2 interaction �, where
� is the Higgs doublet field. Thus, the mass and the self couplings of the Higgs boson
depend only on � and v (m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case
of extended scalar sectors or in presence of new dynamics at higher scales the trilinear and
quartic couplings, �3 and �4, typically depend on additional parameters and their values
can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sections of the
main single Higgs production processes, i.e., gluon–gluon fusion (ggF), vector-boson fu-
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The Higgs Potential

!4

A Comparison with the EFT approach

The SM potential for the Higgs doublet field reads

V SM
(�) = �µ2

(�

†
�) + �(�†

�)

2 , � =

1p
2

 
�+

v +H + i�0

!
, (A.1)

and can be modified by adding the dimension-6 operators (�

†
�)

3,

V dim�6
(�) = V SM

(�) +

c6
v2

(�

†
�)

3 , (A.2)

where the normalization of the operator (�

†
�)

3 is v = (

p
2Gµ)

�1/2
= 246 GeV. The

relations among mH , v, µ and � are different in V SM
(�) and V dim�6

(�). We determine
� and µ as function of the measured quantities, mH and v, and of the new parameter c6.
Once all the dependences are expressed as function of mH , v and c6, we can derive the value
of the coefficient in front of H3 which in the paper is called �3, as well as the coefficient in
front of the quartic term H4, which is denoted as �4. The SM relations are recovered by
setting c6 = 0.

With the condition dV dim�6(�)
d�

���
|�|=v/

p
2
= 0 , one obtains

v =

2µp
4�+ 3c6

! µ =

1

2

v
p
4�+ 3c6 , (A.3)

which after Electroweak Symmetry Breaking implies

m2
H = v2(2�+ 3c6) ! � =

m2
H

2v2
� 3c6

2

, (A.4)

and
cH3

⌘ v�3 = v

✓
�+

5

2

c6

◆
=

m2
H

2v
+ c6v ! � = 1 +

2c6v
2

m2
H

. (A.5)

At a first sight, the linear relation in Eq. (A.5) seems to imply that with the potential
V dim�6

(�) any value of �3 can be obtained. However, one can require that the potential is
bounded from below4 (c6 > 0) and that v is the global minimum. The latter condition had
been already discussed in Ref. [58] and can be easily derived substituting in the potential
of Eq. (A.2) µ and � with mH and v via Eqs. (A.3) and (A.4):

V dim�6
(�) =

✓
�m2

H

2

+

3

4

c6v
2

◆
�

†
� +

✓
m2

H

2v2
� 3

2

c6

◆
(�

†
�)

2
+

c6
v2

(�

†
�)

3 . (A.6)

Since � = 0 can be a local minimum, the condition that v is a global minimum requires

V dim�6
(v/

p
2) =

c6v
4 �m2

Hv
2

8

< 0 = V dim�6
(0) . (A.7)

4Here we are not taking into account Renormalization-Group-Equation (RGE) effects on � and c
6

, which
may add additional constraints; only the potential without quantum effects is considered.
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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the Large Hadron
Collider (LHC)[1, 2] opened a new era in high-energy particle physics. The study of the
properties of this particle provides strong evidence that it is the Higgs boson of the Standard
Model (SM), i.e., a scalar CP-even state whose couplings to the other known particles have
a SM-like structure and strengths proportional to their masses. In particular, ATLAS and
CMS performed both independent [3, 4] and combined [5] studies on the Higgs couplings
in the so-called -framework [6, 7], where the predicted SM Higgs strengths ci are rescaled
by overall factors i. In the combined analysis based on 7 and 8 TeV data sets [5] the
couplings with the vector bosons have been found to be compatible with those expected
from the SM, i.e., V = 1 (V = W,Z), within a ⇠ 10% uncertainty, while in the case of
the heaviest SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among the different
i that improve the sensitivity of experimental analyses are often assumed, yet lead to a
loss of generality. The precision of the current measurements therefore still leaves room for
Beyond-the-Standard-Model (BSM) scenarios involving modifications of the Higgs boson
couplings to the vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the second run of
the LHC at

p
s = 13 TeV centre-of-mass energy will be the precise determination of the

properties and the interactions of the SM particles, in particular those of the Higgs boson,
in order to constrain effects from New Physics (NP). The increase of the production cross
sections together with a larger integrated luminosity, which is expected to reach 300 fb�1

per experiment at the end of the Run II and up to 3000 fb�1 in the case of the following
High Luminosity (HL) option, will allow to probe the couplings of the Higgs boson with
the other SM particles with much higher accuracy. In particular, present estimates [8, 9],
suggest that at the end of Run II the Higgs boson couplings to the vector bosons are
expected to reach a ⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the
heavy fermions could reach ⇠ 10� 15% precision. Similar estimates for the end of the HL
option indicate a reduction of these numbers by at least a factor ⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in the scalar
potential

V (H) =

m2
H

2

H2
+ �3vH

3
+ �4H

4

is in a completely different situation. In the SM, the potential is fully determined by only
two parameters, v = (

p
2Gµ)

�1/2 and the coefficient of the (�

†
�)

2 interaction �, where
� is the Higgs doublet field. Thus, the mass and the self couplings of the Higgs boson
depend only on � and v (m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case
of extended scalar sectors or in presence of new dynamics at higher scales the trilinear and
quartic couplings, �3 and �4, typically depend on additional parameters and their values
can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sections of the
main single Higgs production processes, i.e., gluon–gluon fusion (ggF), vector-boson fu-
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how to determine the maximal and minimal possible values for �. In any case, imposing
the conditions that the potential is bounded from below and that v is the global minimum,
it is possible to recover the bound 1 < � < 3, confirming its independence on the choice
of normalisation of the (�

†
�)

3 term.

As a final exercise, we consider the extension of the SM potential V SM

V dim�8
(�) = V SM

(�) +

c6
v2

(�

†
�)

3
+

c8
v4

(�

†
�)

4 , (A.15)

where besides the (�

†
�)

3 term also the (�

†
�)

4 is included. Relations corresponding to
those in Eqs. (A.3)-(A.5) and (A.10) can be derived in a completely analogous way. We
write them directly as function of mH ,�, c6 and c8, where by setting c8 = 0 one recovers
the analogous ones for the potential in Eq. A.2:

µ2
=

m2
H

2

� 3c6
4

v2 � c8v
2 , (A.16)

� =

m2
H

2v2
� 3c6

2

� 3c8
2

, (A.17)

� = 1 +

(2c6 + 4c8)v
2

m2
H

, (A.18)

�
4

= 1 +

(12c6 + 32c8)v
2

m2
H

. (A.19)

At variance with the case of V dim�6
(�), with the inclusion of the c

8

v4
(�

†
�)

4 term the
quantity �

4

is independent of �, i.e., c6 and c8 can be traded off with � and �
4

. The
requirement that the potential is bounded from below implies c8 > 0, which in conjunction
with the requirement that the global minimum is located at � = v/

p
2 implies

� 4 + 4� + 2� < �
4

<
�31 + 30� + 92�

8

. (A.20)

Thus, without any constraint on the size of c6 and c8, such as those coming from an EFT,
� is not bounded and �

4

is constrained by Eq. (A.20).
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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the Large Hadron
Collider (LHC)[1, 2] opened a new era in high-energy particle physics. The study of the
properties of this particle provides strong evidence that it is the Higgs boson of the Standard
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how to determine the maximal and minimal possible values for �. In any case, imposing
the conditions that the potential is bounded from below and that v is the global minimum,
it is possible to recover the bound 1 < � < 3, confirming its independence on the choice
of normalisation of the (�
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3 term.

As a final exercise, we consider the extension of the SM potential V SM
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where besides the (�

†
�)

3 term also the (�
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4 is included. Relations corresponding to
those in Eqs. (A.3)-(A.5) and (A.10) can be derived in a completely analogous way. We
write them directly as function of mH ,�, c6 and c8, where by setting c8 = 0 one recovers
the analogous ones for the potential in Eq. A.2:
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At variance with the case of V dim�6
(�), with the inclusion of the c
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4 term the
quantity �
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is independent of �, i.e., c6 and c8 can be traded off with � and �
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. The
requirement that the potential is bounded from below implies c8 > 0, which in conjunction
with the requirement that the global minimum is located at � = v/

p
2 implies
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Thus, without any constraint on the size of c6 and c8, such as those coming from an EFT,
� is not bounded and �

4

is constrained by Eq. (A.20).
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A Comparison with the EFT approach

The SM potential for the Higgs doublet field reads
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At a first sight, the linear relation in Eq. (A.5) seems to imply that with the potential
V dim�6

(�) any value of �3 can be obtained. However, one can require that the potential is
bounded from below4 (c6 > 0) and that v is the global minimum. The latter condition had
been already discussed in Ref. [58] and can be easily derived substituting in the potential
of Eq. (A.2) µ and � with mH and v via Eqs. (A.3) and (A.4):

V dim�6
(�) =

✓
�m2

H

2

+

3

4

c6v
2

◆
�

†
� +

✓
m2

H

2v2
� 3

2

c6

◆
(�

†
�)

2
+

c6
v2

(�

†
�)

3 . (A.6)

Since � = 0 can be a local minimum, the condition that v is a global minimum requires
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p
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< 0 = V dim�6
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4Here we are not taking into account Renormalization-Group-Equation (RGE) effects on � and c
6

, which
may add additional constraints; only the potential without quantum effects is considered.
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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the Large Hadron
Collider (LHC)[1, 2] opened a new era in high-energy particle physics. The study of the
properties of this particle provides strong evidence that it is the Higgs boson of the Standard
Model (SM), i.e., a scalar CP-even state whose couplings to the other known particles have
a SM-like structure and strengths proportional to their masses. In particular, ATLAS and
CMS performed both independent [3, 4] and combined [5] studies on the Higgs couplings
in the so-called -framework [6, 7], where the predicted SM Higgs strengths ci are rescaled
by overall factors i. In the combined analysis based on 7 and 8 TeV data sets [5] the
couplings with the vector bosons have been found to be compatible with those expected
from the SM, i.e., V = 1 (V = W,Z), within a ⇠ 10% uncertainty, while in the case of
the heaviest SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among the different
i that improve the sensitivity of experimental analyses are often assumed, yet lead to a
loss of generality. The precision of the current measurements therefore still leaves room for
Beyond-the-Standard-Model (BSM) scenarios involving modifications of the Higgs boson
couplings to the vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the second run of
the LHC at

p
s = 13 TeV centre-of-mass energy will be the precise determination of the

properties and the interactions of the SM particles, in particular those of the Higgs boson,
in order to constrain effects from New Physics (NP). The increase of the production cross
sections together with a larger integrated luminosity, which is expected to reach 300 fb�1

per experiment at the end of the Run II and up to 3000 fb�1 in the case of the following
High Luminosity (HL) option, will allow to probe the couplings of the Higgs boson with
the other SM particles with much higher accuracy. In particular, present estimates [8, 9],
suggest that at the end of Run II the Higgs boson couplings to the vector bosons are
expected to reach a ⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the
heavy fermions could reach ⇠ 10� 15% precision. Similar estimates for the end of the HL
option indicate a reduction of these numbers by at least a factor ⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in the scalar
potential

V (H) =

m2
H

2

H2
+ �3vH

3
+ �4H

4

is in a completely different situation. In the SM, the potential is fully determined by only
two parameters, v = (

p
2Gµ)

�1/2 and the coefficient of the (�

†
�)

2 interaction �, where
� is the Higgs doublet field. Thus, the mass and the self couplings of the Higgs boson
depend only on � and v (m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case
of extended scalar sectors or in presence of new dynamics at higher scales the trilinear and
quartic couplings, �3 and �4, typically depend on additional parameters and their values
can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sections of the
main single Higgs production processes, i.e., gluon–gluon fusion (ggF), vector-boson fu-
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how to determine the maximal and minimal possible values for �. In any case, imposing
the conditions that the potential is bounded from below and that v is the global minimum,
it is possible to recover the bound 1 < � < 3, confirming its independence on the choice
of normalisation of the (�

†
�)

3 term.
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4 is included. Relations corresponding to
those in Eqs. (A.3)-(A.5) and (A.10) can be derived in a completely analogous way. We
write them directly as function of mH ,�, c6 and c8, where by setting c8 = 0 one recovers
the analogous ones for the potential in Eq. A.2:
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Thus, without any constraint on the size of c6 and c8, such as those coming from an EFT,
� is not bounded and �

4

is constrained by Eq. (A.20).
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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the Large Hadron
Collider (LHC)[1, 2] opened a new era in high-energy particle physics. The study of the
properties of this particle provides strong evidence that it is the Higgs boson of the Standard
Model (SM), i.e., a scalar CP-even state whose couplings to the other known particles have
a SM-like structure and strengths proportional to their masses. In particular, ATLAS and
CMS performed both independent [3, 4] and combined [5] studies on the Higgs couplings
in the so-called -framework [6, 7], where the predicted SM Higgs strengths ci are rescaled
by overall factors i. In the combined analysis based on 7 and 8 TeV data sets [5] the
couplings with the vector bosons have been found to be compatible with those expected
from the SM, i.e., V = 1 (V = W,Z), within a ⇠ 10% uncertainty, while in the case of
the heaviest SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among the different
i that improve the sensitivity of experimental analyses are often assumed, yet lead to a
loss of generality. The precision of the current measurements therefore still leaves room for
Beyond-the-Standard-Model (BSM) scenarios involving modifications of the Higgs boson
couplings to the vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the second run of
the LHC at

p
s = 13 TeV centre-of-mass energy will be the precise determination of the

properties and the interactions of the SM particles, in particular those of the Higgs boson,
in order to constrain effects from New Physics (NP). The increase of the production cross
sections together with a larger integrated luminosity, which is expected to reach 300 fb�1

per experiment at the end of the Run II and up to 3000 fb�1 in the case of the following
High Luminosity (HL) option, will allow to probe the couplings of the Higgs boson with
the other SM particles with much higher accuracy. In particular, present estimates [8, 9],
suggest that at the end of Run II the Higgs boson couplings to the vector bosons are
expected to reach a ⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the
heavy fermions could reach ⇠ 10� 15% precision. Similar estimates for the end of the HL
option indicate a reduction of these numbers by at least a factor ⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in the scalar
potential

V (H) =

m2
H

2

H2
+ �3vH

3
+ �4H

4

is in a completely different situation. In the SM, the potential is fully determined by only
two parameters, v = (

p
2Gµ)

�1/2 and the coefficient of the (�

†
�)

2 interaction �, where
� is the Higgs doublet field. Thus, the mass and the self couplings of the Higgs boson
depend only on � and v (m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case
of extended scalar sectors or in presence of new dynamics at higher scales the trilinear and
quartic couplings, �3 and �4, typically depend on additional parameters and their values
can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sections of the
main single Higgs production processes, i.e., gluon–gluon fusion (ggF), vector-boson fu-
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The Higgs self couplings are completely determined in the SM by the vev and 
the Higgs mass. On the other hand, Higgs self interactions have not been 
measured yet. 

The measurement of the Higgs self couplings is an important SM test, essential 
for the study of the Higgs potential. 
 
Possible deviations need to be parametrised via additional parameters, without 
altering the value of the Higgs mass and the vev.

Interpretations of the additional parameters strongly depend on the theory 
assumptions!
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A Comparison with the EFT approach

The SM potential for the Higgs doublet field reads
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and can be modified by adding the dimension-6 operators (�
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3 is v = (

p
2Gµ)

�1/2
= 246 GeV. The

relations among mH , v, µ and � are different in V SM
(�) and V dim�6

(�). We determine
� and µ as function of the measured quantities, mH and v, and of the new parameter c6.
Once all the dependences are expressed as function of mH , v and c6, we can derive the value
of the coefficient in front of H3 which in the paper is called �3, as well as the coefficient in
front of the quartic term H4, which is denoted as �4. The SM relations are recovered by
setting c6 = 0.

With the condition dV dim�6(�)
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At a first sight, the linear relation in Eq. (A.5) seems to imply that with the potential
V dim�6

(�) any value of �3 can be obtained. However, one can require that the potential is
bounded from below4 (c6 > 0) and that v is the global minimum. The latter condition had
been already discussed in Ref. [58] and can be easily derived substituting in the potential
of Eq. (A.2) µ and � with mH and v via Eqs. (A.3) and (A.4):
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Since � = 0 can be a local minimum, the condition that v is a global minimum requires

V dim�6
(v/

p
2) =

c6v
4 �m2

Hv
2

8

< 0 = V dim�6
(0) . (A.7)

4Here we are not taking into account Renormalization-Group-Equation (RGE) effects on � and c
6

, which
may add additional constraints; only the potential without quantum effects is considered.
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or c6 < m2
H/v

2. Thus, with the inclusion of only the (�

†
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3 operator in the SM Lagrangian
� is constrained to be in the range

1 < � < 3 . (A.8)

It is worth to notice that this bound has been derived without any assumption on the size
c6, which in an EFT approach would be subject to further constraints depending on the
scale of new physics ⇤.

In a general EFT approach in principle the value of �3 can be affected also by another
dimension-6 operator, namely, c

�

2v2
@µ

(�

†
�)@µ(�

†
�). However, other couplings of the Higgs

boson would also be affected by this operator, such as the coupling with the Z boson and
with the fermions. Thus, these effects would be already present at LO in single-Higgs
production and would be in general much larger than the effects induced by an anomalous
�3 coupling. Only for values 1 < � < 3 and assuming c� = 0 the results obtained in
this paper can be converted to values of c6 via eq. (A.5). Moreover, in the EFT approach,
Wilson coefficients at the scale ⇤ are typically expected to be smaller in absolute value than
4⇡. This requirement would additionally set the constraint

c6 < 4⇡
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2
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Analogously to what has been done for the trilinear coupling, we can define �4 ⌘
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since, with the V dim�6
(�) potential, �4 is a prediction fixed by mH , v and �3.

As last comments concerning the potential in Eq. (A.2), we want to stress that the
constraints in Eqs. (A.8)-(A.9), the relation between �3 and �4 and thus also the constraints
on �4 in Eq. (A.11) are parametrisation independent, i.e., they are not altered by the choice
of normalisation of the (�

†
�)

3 operator. Using for instance, the normalisation c̄6
�
v2

of
Ref. [42], Eqs. (A.3)-(A.5) and Eq. (A.10) would change, namely:
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2 + 15c̄6
2 + 3c̄6

. (A.14)

Equations (A.13) and (A.14) can be easily related to (A.5) and (A.10) in the limit c6 or
c̄6 ! 0, i.e., �, �

4

⇠ 1. On the other hand, with this parametrisation, it is less obvious
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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the Large Hadron
Collider (LHC)[1, 2] opened a new era in high-energy particle physics. The study of the
properties of this particle provides strong evidence that it is the Higgs boson of the Standard
Model (SM), i.e., a scalar CP-even state whose couplings to the other known particles have
a SM-like structure and strengths proportional to their masses. In particular, ATLAS and
CMS performed both independent [3, 4] and combined [5] studies on the Higgs couplings
in the so-called -framework [6, 7], where the predicted SM Higgs strengths ci are rescaled
by overall factors i. In the combined analysis based on 7 and 8 TeV data sets [5] the
couplings with the vector bosons have been found to be compatible with those expected
from the SM, i.e., V = 1 (V = W,Z), within a ⇠ 10% uncertainty, while in the case of
the heaviest SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among the different
i that improve the sensitivity of experimental analyses are often assumed, yet lead to a
loss of generality. The precision of the current measurements therefore still leaves room for
Beyond-the-Standard-Model (BSM) scenarios involving modifications of the Higgs boson
couplings to the vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the second run of
the LHC at

p
s = 13 TeV centre-of-mass energy will be the precise determination of the

properties and the interactions of the SM particles, in particular those of the Higgs boson,
in order to constrain effects from New Physics (NP). The increase of the production cross
sections together with a larger integrated luminosity, which is expected to reach 300 fb�1

per experiment at the end of the Run II and up to 3000 fb�1 in the case of the following
High Luminosity (HL) option, will allow to probe the couplings of the Higgs boson with
the other SM particles with much higher accuracy. In particular, present estimates [8, 9],
suggest that at the end of Run II the Higgs boson couplings to the vector bosons are
expected to reach a ⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the
heavy fermions could reach ⇠ 10� 15% precision. Similar estimates for the end of the HL
option indicate a reduction of these numbers by at least a factor ⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in the scalar
potential
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3
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+ · · ·

�3 = �SM
3 (1.1)
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is in a completely different situation. In the SM, the potential is fully determined by only
two parameters, v = (

p
2Gµ)

�1/2 and the coefficient of the (�

†
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2 interaction �, where
� is the Higgs doublet field. Thus, the mass and the self couplings of the Higgs boson
depend only on � and v (m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case
of extended scalar sectors or in presence of new dynamics at higher scales the trilinear and
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how to determine the maximal and minimal possible values for �. In any case, imposing
the conditions that the potential is bounded from below and that v is the global minimum,
it is possible to recover the bound 1 < � < 3, confirming its independence on the choice
of normalisation of the (�

†
�)

3 term.

As a final exercise, we consider the extension of the SM potential V SM

V dim�8
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where besides the (�

†
�)

3 term also the (�

†
�)

4 is included. Relations corresponding to
those in Eqs. (A.3)-(A.5) and (A.10) can be derived in a completely analogous way. We
write them directly as function of mH ,�, c6 and c8, where by setting c8 = 0 one recovers
the analogous ones for the potential in Eq. A.2:
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At variance with the case of V dim�6
(�), with the inclusion of the c
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v4
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†
�)

4 term the
quantity �

4

is independent of �, i.e., c6 and c8 can be traded off with � and �
4

. The
requirement that the potential is bounded from below implies c8 > 0, which in conjunction
with the requirement that the global minimum is located at � = v/

p
2 implies

� 4 + 4� + 2� < �
4

<
�31 + 30� + 92�

8

. (A.20)

Thus, without any constraint on the size of c6 and c8, such as those coming from an EFT,
� is not bounded and �

4

is constrained by Eq. (A.20).
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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the Large Hadron
Collider (LHC)[1, 2] opened a new era in high-energy particle physics. The study of the
properties of this particle provides strong evidence that it is the Higgs boson of the Standard
Model (SM), i.e., a scalar CP-even state whose couplings to the other known particles have
a SM-like structure and strengths proportional to their masses. In particular, ATLAS and
CMS performed both independent [3, 4] and combined [5] studies on the Higgs couplings
in the so-called -framework [6, 7], where the predicted SM Higgs strengths ci are rescaled
by overall factors i. In the combined analysis based on 7 and 8 TeV data sets [5] the
couplings with the vector bosons have been found to be compatible with those expected
from the SM, i.e., V = 1 (V = W,Z), within a ⇠ 10% uncertainty, while in the case of
the heaviest SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among the different
i that improve the sensitivity of experimental analyses are often assumed, yet lead to a
loss of generality. The precision of the current measurements therefore still leaves room for
Beyond-the-Standard-Model (BSM) scenarios involving modifications of the Higgs boson
couplings to the vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the second run of
the LHC at

p
s = 13 TeV centre-of-mass energy will be the precise determination of the

properties and the interactions of the SM particles, in particular those of the Higgs boson,
in order to constrain effects from New Physics (NP). The increase of the production cross
sections together with a larger integrated luminosity, which is expected to reach 300 fb�1

per experiment at the end of the Run II and up to 3000 fb�1 in the case of the following
High Luminosity (HL) option, will allow to probe the couplings of the Higgs boson with
the other SM particles with much higher accuracy. In particular, present estimates [8, 9],
suggest that at the end of Run II the Higgs boson couplings to the vector bosons are
expected to reach a ⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the
heavy fermions could reach ⇠ 10� 15% precision. Similar estimates for the end of the HL
option indicate a reduction of these numbers by at least a factor ⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in the scalar
potential

V (H) =

m2
H

2

H2
+ �3vH

3
+ �4H

4
+ · · ·

�3 = �SM
3 (1.1)

�4 = �
4
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is in a completely different situation. In the SM, the potential is fully determined by only
two parameters, v = (

p
2Gµ)

�1/2 and the coefficient of the (�
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2 interaction �, where
� is the Higgs doublet field. Thus, the mass and the self couplings of the Higgs boson
depend only on � and v (m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case
of extended scalar sectors or in presence of new dynamics at higher scales the trilinear and
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suggest that at the end of Run II the Higgs boson couplings to the vector bosons are
expected to reach a ⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the
heavy fermions could reach ⇠ 10� 15% precision. Similar estimates for the end of the HL
option indicate a reduction of these numbers by at least a factor ⇠ 2.
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Gauge invariant, valid up to the NP (implicit) scale Λ.  
Interpretation as linear EFT expansion valid (in general) only for small c6. 
Deformation of the trilinear and quartic couplings correlated. 
Perturbativity imposes bounds on c6 and thus      .

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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How do we measure the Higgs self coupling?

Standard Answer: you need to produce at least two Higgs!

!7

Calculation framework

We assume that New Physics induces only a modification in the Higgs potential, 
rescaling the trilinear coupling by a factor   

1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the
Large Hadron Collider (LHC) [1,2] opened a new era in high-energy particle
physics. The study of the properties of this particle provides strong evidence
that it is the Higgs boson of the Standard Model (SM), i.e., a scalar CP-even
state whose couplings to the other known particles have a SM-like structure
and strengths proportional to their masses. In particular, ATLAS and CMS
performed both independent [3, 4] and combined [5] studies on the Higgs
couplings in the so-called -framework [6,7], where the predicted SM Higgs
strengths ci are rescaled by overall factors i. In the combined analysis based
on 7 and 8-TeV data sets [5] the couplings with the vector bosons have been
found to be compatible with those expected from the SM, i.e., V = 1
(V = W,Z), within a ⇠ 10% uncertainty, while in the case of the heaviest
SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among
the di↵erent i are often assumed, improving the sensitivity of experimental
analyses on i but leading to a loss of generality. Therefore, the precision of
the current measurements still leaves room for Beyond-the-Standard-Model
(BSM) scenarios involving modifications of the Higgs-boson couplings to the
vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the
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p
s = 13 TeV centre-of-mass energy will be the

precise determination of the properties and interactions of the SM particles,
in particular those of the Higgs boson, in order to constrain e↵ects from
New Physics (NP). The increase of the production cross sections together
with a larger integrated luminosity, which is expected to reach 300 fb�1 per
experiment at the end of the Run II and up to 3000 fb�1 in the case of the
following High Luminosity (HL) option, will allow to probe the couplings
of the Higgs boson with the other SM particles with much higher accuracy.
In particular, present estimates [8, 9], suggest that at the end of the Run
II the Higgs-boson couplings to the vector bosons are expected to reach a
⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the heavy
fermions could reach ⇠ 10 � 15% precision. Similar estimates for the end
of the HL option indicate a reduction of these numbers by at least a factor
⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in
the scalar potential

V (H) =
m2

H

2
H2 + �3vH

3 + �4H
4

2

is in a completely di↵erent situation. In the SM, the potential is fully de-
termined by only two parameters, e.g., v = (

p
2Gµ)�1/2 and the coe�cient

of the (�†�)2 interaction �, where � is the Higgs doublet field. Thus, the
mass and the self couplings of the Higgs boson depend only on � and v
(m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case of ex-
tended scalar sectors or in presence of new dynamics at higher scales the
trilinear and quartic couplings, �3 and �4, typically depend on additional
parameters and their values can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sec-
tions of the main single-Higgs production processes, i.e., gluon–gluon fusion
(ggF), vector-boson fusion (VBF), W and Z associated production (WH,
ZH) and the production in association with a top-quark pair (tt̄H), depend
on the couplings of the Higgs boson to the other particles of the SM, yet they
are insensitive to �3 and �4. Information on �3 can be directly obtained at
LO only from final states featuring at least two Higgs bosons. However, the
cross sections of these processes are much smaller than those from single-
Higgs production, due to the suppression induced by a heavier final state
and an additional weak coupling. At

p
s = 13 TeV the single-Higgs gluon-

gluon-fusion production cross section in the SM is around 50 pb [12], while
the double-Higgs cross section is around 35 fb in the gluon-gluon-fusion
channel [13–15] and even smaller in other production mechanisms [16,17].

A plethora of perspective studies performed at
p
s = 13 TeV suggest

that it should be possible to detect the production of a Higgs pair via
bb̄�� [16, 18–22], bb̄⌧⌧ [16, 23], bb̄W+W� [24] and bb̄bb̄ [25–27] final states,
and also via signatures emerging from tt̄HH [28,29] and HV V [30] produc-
tion channels. However, the ultimate precision that could be achieved on the
determination of �3 is much less clear. Even with an integrated luminosity
of 3000 fb�1, experimental analyses suggest that it will be possible to ex-
clude at the LHC only values in the range �3 < �1.3 �SM

3 and �3 > 8.7 �SM
3

via the bb̄�� signatures [31] or �3 < �4 �SM
3 and �3 > 12 �SM

3 even includ-
ing also bb̄⌧⌧ signatures [32], i.e., a much more pessimistic perspective than
the results reported in the phenomenological explorations. The current ex-
perimental bounds on non-resonant Higgs pair production cross sections as
obtained at 8 TeV are rather weak. ATLAS has been able to exclude only a
signal up to 70 times larger than the SM one [33,34], which can be roughly
translated to the �3 < �12 �SM

3 and �3 > 17 �SM
3 exclusion limits, while

CMS puts a 95% C.L. exclusion limit on �3 < �17.5 �SM
3 and �3 > 22.5 �SM

3

assuming changes only in the trilinear Higgs-boson coupling, with all other
parameters fixed to their SM values [35]. Thus, additional strategies in the
determination of the trilinear Higgs self coupling �3 that are alternative and

3

framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-
cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3 . Thereby, the H3 interaction in the
potential, where H is the physical Higgs field, is given by

VH3

= �3 v H
3 ⌘ ��

SM
3 v H3, �SM

3 =
Gµp
2
m2

H , (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly
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Equivalently, the calculation is valid also for NP scenarios where effects from 
anomalous HVV and Hff interactions are smaller than those induced by       .
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Figure 21: Observed (solid line) and expected (dashed line) negative log-likelihood scan of the �du parameter,
probing the ratios of coupling modifiers for up-type versus down-type fermions for the combination of ATLAS and
CMS. The other parameters of interest from the list in the legend are also varied in the minimisation procedure.
The red (green) horizontal line at the �2� ln⇤ value of 1 (4) indicates the value of the profile likelihood ratio
corresponding to a 1� (2�) CL interval for the parameter of interest, assuming the asymptotic �2 distribution of the
test statistic.

6.4. Fermion and vector boson couplings

The last and most constrained parameterisation studied in this section is motivated by the intrinsic di↵er-
ence between the Higgs boson couplings to weak vector bosons, which originate from the breaking of the
EW symmetry, and the Yukawa couplings to the fermions. Similarly to Section 6.2, it is assumed in this
section that there are no new particles in the loops (ggF production process and H ! �� decay mode)
and that there are no BSM decays, i.e. BBSM = 0. Vector and fermion coupling modifiers, V and F , are
defined such that Z = W = V and t = ⌧ = b = F . These definitions can be applied either glob-
ally, yielding two parameters, or separately for each of the five decay channels, yielding ten parameters
 f

V and  f
F (following the notation related to Higgs boson decays used for the signal strength parameterisa-

tion). Two fits are performed: a two-parameter fit as a function of V and F , and a ten-parameter fit as a
function of  f

V and  f
F for each decay channel.

As explained in Section 2.4 and shown explicitly in Table 4, the Higgs boson production cross sections
and partial decay widths are only sensitive to products of coupling modifiers and not to their absolute sign.
Any sensitivity to the relative sign between V and F can only occur through interference terms, either
in the H ! �� decays, through the t–W interference in the �� decay loop, or in ggZH or tH production.
Without any loss of generality, this parameterisation assumes that one of the two coupling modifiers,
namely V (or  f

V ), is positive.

The combined ATLAS and CMS results are shown in Fig. 24 for the individual channels and their com-
bination. The individual decay channels are seen to be compatible with each other only for positive
values of  f

F . The incompatibility between the channels for negative values of  f
F arises mostly from the
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Equivalent study for only ZH production at e+e- collider in McCullough ‘14

Similar studies in EFT approach for only gluon-fusion with decays into photons in  
Gorbahn, Haisch ’16, and for VBF+VH in Bizon, Gorbahn, Haisch, Zanderighi ’16
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Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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Figure 5: Diagrams contributing to the C1 coe�cient in �(H ! ��). The
diagrams in the second row have multiplicity 2.

is performed in the unitary gauge, one is actually interchanging the order
of the operations limit ⇠ ! 1 with the integration, i.e., the limit ⇠ !
1 is performed first and then one does the integration while the correct
order is the opposite. Because some of the vertices that arise from the
gauge-fixing function contain a ⇠ factor, this exchange is not always an
allowed operation and in order to check the correctness of our approach we
recomputed1 the full two-loop EW corrections to �(H ! ��) in the unitary
gauge. The corrections were computed as in Ref. [51] via a Taylor expansion
in the parameters q2/(4m2

W ), q2/(4m2
H) up to and including O(q6/m6) terms

finding perfect agreement with the result of Ref. [51].
Once we verified that in the SM the calculation in the unitary gauge

is equivalent to the one in a R⇠ gauge, the coe�cient C1 is obtained eval-
uating the diagrams in the unitary gauge that contain one trilinear Higgs
interaction. The latter amounts to add to the contribution of the diagrams
in Fig. 4, with the gluons replaced by photons, to the contribution of the
diagrams in Fig. 5. The result is presented in Appendix A. We would like to
remark that the sum of the diagrams in Fig. 5 is finite in the unitary gauge
but it is not finite in a generic R⇠ gauge.

4 Results

In this section we discuss the numerical impact of the �3-dependent contri-
butions on the most important observables in single-Higgs production and
decay at the LHC. We begin by listing and commenting the size of the C1

1To our knowledge this is the first-ever two-loop computation of a physical observable
performed in the unitary gauge.
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the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
subprocess contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coe�cients of the various processes, we gener-
ated the relevant amplitudes using the Mathematica package FeynArts [43].
For all the cases involving only one-loop amplitudes, we computed the cross
sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
H ! V V ⇤ ! 4f), the �3-dependent parts in M1

�SM

3

have a common struc-

ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due

12

H

H

t

g

g

g

g

t
H

H

Figure 4: Diagrams contributing to the C1 coe�cient in the gluon-gluon-
fusion Higgs production. The one on the right has a multiplicity factor
2.

to the di↵erent Lorentz structure at one loop and at the tree level.
The computation of �(gg ! H), the related �(H ! gg), and of �(H !

��) is much more challenging and deserves a more detailed discussion. These
observables receive the first non-zero contributions from one-loop diagrams,
which do not feature �3, so that the computation of C1 requires the evalu-
ation of two-loop diagrams.

The two-loop EW corrections to �(gg ! H) in the SM were obtained
in Refs. [47–49]. In our computation of the C1 coe�cient we followed the
approach of Ref. [48] where the corrections have been computed via a Taylor
expansion in the parameters q2/(4m2

t ), q
2/(4m2

H) where q2 is the virtuality
of the external Higgs momentum, to be set to m2

H at the end of the com-
putation. However, at variance with Ref. [48], we computed the diagrams
contributing to C1, see Fig. 4, via an asymptotic expansion in the large top
mass up to and including O(m6

H/m
6
t ) terms. The two expansions are equiv-

alent up to the first threshold encountered in the diagrams that defines the
range of validity of the Taylor expansion. In our case, the first threshold in
the diagrams of Fig. 4 occurs at q2 = 4m2

H and both expansions are valid
for mH ' 125 GeV. The asymptotic expansion was performed following the
strategy described in Ref. [50] and the result for C1 is presented in Ap-
pendix A. We checked our asymptotic expansion against the corresponding
expression obtained by the Taylor expansion finding, as expected, very good
numerical agreement.

The computation of the EW corrections to the partial decay width of a
Higgs boson into two photons in the SM was performed in a R⇠ gauge in
Refs. [51, 52]. As mentioned above, the identification of the contributions
to the C1 coe�cient is straightforward in the unitary gauge. In this gauge,
neither unphysical scalars nor ghosts are present and the propagator of the
massive vector bosons is i(�gµ⌫ + kµk⌫/M

2
V )/(k

2 �M2
V + i✏). The unitary

gauge is a very special gauge. It can be defined as the limit when the
gauge parameter ⇠ is sent to infinity of a R⇠ gauge. When a calculation
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the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
subprocess contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coe�cients of the various processes, we gener-
ated the relevant amplitudes using the Mathematica package FeynArts [43].
For all the cases involving only one-loop amplitudes, we computed the cross
sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
H ! V V ⇤ ! 4f), the �3-dependent parts in M1
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have a common struc-

ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due
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1 is performed first and then one does the integration while the correct
order is the opposite. Because some of the vertices that arise from the
gauge-fixing function contain a ⇠ factor, this exchange is not always an
allowed operation and in order to check the correctness of our approach we
recomputed1 the full two-loop EW corrections to �(H ! ��) in the unitary
gauge. The corrections were computed as in Ref. [51] via a Taylor expansion
in the parameters q2/(4m2
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Once we verified that in the SM the calculation in the unitary gauge

is equivalent to the one in a R⇠ gauge, the coe�cient C1 is obtained eval-
uating the diagrams in the unitary gauge that contain one trilinear Higgs
interaction. The latter amounts to add to the contribution of the diagrams
in Fig. 4, with the gluons replaced by photons, to the contribution of the
diagrams in Fig. 5. The result is presented in Appendix A. We would like to
remark that the sum of the diagrams in Fig. 5 is finite in the unitary gauge
but it is not finite in a generic R⇠ gauge.

4 Results

In this section we discuss the numerical impact of the �3-dependent contri-
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the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
subprocess contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coe�cients of the various processes, we gener-
ated the relevant amplitudes using the Mathematica package FeynArts [43].
For all the cases involving only one-loop amplitudes, we computed the cross
sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
H ! V V ⇤ ! 4f), the �3-dependent parts in M1
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have a common struc-

ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due
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All the single Higgs production and decay processes are affected by an 
anomalous trilinear (not quartic) Higgs self coupling, parametrized by     .

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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Table 3: Summary of the event generators used by ATLAS and CMS to model the Higgs boson production processes
and decay channels at

p
s = 8 TeV.

Production Event generator
process ATLAS CMS

ggF Powheg [79–83] Powheg
VBF Powheg Powheg
WH Pythia8 [84] Pythia6.4 [85]
ZH (qq! ZH or qg! ZH) Pythia8 Pythia6.4
ggZH (gg! ZH) Powheg See text
ttH Powhel [87] Pythia6.4
tHq (qb! tHq) MadGraph [89] aMC@NLO [78]
tHW (gb! tHW) aMC@NLO aMC@NLO
bbH Pythia8 Pythia6.4, aMC@NLO

2.3. Signal strengths

The signal strength µ, defined as the ratio of the measured Higgs boson rate to its SM prediction, is used
to characterise the Higgs boson yields. For a specific production process and decay mode i ! H ! f ,
the signal strengths for the production, µi, and for the decay, µ f , are defined as

µi =
�i

(�i)SM
and µ f =

B f

(B f )SM
. (2)

Here �i (i = ggF,VBF,WH,ZH, ttH) and B f ( f = ZZ,WW, ��, ⌧⌧, bb, µµ) are respectively the produc-
tion cross section for i ! H and the decay branching fraction for H ! f . The subscript “SM” refers to
their respective SM predictions, so by definition, µi = 1 and µ f = 1 in the SM. Since �i and B f cannot be
separated without additional assumptions, only the product of µi and µ f can be measured experimentally,
leading to a signal strength µ f

i for the combined production and decay:

µ f
i =

�i · B f

(�i)SM · (B f )SM
= µi · µ f . (3)

The ATLAS and CMS data are combined and analysed using this signal strength formalism and the results
are presented in Section 5. For all these signal strength fits, as well as for the generic parameterisations
presented in Section 4.1, the parameterisations of the expected yields in each analysis category are per-
formed with a set of assumptions, which are needed because some production processes or decay modes,
which are not specifically searched for, contribute to other channels. These assumptions are the follow-
ing: for the production processes, the bbH signal strength is assumed to be the same as for ggF, the tH
signal strength is assumed to be the same as for ttH, and the ggZH signal strength is assumed to be the
same as for quark-initiated ZH production; for the Higgs boson decays, the H ! gg and H ! cc signal
strengths are assumed to be the same as for H ! bb decays, and the H ! Z� signal strength is assumed
to be the same as for H ! �� decays.
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to the di↵erent Lorentz structure at one loop and at the tree level.
The computation of �(gg ! H), the related �(H ! gg), and of �(H !

��) is much more challenging and deserves a more detailed discussion. These
observables receive the first non-zero contributions from one-loop diagrams,
which do not feature �3, so that the computation of C1 requires the evalu-
ation of two-loop diagrams.

The two-loop EW corrections to �(gg ! H) in the SM were obtained
in Refs. [47–49]. In our computation of the C1 coe�cient we followed the
approach of Ref. [48] where the corrections have been computed via a Taylor
expansion in the parameters q2/(4m2
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H) where q2 is the virtuality
of the external Higgs momentum, to be set to m2

H at the end of the com-
putation. However, at variance with Ref. [48], we computed the diagrams
contributing to C1, see Fig. 4, via an asymptotic expansion in the large top
mass up to and including O(m6

H/m
6
t ) terms. The two expansions are equiv-

alent up to the first threshold encountered in the diagrams that defines the
range of validity of the Taylor expansion. In our case, the first threshold in
the diagrams of Fig. 4 occurs at q2 = 4m2

H and both expansions are valid
for mH ' 125 GeV. The asymptotic expansion was performed following the
strategy described in Ref. [50] and the result for C1 is presented in Ap-
pendix A. We checked our asymptotic expansion against the corresponding
expression obtained by the Taylor expansion finding, as expected, very good
numerical agreement.

The computation of the EW corrections to the partial decay width of a
Higgs boson into two photons in the SM was performed in a R⇠ gauge in
Refs. [51, 52]. As mentioned above, the identification of the contributions
to the C1 coe�cient is straightforward in the unitary gauge. In this gauge,
neither unphysical scalars nor ghosts are present and the propagator of the
massive vector bosons is i(�gµ⌫ + kµk⌫/M

2
V )/(k

2 �M2
V + i✏). The unitary

gauge is a very special gauge. It can be defined as the limit when the
gauge parameter ⇠ is sent to infinity of a R⇠ gauge. When a calculation
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Figure 2: Structure of the �SM
3 -dependent part inM1
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ing massive vector bosons in the final or in the intermediate states (VBF,
HV and H ! V V ⇤ ! 4f).
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Figure 3: Sample of �SM
3 -dependent diagrams in tt̄H production.

the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
subprocess contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coe�cients of the various processes, we gener-
ated the relevant amplitudes using the Mathematica package FeynArts [43].
For all the cases involving only one-loop amplitudes, we computed the cross
sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
H ! V V ⇤ ! 4f), the �3-dependent parts in M1

�SM

3

have a common struc-

ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due

12

Degrassi, Giardino, 
Maltoni, DP ’16



!12

Step 1: 
only self couplings are anomalous, 

only total rates are considered 



Calculation framework
We assume that the dominant New Physics effects involve the Higgs potential. 
At NLO EW only the trilinear Higgs self coupling appears; the quartic-coupling 
dependence enters only at higher orders.

1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the
Large Hadron Collider (LHC) [1,2] opened a new era in high-energy particle
physics. The study of the properties of this particle provides strong evidence
that it is the Higgs boson of the Standard Model (SM), i.e., a scalar CP-even
state whose couplings to the other known particles have a SM-like structure
and strengths proportional to their masses. In particular, ATLAS and CMS
performed both independent [3, 4] and combined [5] studies on the Higgs
couplings in the so-called -framework [6,7], where the predicted SM Higgs
strengths ci are rescaled by overall factors i. In the combined analysis based
on 7 and 8-TeV data sets [5] the couplings with the vector bosons have been
found to be compatible with those expected from the SM, i.e., V = 1
(V = W,Z), within a ⇠ 10% uncertainty, while in the case of the heaviest
SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among
the di↵erent i are often assumed, improving the sensitivity of experimental
analyses on i but leading to a loss of generality. Therefore, the precision of
the current measurements still leaves room for Beyond-the-Standard-Model
(BSM) scenarios involving modifications of the Higgs-boson couplings to the
vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the
second run of the LHC at

p
s = 13 TeV centre-of-mass energy will be the

precise determination of the properties and interactions of the SM particles,
in particular those of the Higgs boson, in order to constrain e↵ects from
New Physics (NP). The increase of the production cross sections together
with a larger integrated luminosity, which is expected to reach 300 fb�1 per
experiment at the end of the Run II and up to 3000 fb�1 in the case of the
following High Luminosity (HL) option, will allow to probe the couplings
of the Higgs boson with the other SM particles with much higher accuracy.
In particular, present estimates [8, 9], suggest that at the end of the Run
II the Higgs-boson couplings to the vector bosons are expected to reach a
⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the heavy
fermions could reach ⇠ 10 � 15% precision. Similar estimates for the end
of the HL option indicate a reduction of these numbers by at least a factor
⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in
the scalar potential

V (H) =
m2

H

2
H2 + �3vH

3 + �4H
4

2

is in a completely di↵erent situation. In the SM, the potential is fully de-
termined by only two parameters, e.g., v = (

p
2Gµ)�1/2 and the coe�cient

of the (�†�)2 interaction �, where � is the Higgs doublet field. Thus, the
mass and the self couplings of the Higgs boson depend only on � and v
(m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case of ex-
tended scalar sectors or in presence of new dynamics at higher scales the
trilinear and quartic couplings, �3 and �4, typically depend on additional
parameters and their values can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sec-
tions of the main single-Higgs production processes, i.e., gluon–gluon fusion
(ggF), vector-boson fusion (VBF), W and Z associated production (WH,
ZH) and the production in association with a top-quark pair (tt̄H), depend
on the couplings of the Higgs boson to the other particles of the SM, yet they
are insensitive to �3 and �4. Information on �3 can be directly obtained at
LO only from final states featuring at least two Higgs bosons. However, the
cross sections of these processes are much smaller than those from single-
Higgs production, due to the suppression induced by a heavier final state
and an additional weak coupling. At

p
s = 13 TeV the single-Higgs gluon-

gluon-fusion production cross section in the SM is around 50 pb [12], while
the double-Higgs cross section is around 35 fb in the gluon-gluon-fusion
channel [13–15] and even smaller in other production mechanisms [16,17].

A plethora of perspective studies performed at
p
s = 13 TeV suggest

that it should be possible to detect the production of a Higgs pair via
bb̄�� [16, 18–22], bb̄⌧⌧ [16, 23], bb̄W+W� [24] and bb̄bb̄ [25–27] final states,
and also via signatures emerging from tt̄HH [28,29] and HV V [30] produc-
tion channels. However, the ultimate precision that could be achieved on the
determination of �3 is much less clear. Even with an integrated luminosity
of 3000 fb�1, experimental analyses suggest that it will be possible to ex-
clude at the LHC only values in the range �3 < �1.3 �SM

3 and �3 > 8.7 �SM
3

via the bb̄�� signatures [31] or �3 < �4 �SM
3 and �3 > 12 �SM

3 even includ-
ing also bb̄⌧⌧ signatures [32], i.e., a much more pessimistic perspective than
the results reported in the phenomenological explorations. The current ex-
perimental bounds on non-resonant Higgs pair production cross sections as
obtained at 8 TeV are rather weak. ATLAS has been able to exclude only a
signal up to 70 times larger than the SM one [33,34], which can be roughly
translated to the �3 < �12 �SM

3 and �3 > 17 �SM
3 exclusion limits, while

CMS puts a 95% C.L. exclusion limit on �3 < �17.5 �SM
3 and �3 > 22.5 �SM

3

assuming changes only in the trilinear Higgs-boson coupling, with all other
parameters fixed to their SM values [35]. Thus, additional strategies in the
determination of the trilinear Higgs self coupling �3 that are alternative and

3
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The possible range of    , even before the comparison with data, depends on the 
underlying theory assumptions and it applies also to double-Higgs analyses. 

framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-
cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3 . Thereby, the H3 interaction in the
potential, where H is the physical Higgs field, is given by

VH3

= �3 v H
3 ⌘ ��

SM
3 v H3, �SM

3 =
Gµp
2
m2

H , (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly
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of deformations of the SM predictions for the rates (�(i) · BR(f)), which can be compared
to the experimental data. A similar investigation, specific to ZH production at an e+e�

collider, was presented in Ref.[38].
Our approach builds on the assumption that NP couples to the SM via the Higgs

potential and dominantly affects only the Higgs self couplings. In other words, the lowest-
order Higgs couplings to the other fields of the SM (and in particular to the top quark
and vector bosons) are still given by the SM prescriptions or, equivalently, modifications to
these couplings are so small that do not swamp the NLO effects we are considering. While
this assumption needs always to be kept in mind, we stress that all the current experimental
limits or estimates of limits on �3 obtained from Higgs pair production implicitly rely on
it, too. In particular, the top-quark-Higgs coupling is assumed to be the one of the SM.
Perspectives on measurements of �3 via Higgs pair production relaxing this assumption
have been studied at the phenomenological level, e.g., in Refs. [21, 39] leading, in general,
to much weaker bounds. Within the assumption that NP modifies only �3, we investigate
the reach of our approach in the determination of �3 by considering the current 8 TeV
Higgs data [5] and the expected performances of the forthcoming runs of the LHC [8, 9].
We demonstrate the potential of single Higgs production channels in setting bounds on �3

that are competitive and complementary to those achievable via the searches for double
Higgs production.

The paper is organised as follows. In Section 2 we present the theoretical framework and
discuss the �3-dependent part of the NLO EW corrections to the single Higgs processes.
In the following section we present the calculation of such contributions to the various
observables. Section 4 is devoted to study the impact of the �3-dependent contribution in
the single Higgs production and decay modes at the LHC, while in the following section
we discuss the constraints on �3 that can be obtained from the current data and also from
future measurements. In the last section we summarise and draw our conclusions.

2 �3-dependent contributions in single Higgs processes

As basic assumption, we consider a BSM scenario where the only (or dominant) modification
of the SM Lagrangian at low energy appears in the scalar potential. In other words, we
assume that the only relevant effect induced at the weak scale by unknown NP at a high scale
is a modification of the self couplings of the 125 GeV boson. In particular, we concentrate
on the trilinear self-coupling of the Higgs boson, making the assumption that modifications
of �4 and of possible other self-couplings in the potential lead to much smaller effects and
that the strength of tree-level interactions of the Higgs field with the vector bosons and with
the fermions is not (or very weakly) modified with respect to the SM case. We therefore
simply parametrise the effect of NP at the weak scale via a single parameter �, i.e., the
rescaling of the SM trilinear coupling, �SM

3 . Thereby, the H3 interaction in the potential,
where H is the physical Higgs field, is given by

VH3

= �3 v H
3 ⌘ ��

SM
3 v H3, �SM

3 =

Gµp
2

m2
H , (2.1)
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Besides minor differences, results can be translated via:

A Comparison with the EFT approach

The SM potential for the Higgs doublet field reads

V SM
(�) = �µ2

(�

†
�) + �(�†

�)

2 , � =

1p
2

 
�+

v +H + i�0

!
, (A.1)

and can be modified by adding the dimension-6 operators (�

†
�)

3,

V dim�6
(�) = V SM

(�) +

c6
v2

(�

†
�)

3 , (A.2)

where the normalization of the operator (�

†
�)

3 is v = (

p
2Gµ)

�1/2
= 246 GeV. The

relations among mH , v, µ and � are different in V SM
(�) and V dim�6

(�). We determine
� and µ as function of the measured quantities, mH and v, and of the new parameter c6.
Once all the dependences are expressed as function of mH , v and c6, we can derive the value
of the coefficient in front of H3 which in the paper is called �3, as well as the coefficient in
front of the quartic term H4, which is denoted as �4. The SM relations are recovered by
setting c6 = 0.

With the condition dV dim�6(�)
d�

���
|�|=v/

p
2
= 0 , one obtains

v =

2µp
4�+ 3c6

! µ =

1

2

v
p

4�+ 3c6 , (A.3)

which after Electroweak Symmetry Breaking implies

m2
H = v2(2�+ 3c6) ! � =

m2
H

2v2
� 3c6

2

, (A.4)

and
cH3

⌘ v�3 = v

✓
�+

5

2

c6

◆
=

m2
H

2v
+ c6v ! � = 1 +

2c6v
2

m2
H

. (A.5)

At a first sight, the linear relation in Eq. (A.5) seems to imply that with the potential
V dim�6

(�) any value of �3 can be obtained. However, one can require that the potential is
bounded from below4 (c6 > 0) and that v is the global minimum. The latter condition had
been already discussed in Ref. [58] and can be easily derived substituting in the potential
of Eq. (A.2) µ and � with mH and v via Eqs. (A.3) and (A.4):

V dim�6
(�) =

✓
�m2

H

2

+

3

4

c6v
2

◆
�

†
� +

✓
m2

H

2v2
� 3

2

c6

◆
(�

†
�)

2
+

c6
v2

(�

†
�)

3 . (A.6)

Since � = 0 can be a local minimum, the condition that v is a global minimum requires

V dim�6
(v/

p
2) =

c6v
4 �m2

Hv
2

8

< 0 = V dim�6
(0) . (A.7)

4Here we are not taking into account Renormalization-Group-Equation (RGE) effects on � and c
6

, which
may add additional constraints; only the potential without quantum effects is considered.
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We assume that the dominant New Physics effects involve the Higgs potential. 
At NLO EW only the trilinear Higgs self coupling appears; the quartic-coupling 
dependence enters only at higher orders.

1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the
Large Hadron Collider (LHC) [1,2] opened a new era in high-energy particle
physics. The study of the properties of this particle provides strong evidence
that it is the Higgs boson of the Standard Model (SM), i.e., a scalar CP-even
state whose couplings to the other known particles have a SM-like structure
and strengths proportional to their masses. In particular, ATLAS and CMS
performed both independent [3, 4] and combined [5] studies on the Higgs
couplings in the so-called -framework [6,7], where the predicted SM Higgs
strengths ci are rescaled by overall factors i. In the combined analysis based
on 7 and 8-TeV data sets [5] the couplings with the vector bosons have been
found to be compatible with those expected from the SM, i.e., V = 1
(V = W,Z), within a ⇠ 10% uncertainty, while in the case of the heaviest
SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among
the di↵erent i are often assumed, improving the sensitivity of experimental
analyses on i but leading to a loss of generality. Therefore, the precision of
the current measurements still leaves room for Beyond-the-Standard-Model
(BSM) scenarios involving modifications of the Higgs-boson couplings to the
vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the
second run of the LHC at

p
s = 13 TeV centre-of-mass energy will be the

precise determination of the properties and interactions of the SM particles,
in particular those of the Higgs boson, in order to constrain e↵ects from
New Physics (NP). The increase of the production cross sections together
with a larger integrated luminosity, which is expected to reach 300 fb�1 per
experiment at the end of the Run II and up to 3000 fb�1 in the case of the
following High Luminosity (HL) option, will allow to probe the couplings
of the Higgs boson with the other SM particles with much higher accuracy.
In particular, present estimates [8, 9], suggest that at the end of the Run
II the Higgs-boson couplings to the vector bosons are expected to reach a
⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the heavy
fermions could reach ⇠ 10 � 15% precision. Similar estimates for the end
of the HL option indicate a reduction of these numbers by at least a factor
⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in
the scalar potential

V (H) =
m2

H

2
H2 + �3vH

3 + �4H
4

2

is in a completely di↵erent situation. In the SM, the potential is fully de-
termined by only two parameters, e.g., v = (

p
2Gµ)�1/2 and the coe�cient

of the (�†�)2 interaction �, where � is the Higgs doublet field. Thus, the
mass and the self couplings of the Higgs boson depend only on � and v
(m2

H = 2�v2,�SM
3 = �,�SM

4 = �/4). On the contrary, in the case of ex-
tended scalar sectors or in presence of new dynamics at higher scales the
trilinear and quartic couplings, �3 and �4, typically depend on additional
parameters and their values can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sec-
tions of the main single-Higgs production processes, i.e., gluon–gluon fusion
(ggF), vector-boson fusion (VBF), W and Z associated production (WH,
ZH) and the production in association with a top-quark pair (tt̄H), depend
on the couplings of the Higgs boson to the other particles of the SM, yet they
are insensitive to �3 and �4. Information on �3 can be directly obtained at
LO only from final states featuring at least two Higgs bosons. However, the
cross sections of these processes are much smaller than those from single-
Higgs production, due to the suppression induced by a heavier final state
and an additional weak coupling. At

p
s = 13 TeV the single-Higgs gluon-

gluon-fusion production cross section in the SM is around 50 pb [12], while
the double-Higgs cross section is around 35 fb in the gluon-gluon-fusion
channel [13–15] and even smaller in other production mechanisms [16,17].

A plethora of perspective studies performed at
p
s = 13 TeV suggest

that it should be possible to detect the production of a Higgs pair via
bb̄�� [16, 18–22], bb̄⌧⌧ [16, 23], bb̄W+W� [24] and bb̄bb̄ [25–27] final states,
and also via signatures emerging from tt̄HH [28,29] and HV V [30] produc-
tion channels. However, the ultimate precision that could be achieved on the
determination of �3 is much less clear. Even with an integrated luminosity
of 3000 fb�1, experimental analyses suggest that it will be possible to ex-
clude at the LHC only values in the range �3 < �1.3 �SM

3 and �3 > 8.7 �SM
3

via the bb̄�� signatures [31] or �3 < �4 �SM
3 and �3 > 12 �SM

3 even includ-
ing also bb̄⌧⌧ signatures [32], i.e., a much more pessimistic perspective than
the results reported in the phenomenological explorations. The current ex-
perimental bounds on non-resonant Higgs pair production cross sections as
obtained at 8 TeV are rather weak. ATLAS has been able to exclude only a
signal up to 70 times larger than the SM one [33,34], which can be roughly
translated to the �3 < �12 �SM

3 and �3 > 17 �SM
3 exclusion limits, while

CMS puts a 95% C.L. exclusion limit on �3 < �17.5 �SM
3 and �3 > 22.5 �SM

3

assuming changes only in the trilinear Higgs-boson coupling, with all other
parameters fixed to their SM values [35]. Thus, additional strategies in the
determination of the trilinear Higgs self coupling �3 that are alternative and

3
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framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-
cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3 . Thereby, the H3 interaction in the
potential, where H is the physical Higgs field, is given by

VH3

= �3 v H
3 ⌘ ��

SM
3 v H3, �SM

3 =
Gµp
2
m2

H , (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly

5

of deformations of the SM predictions for the rates (�(i) · BR(f)), which can be compared
to the experimental data. A similar investigation, specific to ZH production at an e+e�

collider, was presented in Ref.[38].
Our approach builds on the assumption that NP couples to the SM via the Higgs

potential and dominantly affects only the Higgs self couplings. In other words, the lowest-
order Higgs couplings to the other fields of the SM (and in particular to the top quark
and vector bosons) are still given by the SM prescriptions or, equivalently, modifications to
these couplings are so small that do not swamp the NLO effects we are considering. While
this assumption needs always to be kept in mind, we stress that all the current experimental
limits or estimates of limits on �3 obtained from Higgs pair production implicitly rely on
it, too. In particular, the top-quark-Higgs coupling is assumed to be the one of the SM.
Perspectives on measurements of �3 via Higgs pair production relaxing this assumption
have been studied at the phenomenological level, e.g., in Refs. [21, 39] leading, in general,
to much weaker bounds. Within the assumption that NP modifies only �3, we investigate
the reach of our approach in the determination of �3 by considering the current 8 TeV
Higgs data [5] and the expected performances of the forthcoming runs of the LHC [8, 9].
We demonstrate the potential of single Higgs production channels in setting bounds on �3

that are competitive and complementary to those achievable via the searches for double
Higgs production.

The paper is organised as follows. In Section 2 we present the theoretical framework and
discuss the �3-dependent part of the NLO EW corrections to the single Higgs processes.
In the following section we present the calculation of such contributions to the various
observables. Section 4 is devoted to study the impact of the �3-dependent contribution in
the single Higgs production and decay modes at the LHC, while in the following section
we discuss the constraints on �3 that can be obtained from the current data and also from
future measurements. In the last section we summarise and draw our conclusions.

2 �3-dependent contributions in single Higgs processes

As basic assumption, we consider a BSM scenario where the only (or dominant) modification
of the SM Lagrangian at low energy appears in the scalar potential. In other words, we
assume that the only relevant effect induced at the weak scale by unknown NP at a high scale
is a modification of the self couplings of the 125 GeV boson. In particular, we concentrate
on the trilinear self-coupling of the Higgs boson, making the assumption that modifications
of �4 and of possible other self-couplings in the potential lead to much smaller effects and
that the strength of tree-level interactions of the Higgs field with the vector bosons and with
the fermions is not (or very weakly) modified with respect to the SM case. We therefore
simply parametrise the effect of NP at the weak scale via a single parameter �, i.e., the
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3 . Thereby, the H3 interaction in the potential,
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VH3

= �3 v H
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SM
3 v H3, �SM
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Gµp
2

m2
H , (2.1)
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Numerical results

C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of
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of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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Process and kinetic dependent

universalwith

C2 =
�ZH

(1� 2��ZH)
. (8)

Before describing the method and results of the calculation of the C1 coef-
ficients, we scrutinise the theoretical robustness of Eq. (6) and its range of
validity. Our aim is to employ Eq. (6) to evaluate the LHC sensitivity on �3

without making “a priori” any assumptions on the value of the parameter
�. We will, however, demand as a consistency constraint that, for large
values of �, �3-dependent terms from O(↵j) corrections with j > 1 do not
overwhelm the e↵ects from the Ci coe�cients. In order to take into account
all the O((2�↵)

n) contributions and perform a resummation of the 2� �ZH

terms in ZH we need to impose that 2� �ZH . 1, i.e., |�| . 25. The cor-
responding parametric uncertainty in ⌃NLO is therefore given by O((3�↵

2))
terms that can be sizeable for large values of �. The size of such missing
terms can be estimated by calculating the di↵erence between �⌃�

3

computed
using Eq. (6) and Eq. (7), or equivalently �(⌃NLO/⌃LO) ' 3�C1�ZH . Re-
quiring this uncertainty to be . 10% and assuming as an order of magnitude
of the two-loop contribution C1�ZH ⇠ 10�5, we find |�| . 20, which we
take as the range of validity of our perturbative calculation.

It is important to note that in an E↵ective-Field-Theory (EFT) approach
much stronger bounds would be set by the requirement that v is the global
minimum and that the Higgs-doublet potential is bounded from below, es-
pecially if only the (�†�)3 operator is included, as done in Ref. [40]. In
this approach the constraint 1 < � < 3 can be derived from the previous
requirements, as demonstrated in Appendix B, where we discuss also further
constraints induced by the size of the Wilson coe�cient in front of (�†�)3

and we present general formulas for �3 and �4 including all the tower of
(�†�)n operators.

At variance with the SM, where the Higgs self coupling and the Higgs
mass are related, in our setup they are two independent parameters. This
in general spoils the renormalisability of the model and makes its parame-
ters sensitive to the UV scales. However, one knows a priori that the �3–
dependent O(↵) corrections to ⌃ in Eq. (6) are finite. The reason is twofold:

i) the LO result does not depend on �3 and therefore no renormalisation
of �3 at NLO is either needed nor possible.

ii) All the counterterms needed at NLO do not contain divergent contri-
butions proportional to the trilinear coupling.
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Numerical results

C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of
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Figure 6: Dependence of ���
3

for the relevant production processes at the
LHC as a function of � in the range |�|  20 (left) and zoomed in the
region �2 < � < 8 (right). The style and colour conventions of the lines
are: ggF = solid black, tt̄H = dash-dotted red, VBF = dotted green, ZH
= dashed blue, WH = long-dashed magenta.

vector-boson-fusion, Higgs-strahlung (WH and ZH) and tt̄H production.
In the plot on left we display the ���

3

corrections for the various processes
in the full range of validity of our calculation, �20 . � . 20, while in the
plot on the right we zoom the region �2 < � < 8, where corrections are
within 5% in absolute value.

As can be seen, tt̄H receives positive sizeable corrections (⇠ 20% at
� ⇠ 10), thanks to the large value of C�

1 (tt̄H). For all the other production
processes large corrections can only be negative and only for large value of
|�|. The plots on the right of Fig. 6 shows that ���

3

remains at the percent
level for a quite extended range for the ggF, VBF and V H production modes.
Moreover, for these processes, ���

3

can be zero for values of � 6= 1, i.e.,
di↵erent from the SM prediction. In particular, in the case of gluon-gluon
fusion and VBF, the SM is degenerate with � ⇠ 3, while in the case of V H
production the SM is degenerate with � ⇠ 6. The fact that the degeneracy
appears at di↵erent values � for di↵erent processes is important in order
to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7.
We plot (left) �⌃�

3

as a function of � for the decay widths of the rele-
vant modes at the LHC, which we denote as ���

3

, and we show (right) the
analogous quantity (�BR�

3

) for the Branching Ratios (BRs). The quan-
tity �BR�

3

(i) for the Higgs decay into the final-state i can be conveniently
written as

�BR�
3

(i) =
(� � 1)(C�

1 (i)� C�
tot

1 )

1 + (� � 1)C�
tot

1

, (15)
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butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as
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3

= (� � 1)C1 + (2� � 1)C2 , (7)
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Process and kinetic dependent

universalwith

C2 =
�ZH

(1� 2��ZH)
. (8)

Before describing the method and results of the calculation of the C1 coef-
ficients, we scrutinise the theoretical robustness of Eq. (6) and its range of
validity. Our aim is to employ Eq. (6) to evaluate the LHC sensitivity on �3

without making “a priori” any assumptions on the value of the parameter
�. We will, however, demand as a consistency constraint that, for large
values of �, �3-dependent terms from O(↵j) corrections with j > 1 do not
overwhelm the e↵ects from the Ci coe�cients. In order to take into account
all the O((2�↵)

n) contributions and perform a resummation of the 2� �ZH

terms in ZH we need to impose that 2� �ZH . 1, i.e., |�| . 25. The cor-
responding parametric uncertainty in ⌃NLO is therefore given by O((3�↵

2))
terms that can be sizeable for large values of �. The size of such missing
terms can be estimated by calculating the di↵erence between �⌃�

3

computed
using Eq. (6) and Eq. (7), or equivalently �(⌃NLO/⌃LO) ' 3�C1�ZH . Re-
quiring this uncertainty to be . 10% and assuming as an order of magnitude
of the two-loop contribution C1�ZH ⇠ 10�5, we find |�| . 20, which we
take as the range of validity of our perturbative calculation.

It is important to note that in an E↵ective-Field-Theory (EFT) approach
much stronger bounds would be set by the requirement that v is the global
minimum and that the Higgs-doublet potential is bounded from below, es-
pecially if only the (�†�)3 operator is included, as done in Ref. [40]. In
this approach the constraint 1 < � < 3 can be derived from the previous
requirements, as demonstrated in Appendix B, where we discuss also further
constraints induced by the size of the Wilson coe�cient in front of (�†�)3

and we present general formulas for �3 and �4 including all the tower of
(�†�)n operators.

At variance with the SM, where the Higgs self coupling and the Higgs
mass are related, in our setup they are two independent parameters. This
in general spoils the renormalisability of the model and makes its parame-
ters sensitive to the UV scales. However, one knows a priori that the �3–
dependent O(↵) corrections to ⌃ in Eq. (6) are finite. The reason is twofold:

i) the LO result does not depend on �3 and therefore no renormalisation
of �3 at NLO is either needed nor possible.

ii) All the counterterms needed at NLO do not contain divergent contri-
butions proportional to the trilinear coupling.

8

Production:      .

C�
1 [%] 25 GeV 50 GeV 100 GeV 200 GeV 500 GeV

WH 1.71 (0.11) 1.56 (0.34) 1.29 (0.72) 1.09 (0.94) 1.03 (0.99)

ZH 2.00 (0.10) 1.83 (0.33) 1.50 (0.71) 1.26 (0.94) 1.19 (0.99)

tt̄H 5.44 (0.04) 5.14 (0.17) 4.66 (0.48) 3.95 (0.84) 3.54 (0.99)

Table 3: C�
1 at 13 TeV obtained by imposing the cut pT (H) < pT,cut, for

several values of pT,cut. In parentheses the fraction of events left after the
quoted cut is applied.

C�
1 [%] 1.1 1.2 1.5 2 3

WH 1.78 (0.17) 1.60 (0.36) 1.32 (0.70) 1.15 (0.89) 1.06 (0.97)

ZH 2.08 (0.19) 1.86 (0.38) 1.51 (0.72) 1.31 (0.90) 1.22 (0.98)

tt̄H 8.57 (0.02) 7.02 (0.10) 5.11 (0.43) 4.12 (0.76) 3.64 (0.94)

Table 4: C�
1 at 13 TeV obtained by imposing the cut mtot < K · mthr,

for several values of K. In parentheses the fraction of events left after the
quoted cut is applied.

In order to support the arguments outlined above, the kinematical de-
pendence of the C1 coe�cients can be studied. To this purpose, we evaluate
C�
1 for these processes imposing an upper cut on the transverse momentum

of the Higgs or on the total invariant mass of the final state. The results
obtained for 13-TeV collisions are shown in Tabs. 3 and 4, for the cases
pT (H) < pT,cut and mtot < K ·mthr, being mthr the threshold of the specific
process. C�

1 is strongly enhanced when energetic configurations are vetoed.
In this respect, boosted configurations, which feature a smaller cross section
and a milder dependence on �, are certainly not optimal to detect devi-
ations in the Higgs trilinear coupling. On the other hand, the selection of
threshold regions may improve the sensitivity on �. Results for VBF have
not been included in the table because the dependence on the cuts turns out
to be very mild (very few percentages w.r.t the value in table 2), as expected
from the fact that the �3 dependence involve HV V vertex corrections, which
are not connected with the quark lines.

We turn now to the presentation and discussion of the results for pro-
duction and decay. We first consider the corrections ���

3

to the various
channels as defined in Eq. (6). In Fig. 6 we plot ���

3

as a function of � for
the relevant production processes at the LHC, namely, gluon–gluon fusion,
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Figure 6: Dependence of ���
3

for the relevant production processes at the
LHC as a function of � in the range |�|  20 (left) and zoomed in the
region �2 < � < 8 (right). The style and colour conventions of the lines
are: ggF = solid black, tt̄H = dash-dotted red, VBF = dotted green, ZH
= dashed blue, WH = long-dashed magenta.

vector-boson-fusion, Higgs-strahlung (WH and ZH) and tt̄H production.
In the plot on left we display the ���

3

corrections for the various processes
in the full range of validity of our calculation, �20 . � . 20, while in the
plot on the right we zoom the region �2 < � < 8, where corrections are
within 5% in absolute value.

As can be seen, tt̄H receives positive sizeable corrections (⇠ 20% at
� ⇠ 10), thanks to the large value of C�

1 (tt̄H). For all the other production
processes large corrections can only be negative and only for large value of
|�|. The plots on the right of Fig. 6 shows that ���

3

remains at the percent
level for a quite extended range for the ggF, VBF and V H production modes.
Moreover, for these processes, ���

3

can be zero for values of � 6= 1, i.e.,
di↵erent from the SM prediction. In particular, in the case of gluon-gluon
fusion and VBF, the SM is degenerate with � ⇠ 3, while in the case of V H
production the SM is degenerate with � ⇠ 6. The fact that the degeneracy
appears at di↵erent values � for di↵erent processes is important in order
to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7.
We plot (left) �⌃�

3

as a function of � for the decay widths of the rele-
vant modes at the LHC, which we denote as ���

3

, and we show (right) the
analogous quantity (�BR�

3

) for the Branching Ratios (BRs). The quan-
tity �BR�

3

(i) for the Higgs decay into the final-state i can be conveniently
written as

�BR�
3

(i) =
(� � 1)(C�

1 (i)� C�
tot

1 )

1 + (� � 1)C�
tot

1

, (15)
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C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of
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for the relevant production processes at the
LHC as a function of � in the range |�|  20 (left) and zoomed in the
region �2 < � < 8 (right). The style and colour conventions of the lines
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= dashed blue, WH = long-dashed magenta.

vector-boson-fusion, Higgs-strahlung (WH and ZH) and tt̄H production.
In the plot on left we display the ���

3

corrections for the various processes
in the full range of validity of our calculation, �20 . � . 20, while in the
plot on the right we zoom the region �2 < � < 8, where corrections are
within 5% in absolute value.

As can be seen, tt̄H receives positive sizeable corrections (⇠ 20% at
� ⇠ 10), thanks to the large value of C�

1 (tt̄H). For all the other production
processes large corrections can only be negative and only for large value of
|�|. The plots on the right of Fig. 6 shows that ���

3

remains at the percent
level for a quite extended range for the ggF, VBF and V H production modes.
Moreover, for these processes, ���

3

can be zero for values of � 6= 1, i.e.,
di↵erent from the SM prediction. In particular, in the case of gluon-gluon
fusion and VBF, the SM is degenerate with � ⇠ 3, while in the case of V H
production the SM is degenerate with � ⇠ 6. The fact that the degeneracy
appears at di↵erent values � for di↵erent processes is important in order
to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7.
We plot (left) �⌃�

3

as a function of � for the decay widths of the rele-
vant modes at the LHC, which we denote as ���

3

, and we show (right) the
analogous quantity (�BR�

3

) for the Branching Ratios (BRs). The quan-
tity �BR�

3

(i) for the Higgs decay into the final-state i can be conveniently
written as

�BR�
3

(i) =
(� � 1)(C�

1 (i)� C�
tot

1 )

1 + (� � 1)C�
tot

1

, (15)

18

ggF

VBF

ZH

WH

ttH

-20 -10 10 20
kl

-80

-60

-40

-20

dsl3@%D

-2 2 4 6 8
kl

-6

-4

-2

2

4

dsl3@%D

ggF VBF ZH WH ttH

Figure 6: Dependence of ���
3

for the relevant production processes at the
LHC as a function of � in the range |�|  20 (left) and zoomed in the
region �2 < � < 8 (right). The style and colour conventions of the lines
are: ggF = solid black, tt̄H = dash-dotted red, VBF = dotted green, ZH
= dashed blue, WH = long-dashed magenta.

vector-boson-fusion, Higgs-strahlung (WH and ZH) and tt̄H production.
In the plot on left we display the ���

3

corrections for the various processes
in the full range of validity of our calculation, �20 . � . 20, while in the
plot on the right we zoom the region �2 < � < 8, where corrections are
within 5% in absolute value.

As can be seen, tt̄H receives positive sizeable corrections (⇠ 20% at
� ⇠ 10), thanks to the large value of C�

1 (tt̄H). For all the other production
processes large corrections can only be negative and only for large value of
|�|. The plots on the right of Fig. 6 shows that ���

3

remains at the percent
level for a quite extended range for the ggF, VBF and V H production modes.
Moreover, for these processes, ���

3

can be zero for values of � 6= 1, i.e.,
di↵erent from the SM prediction. In particular, in the case of gluon-gluon
fusion and VBF, the SM is degenerate with � ⇠ 3, while in the case of V H
production the SM is degenerate with � ⇠ 6. The fact that the degeneracy
appears at di↵erent values � for di↵erent processes is important in order
to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7.
We plot (left) �⌃�

3

as a function of � for the decay widths of the rele-
vant modes at the LHC, which we denote as ���

3

, and we show (right) the
analogous quantity (�BR�

3

) for the Branching Ratios (BRs). The quan-
tity �BR�

3

(i) for the Higgs decay into the final-state i can be conveniently
written as

�BR�
3

(i) =
(� � 1)(C�

1 (i)� C�
tot

1 )

1 + (� � 1)C�
tot

1

, (15)

18

Degrassi, Giardino, Maltoni, DP ’16



Numerical results

C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)
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of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of
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of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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Process and kinetic dependent

universalwith

C2 =
�ZH

(1� 2��ZH)
. (8)

Before describing the method and results of the calculation of the C1 coef-
ficients, we scrutinise the theoretical robustness of Eq. (6) and its range of
validity. Our aim is to employ Eq. (6) to evaluate the LHC sensitivity on �3

without making “a priori” any assumptions on the value of the parameter
�. We will, however, demand as a consistency constraint that, for large
values of �, �3-dependent terms from O(↵j) corrections with j > 1 do not
overwhelm the e↵ects from the Ci coe�cients. In order to take into account
all the O((2�↵)

n) contributions and perform a resummation of the 2� �ZH

terms in ZH we need to impose that 2� �ZH . 1, i.e., |�| . 25. The cor-
responding parametric uncertainty in ⌃NLO is therefore given by O((3�↵

2))
terms that can be sizeable for large values of �. The size of such missing
terms can be estimated by calculating the di↵erence between �⌃�

3

computed
using Eq. (6) and Eq. (7), or equivalently �(⌃NLO/⌃LO) ' 3�C1�ZH . Re-
quiring this uncertainty to be . 10% and assuming as an order of magnitude
of the two-loop contribution C1�ZH ⇠ 10�5, we find |�| . 20, which we
take as the range of validity of our perturbative calculation.

It is important to note that in an E↵ective-Field-Theory (EFT) approach
much stronger bounds would be set by the requirement that v is the global
minimum and that the Higgs-doublet potential is bounded from below, es-
pecially if only the (�†�)3 operator is included, as done in Ref. [40]. In
this approach the constraint 1 < � < 3 can be derived from the previous
requirements, as demonstrated in Appendix B, where we discuss also further
constraints induced by the size of the Wilson coe�cient in front of (�†�)3

and we present general formulas for �3 and �4 including all the tower of
(�†�)n operators.

At variance with the SM, where the Higgs self coupling and the Higgs
mass are related, in our setup they are two independent parameters. This
in general spoils the renormalisability of the model and makes its parame-
ters sensitive to the UV scales. However, one knows a priori that the �3–
dependent O(↵) corrections to ⌃ in Eq. (6) are finite. The reason is twofold:

i) the LO result does not depend on �3 and therefore no renormalisation
of �3 at NLO is either needed nor possible.

ii) All the counterterms needed at NLO do not contain divergent contri-
butions proportional to the trilinear coupling.
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Figure 6: Dependence of ���
3

for the relevant production processes at the
LHC as a function of � in the range |�|  20 (left) and zoomed in the
region �2 < � < 8 (right). The style and colour conventions of the lines
are: ggF = solid black, tt̄H = dash-dotted red, VBF = dotted green, ZH
= dashed blue, WH = long-dashed magenta.

vector-boson-fusion, Higgs-strahlung (WH and ZH) and tt̄H production.
In the plot on left we display the ���

3

corrections for the various processes
in the full range of validity of our calculation, �20 . � . 20, while in the
plot on the right we zoom the region �2 < � < 8, where corrections are
within 5% in absolute value.

As can be seen, tt̄H receives positive sizeable corrections (⇠ 20% at
� ⇠ 10), thanks to the large value of C�

1 (tt̄H). For all the other production
processes large corrections can only be negative and only for large value of
|�|. The plots on the right of Fig. 6 shows that ���

3

remains at the percent
level for a quite extended range for the ggF, VBF and V H production modes.
Moreover, for these processes, ���

3

can be zero for values of � 6= 1, i.e.,
di↵erent from the SM prediction. In particular, in the case of gluon-gluon
fusion and VBF, the SM is degenerate with � ⇠ 3, while in the case of V H
production the SM is degenerate with � ⇠ 6. The fact that the degeneracy
appears at di↵erent values � for di↵erent processes is important in order
to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7.
We plot (left) �⌃�

3

as a function of � for the decay widths of the rele-
vant modes at the LHC, which we denote as ���

3

, and we show (right) the
analogous quantity (�BR�

3

) for the Branching Ratios (BRs). The quan-
tity �BR�

3

(i) for the Higgs decay into the final-state i can be conveniently
written as

�BR�
3

(i) =
(� � 1)(C�

1 (i)� C�
tot

1 )

1 + (� � 1)C�
tot

1

, (15)
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C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of
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Figure 7: Dependence of ���
3

for the relevant decay widths (right) and
corresponding �BR�

3

as defined in Eq. (15) (left). The solid black line
represents �ff̄ , the long-dashed red line �WW , the dashed blue line �ZZ and
the dotted green line ��� .

where we have defined C�
tot

1 ⌘ P
j BR

SM(j)C�
1 (j) and with our input pa-

rameters C�
tot

1 = 2.3 · 10�3. The quantity C�
tot

1 , which actually is the C1

term for the total decay width, is very small since C�
1 (bb̄) = 0 and bb̄ is the

dominant decay channel. Note that, although the H ! gg decay is not phe-
nomenologically relevant, the total decay width does depend on ���

3

(gg),
since �gg yields a non-negligible fraction (8.5 %) of �tot.

Figure 7 shows that the corrections to the partial widths can reach up
to �40% or �50% for � ⇠ �20, while for � > 0 the corrections are
smaller due to the di↵erent sign of the contributions depending on C�

1 and
C2. The only exception is ���

3

(ff̄), which is symmetric since C�
1 (ff̄)=0.

On the other hand, the corrections to the branching ratios �BR�
3

, which
are more important than ���

3

from a phenomenological point of view, are
much smaller, reaching up to ⇠ 10% for BR(ZZ). The reasons behind the
smallness of the �BR�

3

are two. First, as explicitly shown in Eq. (15) �BR�
3

depends only linearly upon �, since the contribution of the wave function
renormalisation constant cancels in the ratio. Second, the C1 coe�cients
have the same sign and therefore there is a partial cancellation in the ra-
tio. In any case, it is interesting to note that in the range of � shown in
the right-hand plot of Fig. 6, apart from tt̄H, the terms �BR�

3

are of the
same size or larger than ���

3

. In other words, in the range close to the SM
predictions, the decays modes are more sensitive to � than the production
processes.
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region �2 < � < 8 (right). The style and colour conventions of the lines
are: ggF = solid black, tt̄H = dash-dotted red, VBF = dotted green, ZH
= dashed blue, WH = long-dashed magenta.

vector-boson-fusion, Higgs-strahlung (WH and ZH) and tt̄H production.
In the plot on left we display the ���

3

corrections for the various processes
in the full range of validity of our calculation, �20 . � . 20, while in the
plot on the right we zoom the region �2 < � < 8, where corrections are
within 5% in absolute value.

As can be seen, tt̄H receives positive sizeable corrections (⇠ 20% at
� ⇠ 10), thanks to the large value of C�

1 (tt̄H). For all the other production
processes large corrections can only be negative and only for large value of
|�|. The plots on the right of Fig. 6 shows that ���

3

remains at the percent
level for a quite extended range for the ggF, VBF and V H production modes.
Moreover, for these processes, ���

3

can be zero for values of � 6= 1, i.e.,
di↵erent from the SM prediction. In particular, in the case of gluon-gluon
fusion and VBF, the SM is degenerate with � ⇠ 3, while in the case of V H
production the SM is degenerate with � ⇠ 6. The fact that the degeneracy
appears at di↵erent values � for di↵erent processes is important in order
to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7.
We plot (left) �⌃�

3

as a function of � for the decay widths of the rele-
vant modes at the LHC, which we denote as ���

3

, and we show (right) the
analogous quantity (�BR�

3

) for the Branching Ratios (BRs). The quan-
tity �BR�

3

(i) for the Higgs decay into the final-state i can be conveniently
written as

�BR�
3

(i) =
(� � 1)(C�

1 (i)� C�
tot

1 )

1 + (� � 1)C�
tot

1

, (15)
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5 Constrains on �3: present and future

In this section we describe the method and the results of a simplified fit we
have performed in order to estimate the limits that can be set on � with
our approach. Our analysis is based on the experimental results presented
in Tab. 8 of Ref. [5]. We also estimate the expected limits that could be
obtained at LHC Run-II at 300 fb�1 and 3000 fb�1 of luminosity.

The key aspect of our approach is that the predictions for all the avail-
able production and decay channels depend on a single parameter (�) and
therefore a global fit can be in principle very powerful in constraining the
Higgs trilinear coupling. As our aim is mostly illustrative, we want to assess
the competitiveness of our method rather than trying to obtain the best
and most robust bounds. To this purpose, we make a series of simplify-
ing approximations. For example, being usually quite small (see Fig. 7 of
Ref. [5]), we ignore correlations between the di↵erent uncertainties of a single
measurement or between the measurements of the di↵erent observables.

The basic inputs of our analysis are the signal-strength parameters µf
i ,

which are defined for any specific combination of production and decay chan-
nel i ! H ! f as

µf
i ⌘ µi ⇥ µf =

�(i)

�(i)SM
⇥ BR(f)

BRSM(f)
. (16)

The quantities µi and µf are the production cross section �(i) (i = ggF,
VBF, WH, ZH, tt̄H) and the BR(f) (f = ��, ZZ,WW, bb̄, ⌧⌧) normalised
to their SM values, respectively. Assuming on-shell production, the product
µi ⇥ µf is therefore the rate for the i ! H ! f process normalised to the
corresponding SM prediction.

Using Eq. (6) and Eq. (15), µi and µf , which enter the definition of µf
i

in Eq. (16), can be expressed as

µi = 1 + ���
3

(i) ,

µf = 1 + �BR�
3

(f) . (17)

By definition, µf
i = µi = µf = 1 in the SM.

In the following we denote the measured signal strengths as µ̄f
i . Given

a collection of µ̄f
i measurements {µ̄f

i }, we define as best value of � the one
that minimises the �2(�) function defined as

�2(�) ⌘
X

µ̄f
i 2{µ̄

f
i }

(µf
i (�)� µ̄f

i )
2

(�f
i (�))

2
, (18)
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Figure 8: Left: �2 for the di↵erent sets of observables presented in Tab. 5:
the dotted red line represents P1, the solid black line P2, the dashed magenta
line P3, and the blue dash-dotted line P4. The two horizontal lines represent
��2 = 1 and ��2 = 3.84. Right: corresponding p-value. The various Pn

data sets are colour-coded in the same way. The horizontal line is p = 0.05.

For the Future scenarios, we consider

• F1: “CMS-II” (300 fb�1),

• F2: “CMS-HL-II” (3000 fb�1),

as presented in Tab. 1 of Ref. [9]. A summary of the sets of data used in
each fit is presented in Tab. 5.

As shown in Fig. 8, we identify the 1� and 2� intervals assuming a �2

distribution. Following this procedure and using the gluon-gluon-fusion and
VBF data from Tab. 8 of Ref. [5] (scenario P2 in Tab. 5) we obtain

best� = �0.24 , 1�� = [�5.6, 11.2] , 2�� = [�9.4, 17.0] , (19)

where the best� is the best value and 1�� , 2�� are respectively the 1� and
2� intervals. The choice of P2 as reference set is motivated by the measured
significance for the di↵erent production processes, which is at the moment
above 5� only for ggF and VBF (see Tab. 14 in Ref. [5]). Moreover, P2

returns the most stringent values for 1�� and 2�� . The other data sets
presented in Tab. 5 are reported in Fig. 8. Notice how the minimum of the
distribution in the figure jumps to ⇠ 10 when the tt̄H production channel
is included. This e↵ect originates from the anomalous values presented in
Ref. [5] for µ̄f

tt̄H
, especially with f = WW . Similarly, the low compatibility

of µ̄f
V H with SM predictions is the reason behind larger 1�� and 2�� intervals

in P3.
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In this section we describe the method and the results of a simplified fit we
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In this section we describe the method and the results of a simplified fit we
have performed in order to estimate the limits that can be set on � with
our approach. Our analysis is based on the experimental results presented
in Tab. 8 of Ref. [5]. We also estimate the expected limits that could be
obtained at LHC Run-II at 300 fb�1 and 3000 fb�1 of luminosity.

The key aspect of our approach is that the predictions for all the avail-
able production and decay channels depend on a single parameter (�) and
therefore a global fit can be in principle very powerful in constraining the
Higgs trilinear coupling. As our aim is mostly illustrative, we want to assess
the competitiveness of our method rather than trying to obtain the best
and most robust bounds. To this purpose, we make a series of simplify-
ing approximations. For example, being usually quite small (see Fig. 7 of
Ref. [5]), we ignore correlations between the di↵erent uncertainties of a single
measurement or between the measurements of the di↵erent observables.

The basic inputs of our analysis are the signal strength parameters µf
i ,

which are defined for any specific combination of production and decay chan-
nel i ! H ! f as

µf
i ⌘ µi ⇥ µf =

�(i)

�(i)SM
⇥ BR(f)

BRSM(f)
. (16)

The quantities µi and µf are the production cross section �(i) (i = ggF,
VBF, WH, ZH, tt̄H) and the BR(f) (f = ��, ZZ,WW, bb̄, ⌧⌧) normalised
to their SM values, respectively. Assuming on-shell production, the product
µi ⇥ µf is therefore the rate for the i ! H ! f process normalised to the
corresponding SM prediction.

Using Eq. (6) and Eq. (15), µi and µf , which enter the definition of µf
i

in Eq. (16), can be expressed as

µi = 1 + ���
3

(i) ,

µf = 1 + �BR�
3

(f) . (17)

By definition, µf
i = µi = µf = 1 in the SM.

In the following we denote the measured signal strengths as µ̄f
i . Given

a collection of µ̄f
i measurements {µ̄f

i }, we define as best value of � the one
that minimises the �2(�) function defined as

�2(�) ⌘
X

µ̄f
i 2{µ̄

f
i }

(µf
i (�)� µ̄f

i )
2

(�f
i (�))

2
, (18)
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also other BSM interactions 

 can be present, 
differential distributions are 
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C1: kinematic dependence

Contributions to ttH and HV processes can be 
seen as induced by a Yukawa potential, giving a 
Sommerfeld enhancement at the threshold. 
NP at the threshold, not in the tails! 
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V
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V

Figure 2: Structure of the �SM
3 -dependent part inM1

�SM

3

for processes involv-

ing massive vector bosons in the final or in the intermediate states (VBF,
HV and H ! V V ⇤ ! 4f).
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Figure 3: Sample of �SM
3 -dependent diagrams in tt̄H production.

the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
subprocess contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coe�cients of the various processes, we gener-
ated the relevant amplitudes using the Mathematica package FeynArts [43].
For all the cases involving only one-loop amplitudes, we computed the cross
sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
H ! V V ⇤ ! 4f), the �3-dependent parts in M1

�SM

3

have a common struc-

ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due

12
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Fig. 5 Effect of O(λ3) correction in t t̄ H at 13 TeV LHC. Upper panel: normalized distributions at LO (red) and at O(λ3) (blue). Lower panel: C1
at the differential (green) and inclusive (blue) level

the unitary gauge. Having understood this point, the calcula-
tion is straightforward and can be performed automatically
in the Feynman gauge.

In our results we include both t H j and t̄ H j channels and
we do not apply cuts on the jet, since the result is infrared
finite. We find the C1 for the total cross section is about
0.91%. In Fig. 6, we showC1 for kinematic distributions such
as pT (H), pT (t), m(t H) and m(t H j). We note that unlike
the other variables pT (t) does not decrease monotonically as
we move from low to high pT values. Near threshold m(t H)

displays a quite impressive difference in shape.

3.5 H → 4ℓ

The Higgs decay into four fermions is the only Higgs decay
channel with non-trivial final-state kinematics. Moreover, it
is the only one where a priori alsoC1 can have a shape depen-
dence. Indeed, all the other decays correspond to a 1 → 2
process, and since the H boson is a scalar, there is not a
preferred direction in its reference frame. In the previous

study [39] the C1 for H → Z Z∗ decay was calculated to be
0.83%. Although the full off-shell configuration was taken
into account, possible angles between the decay products
were not analyzed. Using the form-factor code mentioned
above we calculate C1 for H → e+e−µ+µ− channel. We
analyzedC1 for many observables involving the four leptons,
but we found that it has in general almost no kinematic depen-
dence. As an example, in Fig. 7, we display C1 for leading
and subleading lepton pair invariant masses. Since the Higgs
boson interactions with the final-state fermions are negligi-
ble, this result can be extended to all the other decays into
four leptons and in general into four fermions.

4 Anomalous trilinear effects and the NLO electroweak
corrections

The set of one-loop corrections to single Higgs production
and decays involving the trilinear Higgs self-coupling is
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Fig. 4 Effect of O(λ3) correction in WH at 13 TeV LHC. Upper panel: normalized distributions at LO (red) and at O(λ3) (blue). Lower panel:
C1 at the differential (green) and inclusive (blue) level

single top is a particularly rich and interesting process, espe-
cially in searching for observables sensitive to relative phases
among the Higgs couplings to fermions and bosons [64–67].
Naively, one would expect this process to have a sensitivity
to the trilinear one between that of VBF and t t̄ H ; the t H j
process features a top quark in the final state as well as W
boson(s) in the propagators. The contribution of one-loop
diagrams featuring the Higgs self-coupling to this process
has not been considered in Ref. [39] for two major reasons.
The first one was of phenomenological nature: in the SM
this process is barely observable at the Run II of the LHC.
The second one is of a technical nature: the calculation needs
a careful check of EW gauge invariance and UV finiteness,
since a few subtleties, which are not present for the other
processes discussed in this work, arise. We describe them in
the following.

Similar to the case of the H → γ γ decay [38,39], Gold-
stone bosons appear in the Feynman diagrams contributing
to the LO. Thus, HGG and HHGG interactions are present
in one-loop EW corrections. While the former is not modi-

fied by (#†#)n effective operators, the latter is indeed mod-
ified [38,39]. The calculation can be consistently performed
in two different ways: either directly eliminating Goldstone
bosons by employing the unitary gauge, as also done for
other quantities in Refs. [39,42], or keeping track of HHGG
effects in the intermediate calculation steps, as we explain in
the following and as we actually will do in our calculation.

In a generic gauge, the on-shell renormalization of the
EW sector [68] involves the counterterm for the Goldstone
self-energy, which depends on the Higgs tadpole counter
term δt , which in turn depends on the trilinear coupling λ3.
Therefore, if we only modify the value of λ3, the Goldstone
self-energy counterterm receives a UV-divergent contribu-
tion proportional to (κ3 − 1), which is not cancelled by any
divergence from loop diagrams. Instead, if we consistently
take into account the modification of the HHGG vertex,
loop diagrams featuring a seagull in the G propagator are
also present; they exactly cancel the UV-divergent contribu-
tion proportional to (κ3 − 1) in the Goldstone self-energy
counter term, leading to the same result one would obtain in
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Figure 6. Comparison of the pT,h (left) and mWh (right) spectrum in Wh production. The upper
panels show the SM predictions (black) as well as the cases c̄6 = �10 (blue) and c̄6 = 10 (red). The
ratios between the case c̄6 = �10 and the SM (blue) and the case c̄6 = 10 and the SM (red) are
displayed in the lower panels. All results correspond to pp collisions at

p
s = 13TeV.

panel), one observes instead a richer pattern of possible deviations. While Brbb̄ and Brcc̄

receive only corrections at the few percent level for c̄6 2 [�15, 15], the modifications in all
other branching ratios can reach or slightly exceed 10% in the same c̄6 range. The impact
of O(�) corrections is thus generically smaller in the branching ratios than in the partial
decay widths, since in the former quantities the universal Higgs wave function corrections
partially cancel. Notice finally that only Brgg is enhanced with respect to the SM, while
the ⌧+⌧�, WW , ZZ and �� branching ratios all tend to be suppressed.

7.3 Modifications of the V h and VBF Higgs distributions

Since the vertex corrections (3.1) depend in a non-trivial way on the external 4-momenta,
the O(�) corrections not only change the overall size of the cross sections in V h and VBF
Higgs production but also modify the shape of the corresponding kinematic distributions.
In this subsection we present results for the spectra that are most sensitive to modifications
in the trilinear Higgs coupling. All results shown below correspond to

p
s = 13 TeV,

PDF4LHC15_nnlo_mc PDFs and the default scale choices introduced in Section 7.1. Off-shell
effects in Higgs-boson production are taken into account by modelling the width of the
Higgs with a Breit-Wigner line shape.

We begin our discussion with pp ! Wh. In Figure 6 the distributions of the Higgs-
boson transverse momentum (pT,h) and the invariant mass of the Wh system (mWh) are
shown. The black curves in the panels represent the SM predictions, while the blue and
red curves correspond to a new-physics scenario with c̄6 = �10 and c̄6 = 10, respectively.
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Figure 7. Comparison of the pT,h (left) and pT,j3 (right) spectrum in VBF Higgs production.
The style and colour coding of the curves follows the one of Figure 6.

All results have been obtained at NNLO with the MC code described in Section 5. One
sees that the shape of the displayed distributions provide sensitivity to the sign of c̄6. In
the case of c̄6 = �10 the pT,h (mWh) spectrum increases relative to the SM distribution as
a function of pT,h (mWh), approaching a constant value in the limit of large pT,h (mWh).
For c̄6 = 10 the ratio R instead decreases with pT,h (mWh) becoming again flat for pT,h ! 1
(mWh ! 1). The behaviour of the distribution for large pT,h and mWh can be understood
from the

p
s ! 1 limit of (5.2). In this limit only the Higgs wave function renormalisation

contributes and the vertex correction �V takes the simple form

limp
s!1

�V =
� c̄6

(4⇡)2
��9m2

h (c̄6 + 2) B0
0

�

= �1.5 · 10�3 c̄6 (c̄6 + 2) . (7.3)

It follows that for large transverse momenta (invariant masses) the deviation from 1 of
the ratio R of the pT,h (mWh) spectrum for c̄6 6= 0 and c̄6 = 0, i.e. the SM distribution,
is approximately given by (7.3). New-physics scenarios with c̄6 < 0 will hence lead to
harder pT,h and mWh tails than cases with c̄6 > 0, while they predict softer spectra at
low pT,h and mWh. These features are clearly visible in Figure 6 and are also present in
other kinematical observables such as the transverse momentum pT,W of the W boson.
The shapes of all rapidity distributions in pp ! Wh production are in contrast largely
insensitive to the sign of c̄6. Notice that our general arguments also apply to the case of
pp ! Zh, and as a result the distributions in the Zh channel resemble those found in Wh

production. We therefore do not show predictions for the various Zh spectra.
In Figure 7 we present our results for two kinematic distributions in VBF Higgs pro-

duction, namely the Higgs transverse momentum pT,h and the transverse momentum of the
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At variance with VH and ttH, in VBF the kinematic dependence is very small. 
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Fig. 12 1σ and 2σ bounds on κ3 from single production processes, based on future projections for ATLAS-HL at 14 TeV. Left: only statistical
uncertainty (S1). Right: experimental systematic uncertainty and theoretical uncertainty included (S2)

Since no differential information is available in the mea-
sured data at the moment, we focus on the same future sce-
nario at 14 TeV (ATLAS-HL) considered in Ref. [41]. How-
ever, our results cannot be directly compared with those in
Ref. [41], since there are a few differences in the treatment of
the inputs from experimental projections. Details are reported
in Appendix A, where we also carefully describe the proce-
dure of the fit we performed and the assumptions on the
uncertainties. In short, bounds on κ3, κt and κV are obtained
by maximizing a log-likelihood function.

We perform the fit considering two very different sce-
narios for the uncertainties. In the first scenario (S1), only
the statistical uncertainty is included. This crude assump-
tion corresponds to the ideal (and rather unrealistic) situation
where theoretical and experimental systematic uncertainties
are negligible. On the other hand, we exploit it for a direct
comparison with the second scenario (S2), where both the-
oretical and experimental systematic uncertainties are taken
into account. At the differential level we performed the com-
bination of the uncertainties via two different approaches that
are described in detail in Appendix A. For this reason dif-
ferential results for this second scenario always appear as
bands rather than lines, accounting the uncertainty related to
the different assumptions on the systematic and theoretical
errors.

Before performing the global fit, we separately consider
the different experimental inputs corresponding to ggF, VBF,
V H and t t̄ H production13 and we restrict to the configura-

13 In this section when we refer to a production mode X in fact we mean
one of the different X -like categories in Table 3. As can be seen, in any
X -like category the contribution of the actual X process is in general
dominant, so we can refer directly to it on the text for simplicity. Only
the VBF-like category receives a non-negligible contribution from ggF,
which on the other hand has a C1 very similar to VBF.

tion with κ3 only (κt = κV = 1). We remind the reader that
different decay channels are entering for each of the produc-
tion processes. Results are shown in Fig. 12, where the plot
on the left refers to scenario S1 and the plot on the right to
scenario S2. For the case of V H and t t̄ H production dashed
lines correspond to the fit of differential information; details
of the binning are reported in Appendix A.

The different shapes of the curves for values smaller and
larger than κ3 = 1 can be understood from the behavior of κ3
andκ2

3 terms in Eqs. (6) and (13). While forκ3 < 1 both theκ3
and the κ2

3 terms induce negative contributions in the produc-
tion signal strengths, for κ3 > 1 there are large cancellations
that suppress the effect of κ3. If we only include the statistical
uncertainty (S1) the ggF-like channel provides the best con-
straints for κ3 both for the regions κ3 > 1 and κ3 < 1, where
also t t̄ H is giving strong constraints, which are not improved
by the inclusion of differential information. A similar effect
is visible also for V H ; differential information does not lead
to any significant improvement. On the other hand, in the
region κ3 > 1 we see a clear improvement due to differen-
tial information for t t̄ H , although bounds from this single
production process are not sufficient to set a constraint in the
region for κ3 > 1.

The plot on the right (S2) shows that including theoretical
and experimental systematic uncertainties makes a differ-
ence. The t t̄ H process is giving the strongest constraints in
the region κ3 < 1 and receive improvements from the differ-
ential information, with a tiny dependence on the assumption
made for the combination of the uncertainties. This differ-
ence is induced by the change of the ggF result moving from
scenario S1 to scenario S2 rather than by an improvement
for t t̄ H . Note, however, that the impact of the differential
information for ggF production is not known and, while the
exact calculation of the (two-)loop-induced effects from λ3
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Fig. 13 1σ and 2σ bounds on κ3 including all production processes, based on future projections for ATLAS-HL at 14 TeV. Left: only statistical
uncertainty (S1). Right: experimental systematic uncertainty and theoretical uncertainty included (S2)

in pp → H j would be useful, it is currently out of reach.
Although constraints from ggF becomes much weaker in sce-
nario S2, in the region κ3 > 1 they are still the strongest. At
variance with ggF, t t̄ H is in general very slightly affected by
theoretical and systematic uncertainties since the dominant
error is of statistical origin. Regarding the bounds on κ3 from
VBF-like and V H -like channels, they are always worse than
those from ggF and t t̄ H , even when the differential infor-
mation is used for V H .

Next, we perform the global fit including all the exper-
imental data as input and taking into account the anoma-
lous couplings κt and κV . In Fig. 13 we present bounds
after combining all the production channels, under differ-
ent assumptions: i) only κ3 is anomalous, ii) κ3, κt or κ3, κV
are anomalous, iii) all three parameters κ3, κV , κt are anoma-
lous. In the presence of anomalous couplings other than κ3,
we marginalize over them. The plot on the left refers to sce-
nario S1, only statistical uncertainties, and the one on the
right to scenario S2, systematic and theoretical uncertainties
included. As we expect, in scenario S1 the differential infor-
mation (dashed line) does not noticeably improve any of the
constraints, while in the scenario S2 in the region κ3 < 1
and especially in the region κ3 > 1 differential information
from V H and t t̄ H leads to a clear improvement of the con-
straints. What, instead, is not obvious, especially given the
findings of Ref. [41], is the effect induced by anomalous κt
and/or κV terms to the fit. While constraints in the region
κ3 < 1 are relaxed, although not washed out completely, by
the inclusion of one or two new degrees of freedom, in the
region κ3 > 1 they are almost unaltered. In other words, in
scenario S2, bounds in the region κ3 > 1 are more affected by
differential information than by the addition of the κt or κV
parameters. Moreover, especially in the region κ3 < 1, these
two parameters alter the κ3 constraints more in the unrealistic

scenario S1 than S2. We describe rather in detail the observed
features exploiting the information contained in Fig. 12.

In scenario S1 for κ3 < 1 the constraints are strongly
affected by the inclusion of κt and/or κV since the global fit
with only κ3 is completely dominated by ggF in that region.
For this process only the total cross-section information is
used in the fit, so that a flat direction appears, i.e., the fit
is dominated by one input,14 which is sufficient for setting
constraints on only κ3 but not at the same time on κ3 and
κt , κV . To resolve this degeneracy, more constraining infor-
mation must be added to the fit. Indeed, the constraints with
two parameters (κ3, κt or κ3, κV ) or three (κ3, κt , κV ) are in
the region of the constraints from VBF and t t̄ H in Fig. 12.

The previous argument cannot be applied to the region
κ3 > 1 for scenario S1, where the bounds in the global fit
with only κ3 are not completely dominated by ggF. Indeed
the t t̄ H (and in a smaller way the VBF) contribution is not
negligible in that region, as can be seen from the left plot
of Fig. 12. Moreover, at variance with ggF production, there
is not a large background in t t̄ H production for the experi-
mental signatures involving the Higgs toµ+µ− decay, whose
branching ratio has a differentκV andκt dependence w.r.t. γ γ

and VV ∗ decays, and for values κ3 ∼ 8 the impact of decays
is more relevant. For this reason t t̄ H and ggF are sufficient
for constraining one, two or three parameters, with negligible
difference when parameters other than κ3 are marginalized.
We explicitly verified this feature.

Moving to scenario S2, the plot on the right where all
uncertainties are included, for κ3 < 1 the bounds are dom-

14 Note we have three decay channels for ggF that are almost fully
controlled by kV , namelyWW ∗, VV and γ γ . Indeed, also for H → γ γ
the contribution from top-quark loop is known to be much smaller than
W -loop contribution.

123

The interplay between additional possible couplings, experimental uncertainties 
and differential information lead to different results. 

Differential information improves constraints, especially when additional 
anomalous couplings are considered. 

Maltoni, DP, Shivaji, Zhao ’17



Differential information + other anomalous couplings
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Figure 14: Bounds on t and 3. Left: V = 1. Right: V marginalised. Up: all channels
considered in the fit. Down: Only V H and tt̄H considered in the fit.

exact two-loop calculation is beyond the current technology, but could be relevant too. To
this purpose, in the following we look at constraints in the (3,t) and (3,V ) plane with
and without the contributions from VBF and ggF, which hides the impact of the di↵erential
information. We consider only the scenario S2, which is more realistic.

In Fig. 14, we provide 1� and 2� contours in (3,t) plane without (left) and with (right)
anomalous V , which is anyway marginalised. Upper plots includes all the production channels,
whereas in the lower ones only V H and tt̄H enter. Analogous plots are provided in Fig. 15
for the (3,V ), without and with anomalous t. First of all, one can note that due to the t

dependence of the gluon fusion channel and tt̄H channel, in the upper plots the constraints on
3 in presence of t (Fig. 14) are stronger than those in presence of V (Fig. 15). 15 Also, in

15 For the same reason, comparing these results with those that would be obtained in the scenario S1, one
may also find that after including all uncertainties, the bounds on t are enlarged more significantly than those
on V , since the dominant contribution to bounds on t is ggF and tt̄H, and the experimental systematic
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Figure 15: Bounds on V and 3. Left: t = 1. Right: t marginalised. Up: all channels
considered in the fit. Down: Only V H and tt̄H considered in the fit.

the upper plots, having two independent parameters (left) or marginalising on an additional
third one (right) does not lead to qualitatively significant di↵erences. As discussed also before,
the impact of the di↵erential information is more important.

If we consider the lower plots the situation is very di↵erent. First, constraints with two or
three parameters are qualitatively di↵erent. Second, the impact of the distributions is much
more relevant. In the lower-left plot of Fig. 15 a flat direction is clearly resolved by di↵erential
information. The bottom-line is that by changing the number of free parameters and the number
of inputs entering in the fit, the relevance of di↵erential distributions and the sensitivity of the
3-limits on additional parameters can be considerably altered. The range of the lower plots is
much larger than in the upper plots, for this reason the exclusion of 2

3
2
t and/or 2

3
2
V terms

from eq. (17) would lead to visible e↵ects to the 2� contours, anyway without altering the
qualitative information.

uncertainty and theory uncertainty are much larger than statistical uncertainty for ggF.
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First experimental projections
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Figure 6: The expected differential ttH + tH cross sections times branching ratio, along with
their respective uncertainties, in bins of pH

T . These are for the fiducial region of phase space
defined in the bottom left of the plot. The error bars on the black points include the statistical
uncertainty, the experimental systematic uncertainties and the theoretical uncertainties related
to the ggH and VH yields. The theoretical uncertainties in the inclusive ttH + tH cross section
and those effecting the shape of the ttH + tH pH

T spectrum, originating from the uncertainty in
the QCD scales, are shown by the shaded yellow regions. Contributions from the individual
hadronic and leptonic channels are shown in red and purple respectively. The cross section
for the pH

T = [350,•] GeV bin is scaled by the width of the previous bin. Additionally, the
expected differential ttH + tH cross sections for anomalous values of the Higgs boson self-
coupling (kl = 10 and kl = -5) are shown by the horizontal dashed lines.
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Figure 7: Results of the likelihood scan in kl. The individual contributions of the statistical and
systematic uncertainties are separated by performing a likelihood scan with all systematics
removed. The observed deviation from the statistical uncertainty only curve is driven by the
theoretical systematic uncertainties in the Higgs boson production yields. Additionally, the
contributions from the hadronic and leptonic channels have been separated, shown in red and
purple, respectively.

References 21

λκ
10− 5− 0 5 10 15

H
µ

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 ln
 L

∆
-2

 

2

4

6

8

10

12

14

Simulation Preliminary CMS Phase-2 TeV)  (14-13 ab

SM
68% CL
95% CL

Figure 8: Results of the two-dimensional likelihood scan in kl-vs-µH, where µH allows all Higgs
boson production modes to scale relative to the SM prediction. The 68% and 95% confidence
level contours are shown by the solid and dashed lines respectively. The SM expectation is
shown by the black cross.

References 21

λκ
10− 5− 0 5 10 15

H
µ

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 ln
 L

∆
-2

 

2

4

6

8

10

12

14

Simulation Preliminary CMS Phase-2 TeV)  (14-13 ab

SM
68% CL
95% CL

Figure 8: Results of the two-dimensional likelihood scan in kl-vs-µH, where µH allows all Higgs
boson production modes to scale relative to the SM prediction. The 68% and 95% confidence
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Only ttH+tH with H—>γγ. 

Differential information is used. 
Including a free parameter for the 
global rescaling, bounds are not 
dramatically changed!
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CMS Physics Analysis Summary

Contact: cms-phys-conveners-ftr@cern.ch 2018/11/19

Constraints on the Higgs boson self-coupling from ttH+tH,
H ! gg differential measurements at the HL-LHC

The CMS Collaboration

Abstract

This note details a study of prospects for ttH+tH, H ! gg differential cross section
measurements at the HL-LHC with the CMS Phase-2 detector. The study is performed
using simulated proton-proton collisions at a centre-of-mass energy of

p
s = 14 TeV,

corresponding to 3 ab�1 of data. The expected performance of the upgraded CMS
detector is used to model the object reconstruction efficiencies under HL-LHC con-
ditions. The results are interpreted in terms of the expected sensitivity to deviations
of the Higgs boson self-coupling, kl, from beyond standard model effects. Using the
HL-LHC data, the precision expected in ttH+tH, H ! gg differential cross section
measurements will constrain kl within the range �4.1 < kl < 14.1, at the 95% con-
fidence level, assuming all other Higgs boson couplings are fixed to standard model
predictions. Moreover, it is possible to disentangle the effects of a modified Higgs
boson self coupling from the presence of other anomalous couplings by using the
differences in the shape of the measured spectrum. This separation is unique to dif-
ferential cross section measurements. The ultimate sensitivity to the Higgs boson self
coupling, achievable using differential cross section measurements, will result from a
combination across Higgs boson production modes and decay channels.

CMS PAS FTR-18-020 
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Combined fit with others EFT parameters
Di Vita, Grojean, Panico, Riembau, Vantalon ‘17Assumptions:

- Consider all the possible EFT dimension-6 operators that enter only in single 
Higgs production and decay (10 independent parameters).  

of the 10 quantities tested experimentally (5 production and 5 decay modes), 9 independent409

constraints can be derived, which are enough to determine the set of single-Higgs couplings410

(�cz, czz, cz⇤, ĉz� , ĉ�� , ĉgg, �yt, �yb, �y⌧ ).411

In our numerical analysis we estimate the theory and experimental systematic uncer-412

tainties by following the ATLAS projections presented in ref. [10]. The full list of uncer-413

tainties is given in table 1. Notice that, with respect to the ATLAS analysis we introduced414

a few updates. We reduced the theory uncertainty in the gluon fusion production cross415

section to take into account the recent improvement in the theory predictions [3, 28]. In416

addition, we updated the entries corresponding to the VBF production mode with ZZ and417

WW final states using the more recent estimates presented in refs. [11] and [12]. To esti-418

mate the separate uncertainties in the WH and the ZH production modes with ZZ final419

state, which are considered together in ref. [10], we divided the experimental uncertainty420

for V H by the square root of the corresponding event fractions.8421

Our projections are also in fair agreement with the ‘Scenario 1’ in the CMS extrap-422

olations [26], in which the systematic uncertainties are assumed to be the same as in the423

8TeV LHC run. Notice that our choice is more conservative than the one made in ref. [7],424

and should be interpreted as a ‘pessimistic’ scenario. We will comment in section 5.2 on425

how the numerical results change as a function of the systematic uncertainties.426

To extract the fit we assume that the measured signal strengths are equal to the SM427

predictions, i.e. µf
i = 1, and we perform a simple statistical analysis by constructing the428

�2 function429

�2 =
X

i,f

(µf
i � 1)2

(�f
i )

2
, (3.3)

where �f
i are the errors associated to each channel.430

If we consider only small deviations in the single-Higgs couplings, we can linearly431

expand the signal strengths in terms of the 9 fit parameters (the numerical expressions are432

given in Appendix A). In this way the �2 function becomes quadratic in the parameters433

and we end up in a Gaussian limit. The 1� intervals and the full correlation matrix (with434

large correlations enlightened in boldface) for the parameters are given by (by construction435

the best fit coincides with the SM point, where all the coe�cients vanish)436

0
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= ±
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0.09 (0.02)
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0.17 (0.09)

1
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2

666666666666664

1 �0.01 �0.02 0.03 0.08 0.01 �0.71 0.03 0.01

1 �0.45 0.36 �0.61 �0.33 0.18 0.89 0.53

1 �0.99 0.69 0.11 0.38 �0.47 �0.74

1 �0.58 �0.23 �0.42 0.42 0.71

1 �0.58 0.09 �0.46 �0.63

1 0.14 0.04 0.04

1 0.25 �0.08

1 0.57

1

3

777777777777775

(3.4)

8In this way, we get that the ratio of uncertainties between the WH and ZH channels with ZZ final

state is in good agreement with a previous estimate by ATLAS [29].
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The leading new-physics e↵ects are usually associated with EFT operators with the112

lowest dimensionality, namely the dimension-6 ones. In the following we restrict our atten-113

tion to these operators and neglect higher-order e↵ects. To further simplify our analysis we114

also assume that the new physics is CP-preserving and flavor universal. With these restric-115

tions we are left with 10 independent operators that a↵ect Higgs physics at leading order116

and have not been tested below the % accuracy in existing precision measurements [13].2117

Before discussing our operator basis, it is important to mention that a much larger set of118

dimension-6 operators could in principle be relevant for Higgs physics. A first class of these119

operators include deformations of the SM Lagrangian involving the light SM fermions. They120

correct at tree level the Higgs processes but also a↵ect observables not involving the Higgs.121

Therefore most of them have already been tested with good precision in EW measurements.122

A second set of dimension-6 operators involve the top quark and are typically much less123

constrained. However they a↵ect Higgs physics only at loop level, thus their e↵ects are124

usually not very large. We postpone a more detailed discussion to section 2.2.125

A convenient choice for dimension-6 operators is provided by the “Higgs basis” [3, 14]126

in which the Higgs is assumed to be part of an SU(2)L doublet and operators connected127

to the LHC Higgs searches are separated from the others that can be tested in observables128

not involving the Higgs.3 The 10 e↵ective operators we will focus on can be split into three129

classes: the first one contains deformations of the Higgs couplings to the SM gauge bosons,130

parametrized by131

�cz , czz , cz⇤ , ĉz� , ĉ�� , ĉgg , (2.2)

the second class is related to deformations of the fermion Yukawa’s132

�yt , �yb , �y⌧ , (2.3)

and finally the last e↵ect is a distortion of the Higgs trilinear self-coupling133

� . (2.4)

The corresponding corrections to the Higgs interactions in the unitary gauge are given by
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+ ĉ��

e2

4⇡2
Aµ⌫A

µ⌫

+ cz⇤g
2Zµ@⌫Z

µ⌫ + c�⇤gg
0Zµ@⌫A

µ⌫ + czz
g2 + g02

4
Zµ⌫Z

µ⌫ + ĉz�
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f
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◆
f̄RfL + h.c.
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� (� � 1)�SM
3 vh3 , (2.5)

2The assumption of flavor universality is not crucial for our analysis. It is only introduced to restrict the

EFT analysis to the operators that can only be tested in Higgs physics. The same can be done in several

other flavor scenarios, as for instance minimal flavor violation and anarchic partial compositeness.
3For the relation between the independent couplings in the Higgs basis and the Wilson coe�cients of

other operator bases, see [14].
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- Consider only inclusive single-Higgs observable (9 independent constraints) 
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Figure 2. �2 as a function of the Higgs trilinear coupling � obtained by performing a global
fit including the constraints coming from TGC’s measurements and the bound on the h ! Z�

decay rate. The results are obtained by assuming an integrated luminosity of 3/ab at 14 TeV.
The dotted curve corresponds to the result obtained by setting to zero all the other the Higgs-
coupling parameters, while the solid curve is obtained by profiling and is multiplied by a factor
20 to improve its visibility. To compare with previous literature (ref. [7]), we also display the
exclusive fit performed assuming the uncertainty projections from the more optimistic ‘Scenario 2’
of CMS [26] (dashed curve).

An additional way to probe the flat direction is to compare single-Higgs production583

rates at di↵erent collider energies. This possibility stems from the fact that the kinematic584

distributions in Higgs production channels with associated objects (VBF, ZH, WH and585

ttH) changes in a non-trivial way as a function of the collider energy. As a consequence586

the impact of the modification of the Higgs couplings on the production rates shows some587

dependence on the energy as well. As one can see from the numerical results reported in588

Appendix A, the dependence of the VBF, ZH and WH rates on the czz, cz⇤, ĉz� and ĉ��589

parameters changes as a function of the collider energy (eqs. (A.1), (A.2) and (A.3)). The590

corrections due to � also show a dependence on the energy. In particular the strongest591

e↵ects are present in the ttH production rate, as can be seen from eq. (A.13) and the list592

of coe�cients in table 3.593

The di↵erence in the new physics e↵ects at the di↵erent LHC energies are quite small,594

so that they do not really allow for an improvement in the fit, taking also into account595

the fact that accurate enough predictions will be obtained only for one center of mass596

energy. Future colliders (as for instance a 33 TeV hadron machine) could lead to more597

pronounced changes in the parameter dependence.12 However the improvement achievable598

with a combined fit is only marginal. A more e�cient way of exploiting higher-energy599

machines is to look for double Higgs production which could probe � with enough accuracy600

to make its contributions to single Higgs processes negligible (assuming that no significant601

deviation with respect to the SM is found) [23].602

12We thank D. Pagani for providing us with the results for the � contribution to the inclusive observables

at 33 and 100 TeV.
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tree-level: loop: 

10 parameters vs 9 constraints —> 1 flat direction 
so no constraints for the weakest:  

9 constraints can become 10 (Higgs plus jet, 
Double Higgs ..), or many (look at distributions) 

The leading new-physics e↵ects are usually associated with EFT operators with the112

lowest dimensionality, namely the dimension-6 ones. In the following we restrict our atten-113

tion to these operators and neglect higher-order e↵ects. To further simplify our analysis we114

also assume that the new physics is CP-preserving and flavor universal. With these restric-115

tions we are left with 10 independent operators that a↵ect Higgs physics at leading order116

and have not been tested below the % accuracy in existing precision measurements [13].2117

Before discussing our operator basis, it is important to mention that a much larger set of118

dimension-6 operators could in principle be relevant for Higgs physics. A first class of these119

operators include deformations of the SM Lagrangian involving the light SM fermions. They120

correct at tree level the Higgs processes but also a↵ect observables not involving the Higgs.121

Therefore most of them have already been tested with good precision in EW measurements.122

A second set of dimension-6 operators involve the top quark and are typically much less123

constrained. However they a↵ect Higgs physics only at loop level, thus their e↵ects are124

usually not very large. We postpone a more detailed discussion to section 2.2.125

A convenient choice for dimension-6 operators is provided by the “Higgs basis” [3, 14]126

in which the Higgs is assumed to be part of an SU(2)L doublet and operators connected127

to the LHC Higgs searches are separated from the others that can be tested in observables128

not involving the Higgs.3 The 10 e↵ective operators we will focus on can be split into three129

classes: the first one contains deformations of the Higgs couplings to the SM gauge bosons,130

parametrized by131

�cz , czz , cz⇤ , ĉz� , ĉ�� , ĉgg , (2.2)

the second class is related to deformations of the fermion Yukawa’s132

�yt , �yb , �y⌧ , (2.3)

and finally the last e↵ect is a distortion of the Higgs trilinear self-coupling133

� . (2.4)

The corresponding corrections to the Higgs interactions in the unitary gauge are given by
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2The assumption of flavor universality is not crucial for our analysis. It is only introduced to restrict the

EFT analysis to the operators that can only be tested in Higgs physics. The same can be done in several

other flavor scenarios, as for instance minimal flavor violation and anarchic partial compositeness.
3For the relation between the independent couplings in the Higgs basis and the Wilson coe�cients of

other operator bases, see [14].

– 4 –

!28



Combined fit with others EFT parameters
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Figure 3. Constraints in the planes (�yt, ĉgg) (left panel) and (�yb, ĉ��) (right panel) obtained
from a global fit on the single-Higgs processes. The darker regions are obtained by fixing the Higgs
trilinear to the SM value � = 1, while the lighter ones are obtained through profiling by restricting
�� in the ranges |��|  10 and |��|  20 respectively. The regions correspond to 68% confidence
level (defined in the Gaussian limit corresponding to ��2 = 2.3).

for the single-Higgs couplings. On the other hand, if we have some theoretical bias that638

constrains the Higgs self-coupling modifications to be small (�� . few), a restricted fit in639

which only the corrections to single-Higgs couplings are included is reliable.640

We will see in the following that the situation can drastically change if we include in641

the fit additional measurements that can lift the flat direction. In particular we will focus642

on the measurement of double Higgs production in the next section and of di↵erential single643

Higgs distributions in section 5.644

4 Double Higgs production645

A natural way to extract information about the Higgs self-coupling is to consider Higgs646

pair production channels. Among this class of processes, the production mode with the647

largest cross section [50], which we can hope to test with better accuracy at the LHC,648

is gluon fusion. Several analyses are available in the literature, focusing on the various649

Higgs decay modes. The channel believed to be measurable with the highest precision is650

hh ! bb�� [20, 51–57]. In spite of the small branching ratio (BR ' 0.264%), its clean651

final state allows for high reconstruction e�ciency and low levels of backgrounds. In the652

following we will thus focus on this channel for our analysis.653

Additional final states have also been considered in the literature, in particular hh !654

bbbb [58–61], hh ! bbWW ⇤ [54, 59, 62] and hh ! bb⌧+⌧� [54, 58, 59, 63, 64]. All these655

channels are plagued by much larger backgrounds. In order to extract the signal, one656

must rely on configurations with boosted final states and more involved reconstruction657

techniques, which limit the achievable precision.658

The dependence of the double Higgs production cross section on the EFT parameters659

has been studied in refs. [20, 64]. It has been shown that a di↵erential analysis taking into660
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Surprisingly, trilinear loop-induced contributions anyway affect the precision in the 
determination of the other parameters entering at the tree level.  
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Figure 12: A summary of the bounds on ”Ÿ⁄ from global fits for various future collider scenarios.
For the “1h only” scenario, only single Higgs measurements at lepton colliders are included.

deviations of O(1) in the Higgs self-coupling. As one can see from Fig. 12, this precision
is comparable to (or better than) the one achievable at low-energy lepton colliders with
low integrated luminosity at 350 GeV runs. This is the case for our circular collider
benchmarks with 200 fb≠1 integrated luminosity at 350 GeV, as well as for the low-energy
runs of the ILC. In these scenarios the HL-LHC data will still play a major role in the
determination of ”Ÿ⁄, while lepton colliders always help constraining large positive ”Ÿ⁄

that the HL-LHC fails to exclude beyond the one-sigma level. On the other hand, with
1 ab≠1 of luminosity collected at 350 GeV, the lepton collider data starts dominating the
combination.

The situation is instead di�erent at high-energy hadron colliders which can benefit
from a sizable cross section in double Higgs production through gluon fusion. A pp

collider with 100 TeV center-of-mass energy is expected to determine ”Ÿ⁄ with a precision
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Figure 1: One-loop diagrams involving the trilinear Higgs coupling contributing to the main
single Higgs production processes: e+e≠ æ hZ (top row) and e+e≠ æ ‹‹̄h (middle row).
The Higgs self-energy diagram (bottom) gives a universal modification to all Higgs production
processes via wave function renormalization.

Following Ref. [26], we can parametrize the NLO corrections to an observable � in a
process involving a single external Higgs field as

�NLO = ZH�LO(1 + Ÿ⁄C1) , (2.2)

where �LO denotes the LO value, C1 is a process-dependent coe�cient that encodes
the interference between the NLO amplitudes involving Ÿ⁄ and the LO ones, while ZH

corresponds to the universal resummed wave-function renormalization and is explicitly
given by

ZH = 1
1 ≠ Ÿ2

⁄”ZH

, with ”ZH = ≠ 9
16

Gµm2
HÔ

2fi2

A
2fi

3
Ô

3
≠ 1

B

ƒ ≠0.00154 . (2.3)

The impact of a deviation ”Ÿ⁄ © Ÿ⁄ ≠ 1 from the SM value of the trilinear Higgs self-
coupling is therefore

”� © �NLO

�NLO(Ÿ⁄ = 1) ≠ 1 ƒ (C1 + 2”ZH)”Ÿ⁄ + ”ZH”Ÿ2
⁄ , (2.4)

up to subleading corrections of higher orders in ”ZH and C1.4 The linear approximation
in ”Ÿ⁄ is usually accurate enough to describe the deviations in single Higgs processes
inside the typical constraint range |”Ÿ⁄| . 5. We will nevertheless use the unexpanded
”� expressions throughout this paper to derive numerical results.

4We checked explicitly that the one-loop squared term of order ”Ÿ2
⁄ is subdominant compared to the

”ZH”Ÿ2
⁄ one.
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How large can be the self couplings?
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Figure 2. hh ! hh scattering amplitudes: s+ t+ u channels + 4-vertex (4vrtx) contributions.

The J = 0 partial wave is found to be
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where we paid attention to keep the kinematical factors which makes the amplitude to vanish

at threshold (
p
s = 2mh) and we multiplied by an extra 1/2 factor due to the presence

of identical particles in the initial and final state (see e.g. [44] for a collection of relevant

formulae). Following standard arguments [45, 46], perturbative unitarity bounds are obtained

by requiring
��Re a0hh!hh

�� < 1/2.

The bound is displayed in Fig. 3 for the orthogonal cases in which either �hhh (upper

plots) or �hhhh (lower plots) is modified with respect to the SM case. Note that the situation

is qualitatively di↵erent for the two cases: being h3 a relevant operator, the unitarity bound

on �hhh is maximized at low energy, while in the case of h4 the partial wave grows with energy

reaching an asymptotic value at
p
s ! 1.§ In particular, from the right-side plots in Fig. 3

we read the following unitarity bounds
���hhh/�

SM

hhh

�� . 6.5 and
���hhhh/�

SM

hhhh

�� . 65 . (2.28)

Of course, one expects that new physics e↵ects should modify at the same time both �hhh

and �hhhh. However, since the h3 and h4 operators dominate the partial wave in two well-

separated energy regimes they cannot cancel each other over the whole range of
p
s. Hence,

since we require perturbativity at any value of
p
s, the bounds in Eq. (2.28) hold also in more

general situations.

Let us inspect, for instance, the case where the modified SM potential arises from the

operator |H|6 as in Eq. (2.3). In such a case we have

�hhh = �SM

hhh + 6 c
6

v ' �SM

hhh (1 + 7.8 c
6

) , (2.29)

�hhhh = �SM

hhhh + 36 c
6

' �SM

hhhh (1 + 47 c
6

) . (2.30)

The perturbativity bound coming from the h3 (h4) vertex in Eq. (2.28) translates into |c
6

| .
0.71 (1.4).

§Note that this behaviour is di↵erent from the more standard case of e↵ective operators, whose scattering

amplitudes grow indefinitely with the energy.
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where we paid attention to keep the kinematical factors which makes the amplitude to vanish

at threshold (
p
s = 2mh) and we multiplied by an extra 1/2 factor due to the presence

of identical particles in the initial and final state (see e.g. [44] for a collection of relevant

formulae). Following standard arguments [45, 46], perturbative unitarity bounds are obtained

by requiring
��Re a0hh!hh

�� < 1/2.

The bound is displayed in Fig. 3 for the orthogonal cases in which either �hhh (upper

plots) or �hhhh (lower plots) is modified with respect to the SM case. Note that the situation
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on �hhh is maximized at low energy, while in the case of h4 the partial wave grows with energy

reaching an asymptotic value at
p
s ! 1.§ In particular, from the right-side plots in Fig. 3
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Of course, one expects that new physics e↵ects should modify at the same time both �hhh

and �hhhh. However, since the h3 and h4 operators dominate the partial wave in two well-

separated energy regimes they cannot cancel each other over the whole range of
p
s. Hence,

since we require perturbativity at any value of
p
s, the bounds in Eq. (2.28) hold also in more

general situations.

Let us inspect, for instance, the case where the modified SM potential arises from the

operator |H|6 as in Eq. (2.3). In such a case we have
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hhh + 6 c
6
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) , (2.29)
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The perturbativity bound coming from the h3 (h4) vertex in Eq. (2.28) translates into |c
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| .
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§Note that this behaviour is di↵erent from the more standard case of e↵ective operators, whose scattering

amplitudes grow indefinitely with the energy.
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- EFT is not the right framework for extracting bounds on Higgs self 
couplings from the stability of the vacuum.   

- General bounds can be extracted from perturbativiy arguments. 
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where we paid attention to keep the kinematical factors which makes the amplitude to vanish

at threshold (
p
s = 2mh) and we multiplied by an extra 1/2 factor due to the presence

of identical particles in the initial and final state (see e.g. [44] for a collection of relevant

formulae). Following standard arguments [45, 46], perturbative unitarity bounds are obtained

by requiring
��Re a0hh!hh

�� < 1/2.

The bound is displayed in Fig. 3 for the orthogonal cases in which either �hhh (upper

plots) or �hhhh (lower plots) is modified with respect to the SM case. Note that the situation

is qualitatively di↵erent for the two cases: being h3 a relevant operator, the unitarity bound

on �hhh is maximized at low energy, while in the case of h4 the partial wave grows with energy

reaching an asymptotic value at
p
s ! 1.§ In particular, from the right-side plots in Fig. 3

we read the following unitarity bounds
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Of course, one expects that new physics e↵ects should modify at the same time both �hhh

and �hhhh. However, since the h3 and h4 operators dominate the partial wave in two well-

separated energy regimes they cannot cancel each other over the whole range of
p
s. Hence,

since we require perturbativity at any value of
p
s, the bounds in Eq. (2.28) hold also in more

general situations.

Let us inspect, for instance, the case where the modified SM potential arises from the

operator |H|6 as in Eq. (2.3). In such a case we have

�hhh = �SM

hhh + 6 c
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v ' �SM

hhh (1 + 7.8 c
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) , (2.29)
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where we paid attention to keep the kinematical factors which makes the amplitude to vanish

at threshold (
p
s = 2mh) and we multiplied by an extra 1/2 factor due to the presence

of identical particles in the initial and final state (see e.g. [44] for a collection of relevant

formulae). Following standard arguments [45, 46], perturbative unitarity bounds are obtained

by requiring
��Re a0hh!hh

�� < 1/2.

The bound is displayed in Fig. 3 for the orthogonal cases in which either �hhh (upper

plots) or �hhhh (lower plots) is modified with respect to the SM case. Note that the situation

is qualitatively di↵erent for the two cases: being h3 a relevant operator, the unitarity bound

on �hhh is maximized at low energy, while in the case of h4 the partial wave grows with energy

reaching an asymptotic value at
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s ! 1.§ In particular, from the right-side plots in Fig. 3

we read the following unitarity bounds
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Of course, one expects that new physics e↵ects should modify at the same time both �hhh

and �hhhh. However, since the h3 and h4 operators dominate the partial wave in two well-

separated energy regimes they cannot cancel each other over the whole range of
p
s. Hence,

since we require perturbativity at any value of
p
s, the bounds in Eq. (2.28) hold also in more

general situations.

Let us inspect, for instance, the case where the modified SM potential arises from the

operator |H|6 as in Eq. (2.3). In such a case we have
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How large can be the self couplings?
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Figure 23: Maximum value of c̄6 (left) and c̄8 (right) such that the one-loop corrections

to the HHH amplitude are smaller than its tree-level value. We consider two Higgs bosons
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WBF HH at di↵erent energies.

C Perturbative limits on c̄6 and c̄8 in double Higgs production

In this section we describe how we derived the range of validity of our calculation,

|c̄6| < 5 and |c̄8| < 31 , (C.1)

which has already mentioned several times in the text.

First of all, we analyse the one-loop H⇤ ! HH amplitude, the analytical expression of

which can be obtained via �ZNP
H and the form factors P [HH] and the V [HHH] that have

been provided in the previous section. We define as c̄max
6 (c̄max

8 ) the value of c̄6(c̄8) such

that the one-loop amplitude is as large as the tree-level one, i.e. the value of of c̄6(c̄8) from

where perturbative convergence cannot be trusted anymore. For the estimation of c̄max
6 we

take into account the leading contribution from V30 and P20, both yielding c̄36 terms. For

– 39 –

H → H H

T1 C1 N1

H

H

H

H

H

H

T2 C1 N2

H

H

H
H

H

T3 C1 N3

H

H

H

H
H

T4 C1 N4

H
H

H

H

H

H → H H

T1 C1 N1

H

H

H< 

Strongest perturbativity bounds arise 
from the threshold configuration in 
double Higgs production, NOT 
present in single Higgs production. 
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2 Theoretical setup

2.1 Notation and parametrisation of New Physics e↵ects

In this work we are interested to the e↵ect induced by the modification V SM(�) ! V (�)

defined as

V (�) = V SM(�) + V NP(�) , � =

 
G+

1p
2
(v +H + iG0)

!
, (2.1)

where the New Physics (NP) modifications of the potential are all included in V NP and the

symbol � denotes the Higgs doublet. The term V SM has already been defined in eq. (1.1).

Following the convention of ref. [50], the most general form of V NP that is invariant

under SU(2) symmetry can be written as

V NP(�) ⌘
1X

n=3

c2n
⇤2n�4

✓
�†�� 1

2
v2
◆n

. (2.2)

It is important to specify from the beginning why for our calculation it is convenient

to parametrise the NP contributions as done in eq. (2.2) and not using the standard EFT

parameterisation

V NP
std(�) ⌘

1X

n=3

c02n
⇤2n�4

⇣
�†�

⌘n
. (2.3)

The advantages of the parametrisation in eq. (2.2) w.r.t the one in eq. (2.3) are due

to the fact that after EWSB any
�
�†�

�n
originates H i terms with 1  i  2n, while any�

�†�� 1
2v

2
�n

originates H i terms only with n  i  2n. In other words, at tree-level,

the trilinear Higgs self-coupling receives modifications only from c6 and the quadrilinear

only from c6 and c8. Needless to say, when they are summed to V SM, equations (2.2) and

(2.3) not only refer to the same quantity parametrised in a di↵erent way (V SM + V NP
std =

V SM + V NP), but they are also fully equivalent for any truncation of the series at a given

order n.

Writing V SM(�) + V NP(�) after EWSB as

V (H) =
1

2
m2

HH2 + �3vH
3 +

1

4
�4H

4 + �5
H5

v
+O(H6) (2.4)

allows to define the self-couplings �n, which can be parametrised by the quantities1

3 ⌘ �3

�SM
3

= 1 +
c6v2

�⇤2
⌘ 1 + c̄6, (2.5)

4 ⌘ �4

�SM
4

= 1 +
6c6v2

�⇤2
+

4c8v4

�⇤4
⌘ 1 + 6c̄6 + c̄8 , (2.6)

5 ⌘ �5

�
=

3c6v2

4�⇤2
+

2c8v4

�⇤4
+

c10v6

�⇤6
⌘ 3

4
c̄6 +

1

2
c̄8 + c̄10 . (2.7)

1Note that 3 and 4 are defined di↵erently than 5. The former are the ratios of the trilinear and

quadrilinear couplings with their SM values. The latter is the value normalised to �, being a tree-level H5

interaction not present in the SM.
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EWPO: dependence on the Higgs self coupling
The trilinear coupling enters the two-loop relations among                           .         
and the EW input parameters. At two-loop, there is not dependence on the 
quadrilinear coupling. 
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m2

Z ⇢̂
(1 +�r̂

W

)

#
1/2

9
=

; , (4)
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where Â = (⇡↵̂(mZ)/(
p
2G

µ

))1/2, while the e↵ective sine is related to ŝ2 via
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where k̂
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(q2) is an electroweak form factor1 (see Ref. [29]) and
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In our BSM scenario the modifications of the scalar potential a↵ect the
radiative parameters �r̂

W

and Y
MS

at the two-loop level while �↵̂ and

�k̂
`

(m2

Z) are going to be a↵ected only at three loops. Recalling that the

present knowledge of mW and sin2 ✓lep
e↵

in the SM includes the complete
two-loop corrections, we are going to discuss only the modifications induced
in �r̂

W

and Y
MS

. The two-loop contribution to �r̂
W

and Y
MS

can be
expressed as [28]
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ZZ(m
2

Z)

m2

Z

#
+ . . . (8)

where AWW (AZZ) is the term proportional to the metric tensor in the W (Z)
self energy with the superscript indicating the loop order, and the dots rep-
resent additional two-loop contributions that are not sensitive to a modifi-
cation of the scalar potential.

From the knowledge of the additional contributions induced in �r̂(2)
W

and Y (2)

MS

one can easily obtain the modification of the radiative parameters

�r and 
e

(m2

Z) of the On-Shell (OS) scheme [30]. Considering only new
contributions from the modified scalar potential one can write

�r(2) = �r̂(2)
W

� c2

s2
Y (2)

MS

, (9)

where c2 ⌘ m2

W/m2

Z , s
2 = 1 � c2 with �r being the radiative parameter

entering the mW �mZ interdependence. The e↵ective sine is related to s2

in the OS scheme via sin2 ✓lep
e↵

= 
e

(m2

Z)s
2 and for the new contributions in


e

(m2

Z) one can write

(2)
e

(m2

Z) = 1� c2

s2
Y (2)

MS

. (10)

1In our MS formulation the top contribution is not decoupled. Then k̂ is very close
to 1 and sin2 ✓lepe↵ can be safely identified with ŝ2 [29].
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m2

Z ⇢̂
(1 +�r̂

W

)

#
1/2

9
=

; , (4)
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Figure 1: Two-loop �
3

-and-�
4

-dependent diagrams in the W self-energy,
in the unitary gauge. The dark blob represent the insertion of the modified
diagrams in the one-loop Higgs self energy, shown in the second row. The
black point represents either an anomalous �

3

or �
4

.

The new contribution in the self energies in eqs. (7,8) can be parametrized
just by a modification of the trilinear coupling as described in eq. (2). In
order to correctly identify the e↵ects related to the �3

1

interaction we follow
Ref. [22] and work in the unitary gauge. Here we discuss the W self energy
but an identical analysis can be done also for the Z self energy.

The two-loop diagrams in the W self energy that are sensitive to a mod-
ification of the Higgs self couplings are depicted in fig. 1. The dark blob in
diagrams 1a), 1d) represents the one-loop Higgs self energy or the one-loop
Higgs mass counterterm that in our scenario gets modified with respect to
the SM result in the unitary gauge by the diagrams in fig. 1e). The am-
plitudes of the diagrams in fig. 1 were generated using the Mathematica
package FeynArts [31] and reduced to scalar Master Integrals using private
codes and the packages FeynCalc [32, 33] and Tarcer [34]. After the reduc-
tion to scalar integrals we were left with the evaluation of two-loop vacuum
integrals and two-loop self-energy diagrams at external momenta di↵erent
from zero. The former integrals were evaluated analytically using the results
of Ref. [35]. The latter ones were instead reduced to the set of loop-integral
basis functions introduced in Ref. [36]. For their numerical evaluation we
used the C program TSIL [37]. Our results are expressed in terms of the OS
Higgs mass that specifies the Higgs mass counterterm.

Few observations are in order: i) the insertion of the “cactus” diagram
e
2

) in diagrams a) and d) in fig. 1 gives rise to a contribution proportional to
the quartic Higgs self couplings on which we did not make any assumption.
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Figure 3: One-loop self energy and tadpole diagrams that contain modified
couplings with respect to the SM.

the radiatively corrected potential, is given by the tadpole contribution [38].
Then the only modified contribution in the mass renormalization of the un-
physical scalars is given by diagram 3b

1

). Thus, the additional contributions
with respect to the SM result in the diagrams 2e)-2h) are exactly cancelled
by the additional contributions in the unphysical scalar mass counterterm
diagrams. The key point in this cancellation is the fact that the modifica-
tion in the vertex with three physical Higgses and the one in the vertices
containing two physical and two unphysical Higgses are related by a factor
3/v as shown in eq. (16).

We have shown that in a theory with a scalar potential given by eq. (11)
the two-loop W self energy is modified with respect to its SM value by
additional contributions that are gauge-invariant. Then, one can directly
compute them in the unitary gauge, that corresponds to the computation
with an anomalous �

3

once the identification 
�

= 1+2v2/m2

H d�
3

is made.

4 Results

The analytic expressions for the contributions induced in �r̂(2)
W

and Y (2)

MS

by an anomalous �
3

are reported in the Appendix. These contributions are
going to modify the SM predictions for mW and sin2 ✓lep

e↵

via eqs. (3–6).

Denoting as O either mW or sin2 ✓lep
e↵

one can write

O = OSM

⇥
1 + (

�

� 1)C
1

+ (2
�

� 1)C
2

⇤
, (19)

with the values of the coe�cients C
1

and C
2

reported in Table 1.

10

C
1

C
2

mW 6.27⇥ 10�6 �1.72⇥ 10�6

sin2 ✓lep
e↵

�1.56⇥ 10�5 4.55⇥ 10�6

Table 1: Values of the coe�cients C
1

and C
2

.

Let us comment on the validity of eq. (19). At the two-loop level we are
working, the contributions induced by an anomalous Higgs trilinear coupling
in the precision observables are finite (see table 1 or the Appendix), i.e.
they are not sensitive to the NP scale ⇤ associated with the modification
of the potential. This situation is analogous to what happens in single
Higgs processes where new contributions induced by an anomalous �

3

at the
NLO are also finite [22]. As in single Higgs processes if NNLO e↵ects are
considered, one expects that at three or more loops the modified potential is
going to induce contributions not only proportional to �

3

but also to quartic,
quintic etc. Higgs self interactions and moreover these contributions will be
sensitive to the NP scale.

The constraints on 
�

we are going to derive below assume the validity of
a perturbative approach. Then, we expect any higher-order contribution to
be subdominant with respect to the e↵ects we are computing. This implies
that these higher-order contributions should not contain any large amplify-
ing factor related to the scale ⇤, or equivalently that ⇤ cannot be too far
from the Electroweak scale. Furthermore, since at the three-loop level one
expects the anomalous contribution from the trilinear coupling to grow as
4
�

, a restricted range of 
�

should also be imposed. Following Ref. [22] we
consider |

�

| . 20 as a range of validity of our perturbative approach.
In order to set limits on 

�

from the analysis of precision observables,
we perform a simplified fit. We define the best value of 

�

as the one that
minimizes the �2(

�

) function defined as

�2(
�

) ⌘
X (O

exp

�O
the

)2

(�)2
, (20)

where O
exp

refers to the experimental measurement of the observable O, O
the

is its theoretical value obtained from eq. (19) and � is the total uncertainty,
that we take as the sum in quadrature of the experimental and theory errors.
In order to ascertain the goodness of our fit, we also compute the p-value as
a function of 

�

:

p-value(
�

) = 1� F
�

2
(n)

(�2(
�

)) , (21)
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Figure 4: Left: �2 for the di↵erent sets of observables described in the
text, the two horizontal lines represent ��2 = 1 and ��2 = 3.84. Right:
corresponding p-value, the horizontal line is p = 0.05.

where F
�

2
(n)

(�2(
�

)) is the cumulative distribution function for a �2 distri-

bution with n degrees of freedom, computed at �2(
�

).
In the fit we consider not only the two precision observables but also the

signal strength parameter for single Higgs production in gluon fusion (ggF)
and vector boson fusion (VBF). The latter observables were indicated as the
P
2

set in Ref. [22] where it was shown that they were returning the most
stringent bound on 

�

. We then considered three set of data:

• The P
2

set in Ref. [22]. The experimental results are presented in
Tab. 8 of Ref. [5]. See Ref. [22] for more details.

• The W mass and e↵ective sine. For the W mass we use the latest result
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For the Future scenarios, we consider

• F1: “CMS-II” (300 fb�1),

• F2: “CMS-HL-II” (3000 fb�1),

as presented in Tab. 1 of Ref. [9]. A summary of the sets of data used in
each fit is presented in Tab. 5.

As shown in Fig. 8, we identify the 1� and 2� intervals assuming a �2

distribution. Following this procedure and using the gluon-gluon-fusion and
VBF data from Tab. 8 of Ref. [5] (scenario P2 in Tab. 5) we obtain

best� = �0.24 , 1�� = [�5.6, 11.2] , 2�� = [�9.4, 17.0] , (19)

where the best� is the best value and 1�� , 2�� are respectively the 1� and
2� intervals. The choice of P2 as reference set is motivated by the measured
significance for the di↵erent production processes, which is at the moment
above 5� only for ggF and VBF (see Tab. 14 in Ref. [5]). Moreover, P2

returns the most stringent values for 1�� and 2�� . The other data sets
presented in Tab. 5 are reported in Fig. 8. Notice how the minimum of the
distribution in the figure jumps to ⇠ 10 when the tt̄H production channel
is included. This e↵ect originates from the anomalous values presented in
Ref. [5] for µ̄f

tt̄H
, especially with f = WW . Similarly, the low compatibility

of µ̄f
V H with SM predictions is the reason behind larger 1�� and 2�� intervals

in P3.

22

ggF+VBF (8TeV)

ggF+VBF

Mw+Sineff

ggF+VBF+Mw+Sineff

-20 -10 10 20
kl

2

4

6

8

10

Dc2

ggF+VBF

Mw+Sineff

ggF+VBF+Mw+Sineff

-20 -10 10 20
kl

0.2

0.4

0.6

0.8

1.0

p-value

Figure 4: Left: �2 for the di↵erent sets of observables described in the
text, the two horizontal lines represent ��2 = 1 and ��2 = 3.84. Right:
corresponding p-value, the horizontal line is p = 0.05.

where F
�

2
(n)
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).
In the fit we consider not only the two precision observables but also the

signal strength parameter for single Higgs production in gluon fusion (ggF)
and vector boson fusion (VBF). The latter observables were indicated as the
P
2

set in Ref. [22] where it was shown that they were returning the most
stringent bound on 

�

. We then considered three set of data:

• The P
2

set in Ref. [22]. The experimental results are presented in
Tab. 8 of Ref. [5]. See Ref. [22] for more details.

• The W mass and e↵ective sine. For the W mass we use the latest result
by the ATLAS collaboration mW = 80.370 ± 0.019 GeV [39]. This
number, although it has a slightly larger uncertainty with respect to
the world average mW = 80.385±0.015 GeV [40], it is closer to the SM
prediction mW = 80.357± 0.009± 0.003 where the errors refer to the
parametric and theoretical uncertainties [28]. Concerning the e↵ective
sine, we use the average of the CDF [41] and D0 [42] combinations

sin2 ✓lep
e↵

= 0.23185 ± 0.00035 [40], to confront against the SM result

sin2 ✓lep
e↵

= 0.23145±0.00012±0.00005, where again the errors refer to
parametric and theoretical uncertainties respectively [28, 43].

• The combination of these two sets of data.

The �2(
�

) and p-value functions for the three sets are reported in fig. 4.
In particular for the combination we find

best
�

= 0.5 , 1�
�

= [�4.7, 8.9] , 2�
�

= [�8.2, 13.7] , (22)
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Equivalent results can be also found looking at S and T oblique parameters. 

Figure 3: Current limits and projected sensitivities of � from the electroweak oblique

parameters S and T . The light blue area in the S-T plane corresponds to the 95% C.L.

region based on measurements at LEP and the LHC. The green and orange areas correspond

to projected LHC and ILC/GigaZ sensitivities respectively. The longer (shorter) thin blue

lines show the shift in S and T as � extends up to �20 (+20). The intersection of these

lines with the current limits and projected sensitivities give the ranges of � as shown in

the figure.

As there are no contributions from the quartic Higgs self-coupling, we can use the relation

between c̄
6

and � in Eq. (2.6) to write this result as,

S = �0.000138 (2� � 1) + 0.000456 (� � 1) ,

T = 0.000206 (2� � 1)� 0.000736 (� � 1) . (4.3)

The distinction between the contribution from two insertions of a modified Higgs self-

coupling and a single insertion is made explicit here, since a term proportional to (2� � 1)

is exactly the contribution we get from two insertions.

The path of the � contribution in the S-T plane is shown in Fig. 3. The light blue

ellipse shows the current 95% C.L. bound on the S and T parameters, as obtained by The

Gfitter Group [35]. Also shown in the plot are possible future bounds on these parameters.

The ellipses are constructed for U = 0 and are centered on (0, 0). From the intersection

points of the path of � in the S-T plane with the current ellipse, we estimate for the 95%

C.L. a bound of:

� 14.0  �  17.4 . (4.4)

Similar bounds have been derived using the observables mW and sin ✓W instead of S and

T [27]. The limits of Eq. (4.4) can be compared to existing bounds from searches for

– 8 –

Figure 3: Current limits and projected sensitivities of � from the electroweak oblique

parameters S and T . The light blue area in the S-T plane corresponds to the 95% C.L.

region based on measurements at LEP and the LHC. The green and orange areas correspond

to projected LHC and ILC/GigaZ sensitivities respectively. The longer (shorter) thin blue

lines show the shift in S and T as � extends up to �20 (+20). The intersection of these

lines with the current limits and projected sensitivities give the ranges of � as shown in

the figure.

As there are no contributions from the quartic Higgs self-coupling, we can use the relation

between c̄
6

and � in Eq. (2.6) to write this result as,

S = �0.000138 (2� � 1) + 0.000456 (� � 1) ,

T = 0.000206 (2� � 1)� 0.000736 (� � 1) . (4.3)

The distinction between the contribution from two insertions of a modified Higgs self-

coupling and a single insertion is made explicit here, since a term proportional to (2� � 1)

is exactly the contribution we get from two insertions.

The path of the � contribution in the S-T plane is shown in Fig. 3. The light blue

ellipse shows the current 95% C.L. bound on the S and T parameters, as obtained by The

Gfitter Group [35]. Also shown in the plot are possible future bounds on these parameters.

The ellipses are constructed for U = 0 and are centered on (0, 0). From the intersection

points of the path of � in the S-T plane with the current ellipse, we estimate for the 95%

C.L. a bound of:

� 14.0  �  17.4 . (4.4)

Similar bounds have been derived using the observables mW and sin ✓W instead of S and

T [27]. The limits of Eq. (4.4) can be compared to existing bounds from searches for

– 8 –

Figure 3: Current limits and projected sensitivities of � from the electroweak oblique

parameters S and T . The light blue area in the S-T plane corresponds to the 95% C.L.

region based on measurements at LEP and the LHC. The green and orange areas correspond

to projected LHC and ILC/GigaZ sensitivities respectively. The longer (shorter) thin blue

lines show the shift in S and T as � extends up to �20 (+20). The intersection of these

lines with the current limits and projected sensitivities give the ranges of � as shown in

the figure.

As there are no contributions from the quartic Higgs self-coupling, we can use the relation

between c̄
6

and � in Eq. (2.6) to write this result as,

S = �0.000138 (2� � 1) + 0.000456 (� � 1) ,

T = 0.000206 (2� � 1)� 0.000736 (� � 1) . (4.3)

The distinction between the contribution from two insertions of a modified Higgs self-

coupling and a single insertion is made explicit here, since a term proportional to (2� � 1)

is exactly the contribution we get from two insertions.

The path of the � contribution in the S-T plane is shown in Fig. 3. The light blue

ellipse shows the current 95% C.L. bound on the S and T parameters, as obtained by The

Gfitter Group [35]. Also shown in the plot are possible future bounds on these parameters.

The ellipses are constructed for U = 0 and are centered on (0, 0). From the intersection

points of the path of � in the S-T plane with the current ellipse, we estimate for the 95%

C.L. a bound of:

� 14.0  �  17.4 . (4.4)

Similar bounds have been derived using the observables mW and sin ✓W instead of S and

T [27]. The limits of Eq. (4.4) can be compared to existing bounds from searches for

– 8 –

Kribs, Maier, Rzehak, Spannowsky, Waite ’17

!38

EWPO: dependence on the Higgs self coupling



Quartic coupling at lepton colliders

!39

0

200

400

600

800

1000

1200

1400

1600

1800

2000

250 350 500 1000 2000 3000
σ
L
O

[f
b
]

√
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Figure 2: LO cross section (left) and C1 (right) as function of the center of mass energyp
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Figure 3: Representative Feynman diagrams for double Higgs production. The black

blobs correspond to the one-loop HHV V and HHH form factors.

where �0 is the SM result, �1 represents the leading contribution in the EFT expansion

(order (v/⇤)2), while �2 is the squared EFT term of order (v/⇤)4. Note that within our

choice of operators there is no contribution proportional to c̄8 in this expansion. Actually,

no c2n coe�cient with n > 3 enters at the tree level.

The NLO corrections involve several di↵erent contributions. First we classify all of

them and then we specify those relevant for our study. Using a notation that is analogous

to eq. (3.10), the cross section at NLO accuracy can be parametrised as

�NLO(HH) = �LO(HH) + �1�loop(HH) , (3.11)

�1�loop(HH) = �00 + �10c̄6 + �20c̄
2
6 (3.12)

+ �30c̄
3
6 + �40c̄

4
6 (3.13)

+ c̄8
h
�01 + �11c̄6 + �21c̄

2
6

i
(3.14)

+ c̄10
h
�001 + �101c̄6

i
, (3.15)

where the �ij quantities refer to the one-loop terms that factorise c̄i6c̄
j
8 contributions and the

�i0j to those proportional to c̄i6c̄
j
10. Some comments on the terms in (3.12), (3.13), (3.14)

and (3.15) are in order.
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Figure 4: Feynman Diagrams contributing to the HHH form factor at one loop.

can be expressed as

c̄10
h
�001 + �101c̄6

i
= (�1 + 2�2c̄6)

5�c̄10
4⇡2

✓
1� log

m2
H

µ2
r

◆
. (3.19)

At one-loop in ZHH or WBF production their sum can be written as a kinematically

independent shift to c̄6,

c̄6 ! c̄6 +
5�c̄10
4⇡2

⇣
1� log

m2
H

µ2
r

⌘
⇠ c̄6 + 0.016c̄10

⇣
1� log

m2
H

µ2
r

⌘
. (3.20)

In practice we can only constrain a linear combination of c̄6 and c̄10 that is in eq. (3.20). In

the following we work in the assumptions that c̄10 e↵ects are negligible and we set c̄10 = 0,

however, for not too large values of c̄10, i.e., where the linear expansion in c̄10 is reliable,

results of c̄6 can be translated into a linear combination of c̄6 and c̄10 via eq. (3.20).8 In

order to be directly sensitive to c̄10 one would need to consider one-loop e↵ects in triple

Higgs production, or evaluate quadruple Higgs production at the tree level.

In conclusion, in our phenomenological analysis, we evaluate c̄6 and c̄8 e↵ects at one

loop via the following approximation

�pheno
NLO (HH) = �LO(HH) +��c̄6(HH) +��c̄8(HH) ,

��c̄6(HH) = c̄36

h
�30 + �40c̄6

i
,

��c̄8(HH) = c̄8
h
�01 + �11c̄6 + �21c̄

2
6

i
. (3.21)

The analytical results for the form factors used for the calculation of ��c̄6(HH) and

��c̄8(HH) are given in Appendix B. We show now the impact of c̄6 and c̄8 in the �pheno
NLO

predictions at di↵erent energies.

First of all, in Fig. 5 we show the LO cross section �LO of ZHH (left) and WBF

(right) production as function of
p
ŝ for di↵erent values of c̄6. In ZHH production, the LO

cross section peaks around
p
ŝ = 500 GeV, which is the optimal energy for measuring this

8If c̄10 is so large that the shift induced by eq. (3.20) is even larger than c̄6 itself, then squared loop-

diagrams involving the H5 vertex would be larger than their interferences with Born diagrams. Thus,

one-loop contributions, and consequently the level of accuracy of our calculation, would not be su�cient.
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where all momentum are incoming and Tµ1µ2 is given in eq. (B.6). The V20[HHV V ] term

instead originates from the diagrams in Fig. 22, which include boxes and thus they involve

a much more complex kinematic dependence,

V µ1µ2
20 [HHV V ] = 9

�2m2
V

⇡2
[Fµ1µ2(p1, p2, p3, p4,mV ,mH) + Fµ1µ2(p1, p2, p4, p3,mV ,mH)] ,

(B.20)

where Fµ1µ2 is given by

Fµ1µ2(p1, p2, p3, p4,mV ,mH) =(�1

4
C0 �m2

VD0 +D00)g
µ1µ2 + pµ1

4 pµ2
1 D12

+ pµ1
4 (p1 + p4)

µ2D22 � pµ1
2 pµ2

1 D13 � pµ1
2 (p1 + p4)

µ2D23 ,

(B.21)

with the dependence on external momenta and internal masses of C and D functions as

C0 =C0((p3 + p4)
2, p23, p

2
4,m

2
H ,m

2
H ,m

2
H) , (B.22)

Di(j) =Di(j)(p
2
1, p

2
4, p

2
3, p

2
2, (p1 + p4)

2, (p4 + p3)
2,m2

V ,m
2
H ,m

2
H ,m

2
H) , (B.23)

according to the convention of ref. [51]. Both V01[HHV V ] and V20[HHV V ] are UV finite

and gauge-invariant. We remind the reader that the �ZNP
H component in the counterterm,

which originates from the two H external legs, has been removed from V [HHV V ].
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At one-loop in ZHH or WBF production their sum can be written as a kinematically

independent shift to c̄6,

c̄6 ! c̄6 +
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⇣
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r

⌘
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In practice we can only constrain a linear combination of c̄6 and c̄10 that is in eq. (3.20). In

the following we work in the assumptions that c̄10 e↵ects are negligible and we set c̄10 = 0,

however, for not too large values of c̄10, i.e., where the linear expansion in c̄10 is reliable,

results of c̄6 can be translated into a linear combination of c̄6 and c̄10 via eq. (3.20).8 In

order to be directly sensitive to c̄10 one would need to consider one-loop e↵ects in triple

Higgs production, or evaluate quadruple Higgs production at the tree level.

In conclusion, in our phenomenological analysis, we evaluate c̄6 and c̄8 e↵ects at one

loop via the following approximation
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i
. (3.21)

The analytical results for the form factors used for the calculation of ��c̄6(HH) and

��c̄8(HH) are given in Appendix B. We show now the impact of c̄6 and c̄8 in the �pheno
NLO

predictions at di↵erent energies.

First of all, in Fig. 5 we show the LO cross section �LO of ZHH (left) and WBF

(right) production as function of
p
ŝ for di↵erent values of c̄6. In ZHH production, the LO

cross section peaks around
p
ŝ = 500 GeV, which is the optimal energy for measuring this

8If c̄10 is so large that the shift induced by eq. (3.20) is even larger than c̄6 itself, then squared loop-

diagrams involving the H5 vertex would be larger than their interferences with Born diagrams. Thus,

one-loop contributions, and consequently the level of accuracy of our calculation, would not be su�cient.
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2 Theoretical setup

2.1 Notation and parametrisation of New Physics e↵ects

In this work we are interested to the e↵ect induced by the modification V SM(�) ! V (�)

defined as

V (�) = V SM(�) + V NP(�) , � =

 
G+

1p
2
(v +H + iG0)

!
, (2.1)

where the New Physics (NP) modifications of the potential are all included in V NP and the

symbol � denotes the Higgs doublet. The term V SM has already been defined in eq. (1.1).

Following the convention of ref. [50], the most general form of V NP that is invariant

under SU(2) symmetry can be written as

V NP(�) ⌘
1X

n=3

c2n
⇤2n�4

✓
�†�� 1

2
v2
◆n

. (2.2)

It is important to specify from the beginning why for our calculation it is convenient

to parametrise the NP contributions as done in eq. (2.2) and not using the standard EFT

parameterisation

V NP
std(�) ⌘

1X

n=3

c02n
⇤2n�4

⇣
�†�

⌘n
. (2.3)

The advantages of the parametrisation in eq. (2.2) w.r.t the one in eq. (2.3) are due

to the fact that after EWSB any
�
�†�

�n
originates H i terms with 1  i  2n, while any�

�†�� 1
2v

2
�n

originates H i terms only with n  i  2n. In other words, at tree-level,

the trilinear Higgs self-coupling receives modifications only from c6 and the quadrilinear

only from c6 and c8. Needless to say, when they are summed to V SM, equations (2.2) and

(2.3) not only refer to the same quantity parametrised in a di↵erent way (V SM + V NP
std =

V SM + V NP), but they are also fully equivalent for any truncation of the series at a given

order n.

Writing V SM(�) + V NP(�) after EWSB as

V (H) =
1

2
m2

HH2 + �3vH
3 +

1

4
�4H

4 + �5
H5

v
+O(H6) (2.4)

allows to define the self-couplings �n, which can be parametrised by the quantities1

3 ⌘ �3

�SM
3

= 1 +
c6v2

�⇤2
⌘ 1 + c̄6, (2.5)

4 ⌘ �4

�SM
4

= 1 +
6c6v2

�⇤2
+

4c8v4

�⇤4
⌘ 1 + 6c̄6 + c̄8 , (2.6)

5 ⌘ �5

�
=

3c6v2

4�⇤2
+

2c8v4

�⇤4
+

c10v6

�⇤6
⌘ 3

4
c̄6 +

1

2
c̄8 + c̄10 . (2.7)

1Note that 3 and 4 are defined di↵erently than 5. The former are the ratios of the trilinear and

quadrilinear couplings with their SM values. The latter is the value normalised to �, being a tree-level H5

interaction not present in the SM.
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Figure 15: Combined 2� constraints in the (c̄6, c̄8) assuming SM cross sections, at the

ILC (left) and CLIC (right), in the Scenario 2 described in the text. ILC-H and CLIC-H

refer to a combination of all single Higgs measurements at all energy stages for each collider

under study.

5 Conclusions

Determining whether the scalar potential for the Higgs boson is the minimal one predicted

by the SM is among the main targets of the current and future colliders. In this work, we

have investigated the possibility of setting constraints on the shape of the Higgs potential

via the measurements of single, double and triple Higgs production at future e+e� collid-

ers, considering the two dominant channels, i.e., Z boson associate production (ZHn) and

W boson fusion WBF. In order to leave the possibility for the trilinear and quadrilinear

couplings to vary independently, we have added to the SM potential two EFT operators
c6
⇤2

�
�†�� 1

2v
2
�3

and c8
⇤4

�
�†�� 1

2v
2
�4

and calculated the tree-level and one-loop depen-

dence on c6 and c8 for single and double Higgs production as well as tree-level results for

triple Higgs production (see also Tab. 1 in sec.1).

One-loop corrections to single Higgs production, which depends only on �3 and thus c6,

have already been calculated and studied in the literature and we have confirmed previous

results. On the other hand, the one-loop dependence on �4 and therefore on c6 and c8 of

double Higgs production has been calculated for the first time here. At variance with the

case of single Higgs production, the EFT parametrisation is in this case compulsory and

an anomalous coupling approach cannot be consistently used; the c6 parameter is itself

renormalised and receives corrections from both c6 and c8. We have provided all the neces-

sary renormalisation constants and counterterms and expressed the finite one-loop results

via analytical form factors that can be directly used in phenomenological applications.

We have also motivated the inclusion of the “�1
2v

2” term in the EFT parametrisation,

which simplifies the renormalisation procedure by preserving the relations among the SM

counterterms. Nevertheless, results can always be easily translated to the
c06
⇤2

�
�†�

�3
and

c08
⇤4

�
�†�

�4
basis.

In our phenomenological analyses we have considered several experimental setups at
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Figure 12: 2� bounds in the (c̄6, c̄8) plane assuming BSM cross sections in double Higgs

production corresponding to (c̄true6 , c̄true8 = 0) in the Scenario 2 described in the text, with

c̄true6 = �4,�2,�1, 1, 2, 4 marked in the plots with a cross. All plots show results for ZHH

at ILC-500 and WBF HH at CLIC-1400.

sensitivity on c̄8, due to the large value of �02 factorising the c̄28 dependence. Thus, limits

on c̄6 and c̄8 can be set, but only considering Scenario 2 where c̄8 can be di↵erent from

zero.

At variance with double Higgs production, given the very small number of events, we

cannot set limits on the (c̄6, c̄8) plane by assuming �measured(HHH) = �LO(c̄6 = c̄true6 , c̄8 =
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Figure 11: 2� bounds in the (c̄6, c̄8) plane assuming SM cross sections for double Higgs

production in the Scenario 2 described in the text. Left: ZHH at ILC-500 and WBF HH

at ILC-1000. Right: WBF HH at CLIC-1400 and CLIC-3000.

c̄true6 6= 0.17 In Fig. 12 we show the plots for the values of c̄true6 = �4,�2,�1, 1, 2, 4; in each

plot the point (c̄true6 , c̄true8 = 0) is displayed with a cross and the value of c̄true6 is given. For

these plots, only results for ZHH at ILC-500 and WBF HH at ILC-1000 are displayed.

Similarly to the SM case, given a value of c̄true6 , the constraints on c̄6 independent from

c̄8 are weaker than those in Scenario 1. However, also in these cases, the largest part

of the (c̄6, c̄8) plane can be excluded and the shapes of the bands strongly depend both

on the process and the value of c̄true6 . In all cases, ZHH and WBF HH sensitivities are

complementary; as we will see in sec. 4.4, their combination improves the constraints in

the (c̄6, c̄8) plane. This is a clear advantage for the ILC, where both ZHH and WBF HH

can be precisely measured.

The shapes of the green and red bands can be qualitatively explained as follow. With-

out c̄8 e↵ects the green and red bands would simply consist of either two separate (narrow)

bands or a single large band, consistently with the results that could be obtained by verti-

cally slicing the bands in Fig. 10. The c̄8 e↵ects bend the bands, leading to the shapes that

can be observed in Fig. 12. It is interesting to note that the improvement from CLIC-1400

to CLIC-3000 is rather mild. The main reason is that the increment of the WBF HH cross

section is compensated by the decrement of its dependence on c̄6, which can be directly

observed in the top-left plot of Fig. 6.

4.3 Triple Higgs production

We now consider the case of triple Higgs production. In the SM ZHHH and WBF HHH

production processes have a too small cross section for being observed. As an example, if we

consider LR-polarised beams at 1 TeV and the dominant decay into a bb̄ pair for the three

Higgs bosons and into jets for the Z boson, about 6 ab�1 of integrated luminosity would

be necessary for one signal event in the SM. As can be seen in Fig. 8, with WBF HHH

the cross section is even smaller in the SM, on the other hand this process has a strong

17As the total cross section depends on c̄8 mildly, we do not expect that the constraints depend on c̄true8
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Figure 8. Hypothetical constraints in the �3 –�4 plane following from a combination of a shape analysis
of the mhh spectrum in pp ! hh production and a measurement of the inclusive production cross section of
pp ! hhh. The green (yellow) contours correspond to 68% CL (95% CL) regions and the left (right) panel
shows the HE-LHC (FCC-pp) projections. The SM solution is indicated by the black point and the black
dashed line represents the parameter choices satisfying �4 = 6�3. See text for additional details.

we find the following 95% CL range 4 2 [�46, 116]. As shown in the right panel in Figure 7,
at the FCC-pp the constraints in the �3 –�4 plane that follow from a mhh shape analysis are
expected to improve noticeable compared to the corresponding HE-LHC limits. Assuming again
that 3 = 1, the 95% CL range for the parameter 4 reads 4 2 [�17, 28]. Profiling over 3 by means
of the profile likelihood ratio [60], we obtain the following 95% CL bound 4 2 [�215, 151] and
4 2 [�27, 25] at the HE-LHC and the FCC-pp, respectively.

4.3 Global fit at the HE-LHC and a FCC-pp

The full potential of the HE-LHC and the FCC-pp in constraining simultaneously the coupling
modifications 3 and 4 can be assessed by combining the information on the di↵erential measure-
ments of pp ! hh with the expected accuracies in the determination of the inclusive pp ! hhh
production cross section. The outcome of such an exercise is presented in Figure 8. Here the
green (yellow) contours correspond to 68% CL (95% CL) regions, while the black dots represent
the SM point and the black dashed lines illustrate parameter choices of the form �4 = 6�3.
Numerically, we find that for 3 = 1, the 95% CL bounds on 4 from a global analysis of dif-
ferential double-Higgs and inclusive triple-Higgs data at the HE-LHC (FCC-pp) is 4 2 [�20, 29]
(4 2 [�5, 13]). Notice that these limits represent a slight improvement of the bounds derived
in Section 4.1 based on inclusive measurements alone. Profiling instead over 3, the following
95% CL bounds are obtained 4 2 [�17, 25] and 4 2 [�4, 12].
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Figure 7. Hypothetical constraints in the ∆κ3 –∆κ4 plane following from a shape analysis of the mhh

spectrum in pp → hh production at the HE-LHC (left panel) and FCC-pp (right panel). The green (yellow)

contours correspond to 68% CL (95% CL) regions. In both figures the SM is indicated by the black point

and the black dashed line represents the family of solutions that satisfy ∆κ4 = 6∆κ3. For further details

consult the text.

∆Rxy > 0.4 for x, y = j, b, γ. A flat b-tagging efficiency of 70%, and mis-tag rates of 15% for
charm quarks and 0.3% for light flavours are adopted. Events with more than three jets are vetoed,
and the requirements |mbb̄ − mh| < 25 GeV, |mγγ − mh| < 1 GeV and mhh > 400 GeV are imposed
as a final selection. The obtained mhh distributions have then been binned into bins of 25 GeV. Our
shape fit includes the statistical uncertainties in each bin as well as theoretical and experimental
systematic uncertainties of 3% and 2%, respectively. The quoted uncertainties have been treated as
uncorrelated Gaussian errors in the χ2 fit. We emphasise that our fit does not consider the impact
of backgrounds, but we have verified that with the described methodology we are able to repro-
duce almost exactly the CL-level curves presented in [17] for both the HE-LHC and FCC-pp. This
agreement gives us confidence that our simplified approach is able to mimic quite well the more
sophisticated analysis [17] that includes a simulation of all relevant SM backgrounds.

The results of our mhh shape analysis are shown in Figure 7. The green (yellow) regions are
the ∆χ2 = 2.28 (∆χ2 = 5.99) contours, corresponding to 68% CL (95% CL) limits for a Gaussian
distribution. In both panels the SM point is indicated by a black dot and the black dashed line
illustrates the equality ∆κ4 = 6∆κ3. From the panel on the left-hand side one sees that already at
the HE-LHC a shape analysis of the mhh distribution in pp → hh allows one to exclude choices in
the ∆κ3 –∆κ4 plane around {3, 4}, i.e. parameters that are expected to survive a combination of the
measurements of the inclusive double-Higgs and triple-Higgs production cross sections (see the
left panel in Figure 5). As a result, differential measurements of pp → hh at the HE-LHC should
be able to distinguish scenarios in which large modifications of both the h3 and h4 interactions
arise from the operator O6 or a combination of O6 and O8

'
cf. the text after (2.3)

(
. For κ3 = 1
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agreement gives us confidence that our simplified approach is able to mimic quite well the more
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Two-loop form factor (1)

Figure 3. Real part (left panel) and imaginary part (right panel) of the function f (ŝ) (upper row) and
g(ŝ) (lower row) introduced in (3.7) and (3.9), respectively

tion to the spin-0 form factor F1 depends only on ŝ but not on the other two Mandelstam vari-
ables t̂, û

�
or the combination p2

T introduced in (3.5)
�
. Second, the correction to the spin-2 form

factor F2 turns out to be identical to zero. The first feature is readily understood by noticing that the
momentum routing in the two diagrams in Figure 2 can be chosen such that the external momenta
only enter in the combination p1 + p2. Due to Lorentz invariance the corresponding Feynman in-
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corresponding scattering amplitude has evidently no spin-2 component.
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ables t̂, û
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Quartic coupling at hadron colliders: full result
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Figure 2. Two-loop topologies involving c̄6 and c̄8 effects on Higgs self-couplings. Except diagrams
(g) and (i), all topologies are present in the SM. We have marked with a blob all the vertices
involving c̄6 and c̄8; trilinear vertices are in blue while quartic ones are in red. Diagrams (a)-(c) are
non-factorisable two-loop topologies. Diagrams (d)-(h), together with the counterterm (k), can be
evaluated via the one-loop form factor V [HHH], while (i),(j) and (l) with the P [HH] one.

is the LO prediction while

��c̄6 = c̄26

h
�30c̄6 + �40c̄

2
6

i
+ �̃20c̄

2
6 , (2.12)

��c̄8 = c̄8
h
�01 + �11c̄6 + �21c̄

2
6

i
(2.13)

– 6 –

3

H

H

H

g

g H

Hg

g

• Very small Cross Section.
Heavier final state.
Additional weak coupling.

• At least one Higgs into bottoms.
gg ! HH ⇠ 35 fb (13 TeV)

gg ! H ⇠ 50 pb (13 TeV)

(�1, �17.5] � [22.5, 1)

(�1, �12] � [17, 1)Assuming no change in the other Higgs couplings,  
ATLAS and CMS at 8 TeV exclude the regions

(�1, �1.3] � [8.7, 1)At 3000 fb-1 the exclusion region should be

Higgs Pair Production
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Figure 1. Double Higgs production at LO in SM. The triangle diagram is sensitive to the trilinear
coupling.

up to this point, we exploit EFT in order to simply alter the value of �3 and �4, regardless
of the underlying physics assumptions and phenomenological consequences. Clearly, in a
well-behaved EFT, higher dimensional effects are suppressed by a large scale ⇤. Thus, in
the first approximation, deviations in 3 and 4 are correlated, i.e., (4 � 1) ' 6(3 � 1),
see also eq. (2.9). On the contrary, similarly to what as been done in Refs. [49, 52, 53], in
this work we adopt as starting point an agnostic attitude towards the values that 3 and
4 can assume, in order to cover the sensitivity that future colliders can probe. We will
later comments on bounds 3 and 4 from theoretical arguments.

In this work we calculate the effects of anomalous �3 and �4 in double Higgs production
at hadron colliders. While �3 is affecting the gg ! HH amplitude already at Born level, �4

is entering only via one-loop EW corrections, i.e., at the two-loop level. Before discussing
the details of the calculation it is convenient to anticipate what are the quantities that enter
in our phenomenological predictions. In fig. 1 we display the one-loop diagrams of the Born
amplitude in HH production. While the triangle (left diagram) depends on �3, the box
(right diagram) does not. Moreover, it is well known that the interference effects between
the two diagrams leads to large cancellations. QCD corrections have been compute up to
next-to-next-to-LO [16] and, besides reducing the scale dependence, they increase the LO
cross section of roughly a factor of 3. In this work we will assume that QCD corrections
factorise the one-loop EW effects that we are going to calculate. One-loop corrections to
HH production involve further �3 effects and introduce a �4 dependence, as can be seen
in fig. 2. All the contributions arising from the two-loop topologies depicted in fig. 2 have
evaluated and renormalised via UV counterterms; all the details concernig the calculation
are discussed in Sec. 2.2.

Following the approach presented in Ref. [49] for e+e� collisions, our phenonomeno-
logical predictions read

�pheno
NLO = �LO + ��c̄6 + ��c̄8 (2.10)

where

�LO = �0 + �1c̄6 + �2c̄
2
6 , (2.11)
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All 2-loop contributions from c8 and 
at c6^3 and c6^4 order are taken into 
account and renormalised. 
The m(HH) distribution is exploited 
in the analysis. 
Only           signature is considered. 
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Figure 14. Expected 1� and 2� bounds in the (c̄6,c̄8) plane at 100 TeV, assuming c̄true6 =

±1, ±2, ±4 and c̄true8 = 0 (denoted by red dot).
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Conclusion
An  alternative  method  for  the  determination  of  the  trilinear  Higgs  self 
coupling     is available. It relies on the effects that loops featuring     would 
imprint on single Higgs production and decay channels at the LHC.

The sensitivity to       via a one-parameter fit to the complete set of single 
Higgs inclusive measurements at the LHC 8 TeV and at 13 TeV with HL is 
competitive with those from Higgs pair production.
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B Comparison with the EFT approach

The SM potential for the Higgs doublet field reads

V SM(�) = �µ2(�†�) + �(�†�)2 , � =
1p
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v +H + i�0

!
, (B.1)

and can be modified by adding the dimension-6 operators (�†�)3,

V dim�6(�) = V SM(�) +
c6
v2

(�†�)3 , (B.2)

where the normalization of the operator (�†�)3 is v = (
p
2Gµ)�1/2 =

246 GeV. The relations among mH , v, µ and � are di↵erent in V SM(�)
and V dim�6(�). We determine � and µ as function of the measured quanti-
ties, mH and v, and of the new parameter c6. Once all the dependences are
expressed as function of mH , v and c6, we can derive the value of the coe�-
cient in front of H3 which in the paper is called �3, as well as the coe�cient
in front of the quartic term H4, which is denoted as �4. The SM relations
are recovered by setting c6 = 0.

With the condition dV dim�6(�)
d�

���
|�|=v/

p
2
= 0 , one obtains

v =
2µp

4�+ 3c6
! µ =

1

2
v
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4�+ 3c6 , (B.3)

which after Electroweak Symmetry Breaking implies

m2
H = v2(2�+ 3c6) ! � =

m2
H

2v2
� 3c6

2
, (B.4)

and

cH3

⌘ v�3 = v

✓
�+
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2
c6

◆
=

m2
H

2v
+ c6v ! � = 1 +

2c6v2

m2
H

. (B.5)

At a first sight, the linear relation in Eq. (B.5) seems to imply that with the
potential V dim�6(�) any value of �3 can be obtained. However, one has still
to require that the potential is bounded from below5 (c6 > 0) and that v is
the global minimum (c6 < m2

H/v
2). The latter condition had been already

5Here we are not taking into account Renormalization-Group-Equation (RGE) e↵ects
on � and c

6

, which may add additional constraints; only the potential without quantum
e↵ects is considered.
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Perturbativity arguments suggest that       <  ~ 6

We look forward to experimental studies, consistently taking into account 
correlations among different measurements and experimental errors.
A similar strategy is also possible for the quartic with double-Higgs at 100 TeV. 
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Including differential information, especially from the threshold, also in a 
general EFT approach single-Higgs is competitive with double-Higgs.

The leading new-physics e↵ects are usually associated with EFT operators with the112

lowest dimensionality, namely the dimension-6 ones. In the following we restrict our atten-113

tion to these operators and neglect higher-order e↵ects. To further simplify our analysis we114

also assume that the new physics is CP-preserving and flavor universal. With these restric-115

tions we are left with 10 independent operators that a↵ect Higgs physics at leading order116

and have not been tested below the % accuracy in existing precision measurements [13].2117

Before discussing our operator basis, it is important to mention that a much larger set of118

dimension-6 operators could in principle be relevant for Higgs physics. A first class of these119

operators include deformations of the SM Lagrangian involving the light SM fermions. They120

correct at tree level the Higgs processes but also a↵ect observables not involving the Higgs.121

Therefore most of them have already been tested with good precision in EW measurements.122

A second set of dimension-6 operators involve the top quark and are typically much less123

constrained. However they a↵ect Higgs physics only at loop level, thus their e↵ects are124

usually not very large. We postpone a more detailed discussion to section 2.2.125

A convenient choice for dimension-6 operators is provided by the “Higgs basis” [3, 14]126

in which the Higgs is assumed to be part of an SU(2)L doublet and operators connected127

to the LHC Higgs searches are separated from the others that can be tested in observables128

not involving the Higgs.3 The 10 e↵ective operators we will focus on can be split into three129

classes: the first one contains deformations of the Higgs couplings to the SM gauge bosons,130

parametrized by131

�cz , czz , cz⇤ , ĉz� , ĉ�� , ĉgg , (2.2)

the second class is related to deformations of the fermion Yukawa’s132

�yt , �yb , �y⌧ , (2.3)

and finally the last e↵ect is a distortion of the Higgs trilinear self-coupling133

� . (2.4)

The corresponding corrections to the Higgs interactions in the unitary gauge are given by

L � h

v

"
�cw

g2v2

2
W+

µ W�µ + �cz
(g2 + g02)v2

4
ZµZ

µ

+ cww
g2

2
W+

µ⌫W�µ⌫ + cw⇤g
2
�
W+

µ @⌫W+µ⌫ + h.c.
�
+ ĉ��

e2

4⇡2
Aµ⌫A

µ⌫

+ cz⇤g
2Zµ@⌫Z

µ⌫ + c�⇤gg
0Zµ@⌫A

µ⌫ + czz
g2 + g02

4
Zµ⌫Z

µ⌫ + ĉz�
e
p
g2 + g02

2⇡2
Zµ⌫A

µ⌫

#

+
g2s

48⇡2

✓
ĉgg

h

v
+ ĉ(2)gg

h2

2v2

◆
Gµ⌫G

µ⌫ �
X

f


mf

✓
�yf

h

v
+ �y

(2)
f

h2

2v2

◆
f̄RfL + h.c.

�

� (� � 1)�SM
3 vh3 , (2.5)

2The assumption of flavor universality is not crucial for our analysis. It is only introduced to restrict the

EFT analysis to the operators that can only be tested in Higgs physics. The same can be done in several

other flavor scenarios, as for instance minimal flavor violation and anarchic partial compositeness.
3For the relation between the independent couplings in the Higgs basis and the Wilson coe�cients of

other operator bases, see [14].
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Quartic coupling at hadron colliders: full result
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Figure 14. Expected 1� and 2� bounds in the (c̄6,c̄8) plane at 100 TeV, assuming c̄true6 =

±1, ±2, ±4 and c̄true8 = 0 (denoted by red dots).
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The Master Formula

The term            is the prediction for a generic observable     including the effects 
induced by an anomalous           .        . LO is meant dressed by QCD corrections.

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)

7

framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-
cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3 . Thereby, the H3 interaction in the
potential, where H is the physical Higgs field, is given by

VH3

= �3 v H
3 ⌘ ��

SM
3 v H3, �SM

3 =
Gµp
2
m2

H , (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly
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framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-
cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3 . Thereby, the H3 interaction in the
potential, where H is the physical Higgs field, is given by
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H , (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly
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For each observable, the corresponding C1 coe�cient is identified as the
contribution linearly proportional to �SM

3 in the NLO EW corrections and
normalised to the LO result as evaluated in the SM.

For any given single-Higgs process, in principle C1 could be evaluated
directly at the level of matrix element in a fully di↵erential way, i.e., point
by point in the phase space

C1({pn}) =
2<(M0⇤M1

�SM

3

)

|M0|2 , (9)

where we have explicitly shown in parentheses the dependence on the exter-
nal momenta {pn} in the Born configuration and understood the sum/average
over helicities and colour states. By integrating over the phase space the
di↵erential ratio in Eq. (9) one would achieve the maximal discriminating
power between the � = 1 hypothesis and the � 6= 1 ones, similarly to
what is typically done in experimental analyses employing matrix-element
methods. However, as first step, it is both useful and convenient to work at
the more inclusive level and directly compute C1 for cross sections or decay
rates integrated over the entire phase space or a portion of it.

For example, in the case of the decays, in this work we limit the discussion
to total rates and define C�

1 as

C�
1 =

R
d� 2<

⇣
M0⇤M1

�SM

3

⌘

R
d� |M0|2 , (10)

where the integration in d� is over the phase space of the final-state particles.
The computation of (total or di↵erential) hadronic cross sections is more

involved w.r.t. the case of the decay widths, because they receive contri-
butions from di↵erent partonic process, which have to be convoluted with
the corresponding parton luminosities and in principle can have di↵erent
C1 terms at the level of matrix elements. For production cross section, C�

1

reads

C�
1 =

P
i,j

R
dx1dx2fi(x1)fj(x2) 2<

⇣
M0⇤

ij M1
�SM

3

,ij

⌘
d�

P
i,j

R
dx1dx2fi(x1)fj(x2) |M0

ij |2d�
, (11)

where the sum is over all the possible ij partonic initial states of the process,
which are convoluted with the corresponding parton distribution functions.

A few comments on the C1 for the various observables considered here
are in order before showing the results. Assuming that all the fermions but
the top quark are massless, the C�

1 for H ! ZZ⇤ ! 4f does not depend on
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Figure 5: Diagrams contributing to the C1 coe�cient in �(H ! ��). The
diagrams in the second row have multiplicity 2.

is performed in the unitary gauge, one is actually interchanging the order
of the operations limit ⇠ ! 1 with the integration, i.e., the limit ⇠ !
1 is performed first and then one does the integration while the correct
order is the opposite. Because some of the vertices that arise from the
gauge-fixing function contain a ⇠ factor, this exchange is not always an
allowed operation and in order to check the correctness of our approach we
recomputed1 the full two-loop EW corrections to �(H ! ��) in the unitary
gauge. The corrections were computed as in Ref. [51] via a Taylor expansion
in the parameters q2/(4m2

W ), q2/(4m2
H) up to and including O(q6/m6) terms

finding perfect agreement with the result of Ref. [51].
Once we verified that in the SM the calculation in the unitary gauge

is equivalent to the one in a R⇠ gauge, the coe�cient C1 is obtained eval-
uating the diagrams in the unitary gauge that contain one trilinear Higgs
interaction. The latter amounts to add to the contribution of the diagrams
in Fig. 4, with the gluons replaced by photons, to the contribution of the
diagrams in Fig. 5. The result is presented in Appendix A. We would like to
remark that the sum of the diagrams in Fig. 5 is finite in the unitary gauge
but it is not finite in a generic R⇠ gauge.

4 Results

In this section we discuss the numerical impact of the �3-dependent contri-
butions on the most important observables in single-Higgs production and
decay at the LHC. We begin by listing and commenting the size of the C1

1To our knowledge this is the first-ever two-loop computation of a physical observable
performed in the unitary gauge.
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where the sum is over all the possible ij partonic initial states of the process,
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the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
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sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
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ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due
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of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-
cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3 . Thereby, the H3 interaction in the
potential, where H is the physical Higgs field, is given by

VH3

= �3 v H
3 ⌘ ��

SM
3 v H3, �SM

3 =
Gµp
2
m2

H , (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly
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captured by the standard -framework for the Higgs couplings to fermions
and vector bosons [6, 7].

Let us now start by classifying the �3-dependent contributions that come
from the O(↵) corrections to single-Higgs production and decay processes.
These contributions can be divided into two categories: a universal part,
i.e., common to all processes, quadratically dependent on �3 and a process-
dependent part linearly proportional to �3.

The universal O(�3
2) corrections originate from the diagram in the wave-

function-renormalisation constant of the external Higgs field, see Fig. 1.
This contribution represents a renormalisation factor common to all the
vertices where the Higgs couples to vector bosons or fermions. Thus, for
on-shell Higgs boson production and decay, it induces the same e↵ect for
all processes, without any dependence on the kinematics. Denoting as M a
generic amplitude for single-Higgs production or a Higgs decay width, the
correction to M induced by the �3-dependent diagram of Fig. 1 can be
written as

(�M)ZH
=
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where M0 is the lowest-order amplitude and
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In order to extend the range of convergence of the perturbative expansion
to large values of �, the one-loop contribution in ZH has been resummed.
In so doing, terms of O((2�↵)

n) which are expected to be the dominant
higher-order corrections at large � are correctly accounted for.

In addition to the �3
2 universal term above, amplitudes depend linearly

on �3 di↵erently for each process and kinematics. Let M0 be the Born am-
plitude corresponding to a given process (production or decay). At the level
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[P: Non sarebbe meglio scrivere �ZH in funzione di �SM
3 al quadrato? Se

guardo equazione (1) a prima vista a uno sembra che questo temine dipenda
linearmente da �SM

3 . Ma e’ solo un’illusione. Ci piace? ]
In eq.(3) we have resummed the one-loop contribution. Thus, O(↵j)

corrections with j > 0 are also included. While the resummation of this
contribution is not of particular relevance within the SM due to the smallness
of �ZH , in order to cover any possible size of �
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in the perturbative regime,
the resummation of the (2�

3

�ZH)n terms is mandatory in our scenario.
As we said, there are also contributions that linearly depend on �3 and

are di↵erent for any process. They originate from the one-loop virtual cor-
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scribed by tree-level diagrams, like e.g. in vector-boson fusion production,
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, can be obtained
for any process by evaluating in the SM case the diagrams that contain
one trilinear Higgs coupling (M1
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) and then rescaling them by a factor

�
3

. Equivalently, one can evaluate M1
�SM
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and apply the the replacement
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The wave-function normalization 
receives corrections that depend 
quadratically on     . 
For large    , the result cannot be 
linearized and must be resummed. 
  

framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-
cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3 . Thereby, the H3 interaction in the
potential, where H is the physical Higgs field, is given by

VH3

= �3 v H
3 ⌘ ��

SM
3 v H3, �SM

3 =
Gµp
2
m2

H , (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly
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of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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with

C2 =
�ZH

(1� 2��ZH)
. (8)

Before describing the method and results of the calculation of the C1 coef-
ficients, we scrutinise the theoretical robustness of Eq. (6) and its range of
validity. Our aim is to employ Eq. (6) to evaluate the LHC sensitivity on �3

without making “a priori” any assumptions on the value of the parameter
�. We will, however, demand as a consistency constraint that, for large
values of �, �3-dependent terms from O(↵j) corrections with j > 1 do not
overwhelm the e↵ects from the Ci coe�cients. In order to take into account
all the O((2�↵)

n) contributions and perform a resummation of the 2� �ZH

terms in ZH we need to impose that 2� �ZH . 1, i.e., |�| . 25. The cor-
responding parametric uncertainty in ⌃NLO is therefore given by O((3�↵

2))
terms that can be sizeable for large values of �. The size of such missing
terms can be estimated by calculating the di↵erence between �⌃�

3

computed
using Eq. (6) and Eq. (7), or equivalently �(⌃NLO/⌃LO) ' 3�C1�ZH . Re-
quiring this uncertainty to be . 10% and assuming as an order of magnitude
of the two-loop contribution C1�ZH ⇠ 10�5, we find |�| . 20, which we
take as the range of validity of our perturbative calculation.

It is important to note that in an E↵ective-Field-Theory (EFT) approach
much stronger bounds would be set by the requirement that v is the global
minimum and that the Higgs-doublet potential is bounded from below, es-
pecially if only the (�†�)3 operator is included, as done in Ref. [40]. In
this approach the constraint 1 < � < 3 can be derived from the previous
requirements, as demonstrated in Appendix B, where we discuss also further
constraints induced by the size of the Wilson coe�cient in front of (�†�)3

and we present general formulas for �3 and �4 including all the tower of
(�†�)n operators.

At variance with the SM, where the Higgs self coupling and the Higgs
mass are related, in our setup they are two independent parameters. This
in general spoils the renormalisability of the model and makes its parame-
ters sensitive to the UV scales. However, one knows a priori that the �3–
dependent O(↵) corrections to ⌃ in Eq. (6) are finite. The reason is twofold:

i) the LO result does not depend on �3 and therefore no renormalisation
of �3 at NLO is either needed nor possible.

ii) All the counterterms needed at NLO do not contain divergent contri-
butions proportional to the trilinear coupling.
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of cross section or decay width, the linear dependence on �3 originates from
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butions in M1, which we denote as M1
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, can be obtained for any process
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) and then rescaling them by a factor �. In order to correctly
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3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.
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lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
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of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)

7

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)

7

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)

7

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)

7

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)

7

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)

7

with

C2 =
�ZH

(1� 2��ZH)
. (8)

Before describing the method and results of the calculation of the C1 coef-
ficients, we scrutinise the theoretical robustness of Eq. (6) and its range of
validity. Our aim is to employ Eq. (6) to evaluate the LHC sensitivity on �3

without making “a priori” any assumptions on the value of the parameter
�. We will, however, demand as a consistency constraint that, for large
values of �, �3-dependent terms from O(↵j) corrections with j > 1 do not
overwhelm the e↵ects from the Ci coe�cients. In order to take into account
all the O((2�↵)

n) contributions and perform a resummation of the 2� �ZH

terms in ZH we need to impose that 2� �ZH . 1, i.e., |�| . 25. The cor-
responding parametric uncertainty in ⌃NLO is therefore given by O((3�↵

2))
terms that can be sizeable for large values of �. The size of such missing
terms can be estimated by calculating the di↵erence between �⌃�

3

computed
using Eq. (6) and Eq. (7), or equivalently �(⌃NLO/⌃LO) ' 3�C1�ZH . Re-
quiring this uncertainty to be . 10% and assuming as an order of magnitude
of the two-loop contribution C1�ZH ⇠ 10�5, we find |�| . 20, which we
take as the range of validity of our perturbative calculation.

It is important to note that in an E↵ective-Field-Theory (EFT) approach
much stronger bounds would be set by the requirement that v is the global
minimum and that the Higgs-doublet potential is bounded from below, es-
pecially if only the (�†�)3 operator is included, as done in Ref. [40]. In
this approach the constraint 1 < � < 3 can be derived from the previous
requirements, as demonstrated in Appendix B, where we discuss also further
constraints induced by the size of the Wilson coe�cient in front of (�†�)3

and we present general formulas for �3 and �4 including all the tower of
(�†�)n operators.

At variance with the SM, where the Higgs self coupling and the Higgs
mass are related, in our setup they are two independent parameters. This
in general spoils the renormalisability of the model and makes its parame-
ters sensitive to the UV scales. However, one knows a priori that the �3–
dependent O(↵) corrections to ⌃ in Eq. (6) are finite. The reason is twofold:

i) the LO result does not depend on �3 and therefore no renormalisation
of �3 at NLO is either needed nor possible.

ii) All the counterterms needed at NLO do not contain divergent contri-
butions proportional to the trilinear coupling.
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pecially if only the (�†�)3 operator is included, as done in Ref. [40]. In
this approach the constraint 1 < � < 3 can be derived from the previous
requirements, as demonstrated in Appendix B, where we discuss also further
constraints induced by the size of the Wilson coe�cient in front of (�†�)3

and we present general formulas for �3 and �4 including all the tower of
(�†�)n operators.

At variance with the SM, where the Higgs self coupling and the Higgs
mass are related, in our setup they are two independent parameters. This
in general spoils the renormalisability of the model and makes its parame-
ters sensitive to the UV scales. However, one knows a priori that the �3–
dependent O(↵) corrections to ⌃ in Eq. (6) are finite. The reason is twofold:

i) the LO result does not depend on �3 and therefore no renormalisation
of �3 at NLO is either needed nor possible.

ii) All the counterterms needed at NLO do not contain divergent contri-
butions proportional to the trilinear coupling.
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ii) All the counterterms needed at NLO do not contain divergent contri-
butions proportional to the trilinear coupling.

8

Process and kinetic dependent

universal

!49



NLO EW and anomalous couplings
If we modify a SM coupling via                              , do higher-order computations 
remain in general finite (UV cancellation)? NO

This last point can be understood as follows: the only counterterm that
contains divergent contributions proportional to �3 is the Higgs-mass coun-
terterm. However, the mH dependence in ⌃LO is all of kinematical origin.
Therefore, when the NLO corrections are calculated, no renormalisation of
mH is needed.

The arguments above are su�cient for all the processes except for H !
��, which deserves a dedicated discussion. In a R⇠ gauge the LO dependence
of �(H ! ��) upon mH is not purely kinematical, but it also comes from
diagrams containing unphysical charged scalars. Therefore one expects that
in these gauges at NLO there is no clear way to disentangle the contributions
that can be assigned as due to a trilinear coupling from the ones related to
the kinematical parameter mH . In order to overcome this di�culty, as we
already said, we employed the unitary gauge. In this gauge all the LO
mH dependence of �(H ! ��) is kinematical, similarly to all the other
observables we considered, and the argument discussed above about the
finiteness of the NLO �3–dependent corrections applies.

In general, an anomalous coupling ci is a free parameter that does not
satisfy the SM relations that can be crucial for the renormalisability of the
model. In the calculation of radiative corrections, the substitution of an elec-
troweak coupling with an anomalous one, cSMi ! ci ⌘ ic

SM
i gives a finite

result in two cases. First, when the renormalisation of ci does not involve
EW corrections. Second, when the renormalisation of the other regular cou-
plings cj involves ci via EW corrections, but ci itself is not renormalised. The
first case corresponds to what happens in the context of the �formalism
where couplings are rescaled by overall factors. It also applies to many phe-
nomenological and experimental studies on the dependence of double-Higgs
production cross sections on �3 as done, e.g, in [16] or in the experimen-
tal studies [31, 32]. In this case only QCD higher-order corrections can be
consistently included. The second case corresponds to the study presented
here: ⌃ at LO does not depend on �3 and the NLO EW corrections, which
do depend on �3, are finite because do not involve the renormalisation of �3.
At this point, it is worth stressing that studies analogous in spirit and phi-
losophy to ours have been performed for the case of the top-Higgs Yukawa
coupling yt, where, by looking at the dependence of NLO EW corrections,
bounds on anomalous yt ⌘ ty

SM
t can be set via the analysis of top-quark

pair production measurements [41, 42].
It should be said that, while the O(↵i

s↵) corrections to the physical
observables ⌃ due to an anomalous trilinear Higgs coupling are finite, and
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If we modify a SM coupling via                              , do higher-order computations 
remain in general finite (UV cancellation)? NO
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where couplings are rescaled by overall factors. It also applies to many phe-
nomenological and experimental studies on the dependence of double-Higgs
production cross sections on �3 as done, e.g, in [16] or in the experimen-
tal studies [31, 32]. In this case only QCD higher-order corrections can be
consistently included. The second case corresponds to the study presented
here: ⌃ at LO does not depend on �3 and the NLO EW corrections, which
do depend on �3, are finite because do not involve the renormalisation of �3.
At this point, it is worth stressing that studies analogous in spirit and phi-
losophy to ours have been performed for the case of the top-Higgs Yukawa
coupling yt, where, by looking at the dependence of NLO EW corrections,
bounds on anomalous yt ⌘ ty

SM
t can be set via the analysis of top-quark

pair production measurements [41, 42].
It should be said that, while the O(↵i

s↵) corrections to the physical
observables ⌃ due to an anomalous trilinear Higgs coupling are finite, and
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This last point can be understood as follows: the only counterterm that
contains divergent contributions proportional to �3 is the Higgs-mass coun-
terterm. However, the mH dependence in ⌃LO is all of kinematical origin.
Therefore, when the NLO corrections are calculated, no renormalisation of
mH is needed.

The arguments above are su�cient for all the processes except for H !
��, which deserves a dedicated discussion. In a R⇠ gauge the LO dependence
of �(H ! ��) upon mH is not purely kinematical, but it also comes from
diagrams containing unphysical charged scalars. Therefore one expects that
in these gauges at NLO there is no clear way to disentangle the contributions
that can be assigned as due to a trilinear coupling from the ones related to
the kinematical parameter mH . In order to overcome this di�culty, as we
already said, we employed the unitary gauge. In this gauge all the LO
mH dependence of �(H ! ��) is kinematical, similarly to all the other
observables we considered, and the argument discussed above about the
finiteness of the NLO �3–dependent corrections applies.

In general, an anomalous coupling ci is a free parameter that does not
satisfy the SM relations that can be crucial for the renormalisability of the
model. In the calculation of radiative corrections, the substitution of an elec-
troweak coupling with an anomalous one, cSMi ! ci ⌘ ic

SM
i gives a finite

result in two cases. First, when the renormalisation of ci does not involve
EW corrections. Second, when the renormalisation of the other regular cou-
plings cj involves ci via EW corrections, but ci itself is not renormalised. The
first case corresponds to what happens in the context of the �formalism
where couplings are rescaled by overall factors. It also applies to many phe-
nomenological and experimental studies on the dependence of double-Higgs
production cross sections on �3 as done, e.g, in [16] or in the experimen-
tal studies [31, 32]. In this case only QCD higher-order corrections can be
consistently included. The second case corresponds to the study presented
here: ⌃ at LO does not depend on �3 and the NLO EW corrections, which
do depend on �3, are finite because do not involve the renormalisation of �3.
At this point, it is worth stressing that studies analogous in spirit and phi-
losophy to ours have been performed for the case of the top-Higgs Yukawa
coupling yt, where, by looking at the dependence of NLO EW corrections,
bounds on anomalous yt ⌘ ty

SM
t can be set via the analysis of top-quark

pair production measurements [41, 42].
It should be said that, while the O(↵i

s↵) corrections to the physical
observables ⌃ due to an anomalous trilinear Higgs coupling are finite, and
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This last point can be understood as follows: the only counterterm that
contains divergent contributions proportional to �3 is the Higgs-mass coun-
terterm. However, the mH dependence in ⌃LO is all of kinematical origin.
Therefore, when the NLO corrections are calculated, no renormalisation of
mH is needed.

The arguments above are su�cient for all the processes except for H !
��, which deserves a dedicated discussion. In a R⇠ gauge the LO dependence
of �(H ! ��) upon mH is not purely kinematical, but it also comes from
diagrams containing unphysical charged scalars. Therefore one expects that
in these gauges at NLO there is no clear way to disentangle the contributions
that can be assigned as due to a trilinear coupling from the ones related to
the kinematical parameter mH . In order to overcome this di�culty, as we
already said, we employed the unitary gauge. In this gauge all the LO
mH dependence of �(H ! ��) is kinematical, similarly to all the other
observables we considered, and the argument discussed above about the
finiteness of the NLO �3–dependent corrections applies.

In general, an anomalous coupling ci is a free parameter that does not
satisfy the SM relations that can be crucial for the renormalisability of the
model. In the calculation of radiative corrections, the substitution of an elec-
troweak coupling with an anomalous one, cSMi ! ci ⌘ ic
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i gives a finite

result in two cases. First, when the renormalisation of ci does not involve
EW corrections. Second, when the renormalisation of the other regular cou-
plings cj involves ci via EW corrections, but ci itself is not renormalised. The
first case corresponds to what happens in the context of the �formalism
where couplings are rescaled by overall factors. It also applies to many phe-
nomenological and experimental studies on the dependence of double-Higgs
production cross sections on �3 as done, e.g, in [16] or in the experimen-
tal studies [31, 32]. In this case only QCD higher-order corrections can be
consistently included. The second case corresponds to the study presented
here: ⌃ at LO does not depend on �3 and the NLO EW corrections, which
do depend on �3, are finite because do not involve the renormalisation of �3.
At this point, it is worth stressing that studies analogous in spirit and phi-
losophy to ours have been performed for the case of the top-Higgs Yukawa
coupling yt, where, by looking at the dependence of NLO EW corrections,
bounds on anomalous yt ⌘ ty
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This last point can be understood as follows: the only counterterm that
contains divergent contributions proportional to �3 is the Higgs-mass coun-
terterm. However, the mH dependence in ⌃LO is all of kinematical origin.
Therefore, when the NLO corrections are calculated, no renormalisation of
mH is needed.

The arguments above are su�cient for all the processes except for H !
��, which deserves a dedicated discussion. In a R⇠ gauge the LO dependence
of �(H ! ��) upon mH is not purely kinematical, but it also comes from
diagrams containing unphysical charged scalars. Therefore one expects that
in these gauges at NLO there is no clear way to disentangle the contributions
that can be assigned as due to a trilinear coupling from the ones related to
the kinematical parameter mH . In order to overcome this di�culty, as we
already said, we employed the unitary gauge. In this gauge all the LO
mH dependence of �(H ! ��) is kinematical, similarly to all the other
observables we considered, and the argument discussed above about the
finiteness of the NLO �3–dependent corrections applies.

In general, an anomalous coupling ci is a free parameter that does not
satisfy the SM relations that can be crucial for the renormalisability of the
model. In the calculation of radiative corrections, the substitution of an elec-
troweak coupling with an anomalous one, cSMi ! ci ⌘ ic
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i gives a finite

result in two cases. First, when the renormalisation of ci does not involve
EW corrections. Second, when the renormalisation of the other regular cou-
plings cj involves ci via EW corrections, but ci itself is not renormalised. The
first case corresponds to what happens in the context of the �formalism
where couplings are rescaled by overall factors. It also applies to many phe-
nomenological and experimental studies on the dependence of double-Higgs
production cross sections on �3 as done, e.g, in [16] or in the experimen-
tal studies [31, 32]. In this case only QCD higher-order corrections can be
consistently included. The second case corresponds to the study presented
here: ⌃ at LO does not depend on �3 and the NLO EW corrections, which
do depend on �3, are finite because do not involve the renormalisation of �3.
At this point, it is worth stressing that studies analogous in spirit and phi-
losophy to ours have been performed for the case of the top-Higgs Yukawa
coupling yt, where, by looking at the dependence of NLO EW corrections,
bounds on anomalous yt ⌘ ty

SM
t can be set via the analysis of top-quark

pair production measurements [41, 42].
It should be said that, while the O(↵i

s↵) corrections to the physical
observables ⌃ due to an anomalous trilinear Higgs coupling are finite, and
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This last point can be understood as follows: the only counterterm that
contains divergent contributions proportional to �3 is the Higgs-mass coun-
terterm. However, the mH dependence in ⌃LO is all of kinematical origin.
Therefore, when the NLO corrections are calculated, no renormalisation of
mH is needed.

The arguments above are su�cient for all the processes except for H !
��, which deserves a dedicated discussion. In a R⇠ gauge the LO dependence
of �(H ! ��) upon mH is not purely kinematical, but it also comes from
diagrams containing unphysical charged scalars. Therefore one expects that
in these gauges at NLO there is no clear way to disentangle the contributions
that can be assigned as due to a trilinear coupling from the ones related to
the kinematical parameter mH . In order to overcome this di�culty, as we
already said, we employed the unitary gauge. In this gauge all the LO
mH dependence of �(H ! ��) is kinematical, similarly to all the other
observables we considered, and the argument discussed above about the
finiteness of the NLO �3–dependent corrections applies.

In general, an anomalous coupling ci is a free parameter that does not
satisfy the SM relations that can be crucial for the renormalisability of the
model. In the calculation of radiative corrections, the substitution of an elec-
troweak coupling with an anomalous one, cSMi ! ci ⌘ ic

SM
i gives a finite

result in two cases. First, when the renormalisation of ci does not involve
EW corrections. Second, when the renormalisation of the other regular cou-
plings cj involves ci via EW corrections, but ci itself is not renormalised. The
first case corresponds to what happens in the context of the �formalism
where couplings are rescaled by overall factors. It also applies to many phe-
nomenological and experimental studies on the dependence of double-Higgs
production cross sections on �3 as done, e.g, in [16] or in the experimen-
tal studies [31, 32]. In this case only QCD higher-order corrections can be
consistently included. The second case corresponds to the study presented
here: ⌃ at LO does not depend on �3 and the NLO EW corrections, which
do depend on �3, are finite because do not involve the renormalisation of �3.
At this point, it is worth stressing that studies analogous in spirit and phi-
losophy to ours have been performed for the case of the top-Higgs Yukawa
coupling yt, where, by looking at the dependence of NLO EW corrections,
bounds on anomalous yt ⌘ ty
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This last point can be understood as follows: the only counterterm that
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Therefore, when the NLO corrections are calculated, no renormalisation of
mH is needed.
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��, which deserves a dedicated discussion. In a R⇠ gauge the LO dependence
of �(H ! ��) upon mH is not purely kinematical, but it also comes from
diagrams containing unphysical charged scalars. Therefore one expects that
in these gauges at NLO there is no clear way to disentangle the contributions
that can be assigned as due to a trilinear coupling from the ones related to
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already said, we employed the unitary gauge. In this gauge all the LO
mH dependence of �(H ! ��) is kinematical, similarly to all the other
observables we considered, and the argument discussed above about the
finiteness of the NLO �3–dependent corrections applies.

In general, an anomalous coupling ci is a free parameter that does not
satisfy the SM relations that can be crucial for the renormalisability of the
model. In the calculation of radiative corrections, the substitution of an elec-
troweak coupling with an anomalous one, cSMi ! ci ⌘ ic

SM
i gives a finite

result in two cases. First, when the renormalisation of ci does not involve
EW corrections. Second, when the renormalisation of the other regular cou-
plings cj involves ci via EW corrections, but ci itself is not renormalised. The
first case corresponds to what happens in the context of the �formalism
where couplings are rescaled by overall factors. It also applies to many phe-
nomenological and experimental studies on the dependence of double-Higgs
production cross sections on �3 as done, e.g, in [16] or in the experimen-
tal studies [31, 32]. In this case only QCD higher-order corrections can be
consistently included. The second case corresponds to the study presented
here: ⌃ at LO does not depend on �3 and the NLO EW corrections, which
do depend on �3, are finite because do not involve the renormalisation of �3.
At this point, it is worth stressing that studies analogous in spirit and phi-
losophy to ours have been performed for the case of the top-Higgs Yukawa
coupling yt, where, by looking at the dependence of NLO EW corrections,
bounds on anomalous yt ⌘ ty

SM
t can be set via the analysis of top-quark

pair production measurements [41, 42].
It should be said that, while the O(↵i

s↵) corrections to the physical
observables ⌃ due to an anomalous trilinear Higgs coupling are finite, and
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Double Higgs dependence on   .    
(No EW corrections possible) 

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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Sensitivity of ttbar production on    . 
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as obtained from pseudo-data samples randomly generated from the best fit values of the rank(M) =1 hy-
pothesis. The p-value of the data with the single-state hypothesis is (29±2)%, where the uncertainty
reflects the finite number of pseudo-data samples generated, and does not show any significant departure
from the single-state hypothesis. The p-values obtained for the individual experiments are 58% and 33%
for ATLAS and CMS, respectively. These p-values can only be considered as the results of compatib-
ility tests with the single-state hypothesis, represented by the rank(M) = 1 parameterisation described
above.

6. Constraints on Higgs boson couplings

Section 4.2 discusses the fit results from the most generic parameterisation in the context of the -
framework. This section probes more specific parameterisations with additional assumptions. In the
following, results from a few selected parameterisations, with increasingly restrictive assumptions, are
presented. The results are obtained from the combined fits to the

p
s = 7 and 8 TeV data assuming that

the coupling modifiers are the same at the two energies.

6.1. Parameterisations allowing contributions from BSM particles in loops and in decays

As discussed in Sections 2 and 3, the rates of Higgs boson production in the various decay modes are
inversely proportional to the Higgs boson width, which is sensitive to potential invisible or undetected
decay modes predicted by BSM theories. To directly measure the individual coupling modifiers, an
assumption about the Higgs boson width is necessary. Two possible scenarios are considered in this
section: the first leaves BBSM free, provided that BBSM � 0, but assumes that |W |  1 and |Z |  1
and that the signs of W and Z are the same, assumptions denoted |V |  1 in the following; the second
assumes BBSM = 0. The constraints assumed in the first scenario are compatible with a wide range
of BSM physics, which may become manifest in the loop-induced processes of gg ! H production
and H ! �� decay. These processes are particularly sensitive to loop contributions from new heavy
particles, carrying electric or colour charge, or both, and such new physics can be probed using the
e↵ective coupling modifiers g and �. Furthermore, potential deviations from the SM of the tree-level
couplings to ordinary particles are parameterised with their respective coupling modifiers. The parameters
of interest in the fits to data are thus the seven independent coupling modifiers, Z , W , t, ⌧, b, g, and
�, one for each SM particle involved in the production processes and decay modes studied, plus BBSM in
the case of the first fit. Here and in Section 6.2, the coupling modifier t is assumed to be positive, without
any loss of generality.

Figure 15 and Table 17 show the results of the two fits, assuming either |V |  1 and BBSM � 0 or BBSM =

0. In the former case, an upper limit of BBSM = 0.34 at 95% CL is obtained, compared to an expected
upper limit of 0.39. The corresponding negative log-likelihood scan is shown in Fig. 16. Appendix C
describes how the two possible sign combinations between W and Z impact the likelihood scan of BBSM
for the observed and expected results, as illustrated in Fig. 32. The p-value of the compatibility between
the data and the SM predictions is 11% with the assumption that BBSM = 0.

Another fit, motivated, for example, by BSM scenarios with new heavy particles that may contribute to
loop processes in Higgs boson production or decay, assumes that all the couplings to SM particles are the
same as in the SM, that there are no BSM decays (BBSM = 0), and that only the gluon–gluon production
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of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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NLO EW and anomalous couplings
If we modify a SM coupling via                              , do higher-order computations 
remain in general finite (UV cancellation)? NO

This last point can be understood as follows: the only counterterm that
contains divergent contributions proportional to �3 is the Higgs-mass coun-
terterm. However, the mH dependence in ⌃LO is all of kinematical origin.
Therefore, when the NLO corrections are calculated, no renormalisation of
mH is needed.

The arguments above are su�cient for all the processes except for H !
��, which deserves a dedicated discussion. In a R⇠ gauge the LO dependence
of �(H ! ��) upon mH is not purely kinematical, but it also comes from
diagrams containing unphysical charged scalars. Therefore one expects that
in these gauges at NLO there is no clear way to disentangle the contributions
that can be assigned as due to a trilinear coupling from the ones related to
the kinematical parameter mH . In order to overcome this di�culty, as we
already said, we employed the unitary gauge. In this gauge all the LO
mH dependence of �(H ! ��) is kinematical, similarly to all the other
observables we considered, and the argument discussed above about the
finiteness of the NLO �3–dependent corrections applies.

In general, an anomalous coupling ci is a free parameter that does not
satisfy the SM relations that can be crucial for the renormalisability of the
model. In the calculation of radiative corrections, the substitution of an elec-
troweak coupling with an anomalous one, cSMi ! ci ⌘ ic

SM
i gives a finite

result in two cases. First, when the renormalisation of ci does not involve
EW corrections. Second, when the renormalisation of the other regular cou-
plings cj involves ci via EW corrections, but ci itself is not renormalised. The
first case corresponds to what happens in the context of the �formalism
where couplings are rescaled by overall factors. It also applies to many phe-
nomenological and experimental studies on the dependence of double-Higgs
production cross sections on �3 as done, e.g, in [16] or in the experimen-
tal studies [31, 32]. In this case only QCD higher-order corrections can be
consistently included. The second case corresponds to the study presented
here: ⌃ at LO does not depend on �3 and the NLO EW corrections, which
do depend on �3, are finite because do not involve the renormalisation of �3.
At this point, it is worth stressing that studies analogous in spirit and phi-
losophy to ours have been performed for the case of the top-Higgs Yukawa
coupling yt, where, by looking at the dependence of NLO EW corrections,
bounds on anomalous yt ⌘ ty

SM
t can be set via the analysis of top-quark

pair production measurements [41, 42].
It should be said that, while the O(↵i

s↵) corrections to the physical
observables ⌃ due to an anomalous trilinear Higgs coupling are finite, and
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Double Higgs dependence on   .    
(No EW corrections possible) 

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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as obtained from pseudo-data samples randomly generated from the best fit values of the rank(M) =1 hy-
pothesis. The p-value of the data with the single-state hypothesis is (29±2)%, where the uncertainty
reflects the finite number of pseudo-data samples generated, and does not show any significant departure
from the single-state hypothesis. The p-values obtained for the individual experiments are 58% and 33%
for ATLAS and CMS, respectively. These p-values can only be considered as the results of compatib-
ility tests with the single-state hypothesis, represented by the rank(M) = 1 parameterisation described
above.

6. Constraints on Higgs boson couplings

Section 4.2 discusses the fit results from the most generic parameterisation in the context of the -
framework. This section probes more specific parameterisations with additional assumptions. In the
following, results from a few selected parameterisations, with increasingly restrictive assumptions, are
presented. The results are obtained from the combined fits to the

p
s = 7 and 8 TeV data assuming that

the coupling modifiers are the same at the two energies.

6.1. Parameterisations allowing contributions from BSM particles in loops and in decays

As discussed in Sections 2 and 3, the rates of Higgs boson production in the various decay modes are
inversely proportional to the Higgs boson width, which is sensitive to potential invisible or undetected
decay modes predicted by BSM theories. To directly measure the individual coupling modifiers, an
assumption about the Higgs boson width is necessary. Two possible scenarios are considered in this
section: the first leaves BBSM free, provided that BBSM � 0, but assumes that |W |  1 and |Z |  1
and that the signs of W and Z are the same, assumptions denoted |V |  1 in the following; the second
assumes BBSM = 0. The constraints assumed in the first scenario are compatible with a wide range
of BSM physics, which may become manifest in the loop-induced processes of gg ! H production
and H ! �� decay. These processes are particularly sensitive to loop contributions from new heavy
particles, carrying electric or colour charge, or both, and such new physics can be probed using the
e↵ective coupling modifiers g and �. Furthermore, potential deviations from the SM of the tree-level
couplings to ordinary particles are parameterised with their respective coupling modifiers. The parameters
of interest in the fits to data are thus the seven independent coupling modifiers, Z , W , t, ⌧, b, g, and
�, one for each SM particle involved in the production processes and decay modes studied, plus BBSM in
the case of the first fit. Here and in Section 6.2, the coupling modifier t is assumed to be positive, without
any loss of generality.

Figure 15 and Table 17 show the results of the two fits, assuming either |V |  1 and BBSM � 0 or BBSM =

0. In the former case, an upper limit of BBSM = 0.34 at 95% CL is obtained, compared to an expected
upper limit of 0.39. The corresponding negative log-likelihood scan is shown in Fig. 16. Appendix C
describes how the two possible sign combinations between W and Z impact the likelihood scan of BBSM
for the observed and expected results, as illustrated in Fig. 32. The p-value of the compatibility between
the data and the SM predictions is 11% with the assumption that BBSM = 0.

Another fit, motivated, for example, by BSM scenarios with new heavy particles that may contribute to
loop processes in Higgs boson production or decay, assumes that all the couplings to SM particles are the
same as in the SM, that there are no BSM decays (BBSM = 0), and that only the gluon–gluon production
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of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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In all cases, ΛNP has to be assumed to be not too large  
in order to have higher-order corrections under control. 

In our case, linear EFT (c6) and anomalous coupling (     ) 
are equivalent at NLO EW.  
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including QCD corrections so that the labels LO and NLO refer to EW
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be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
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Calculation of      coefficients 

C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of
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Figure 2: Structure of the �SM
3 -dependent part inM1
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for processes involv-

ing massive vector bosons in the final or in the intermediate states (VBF,
HV and H ! V V ⇤ ! 4f).
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Figure 3: Sample of �SM
3 -dependent diagrams in tt̄H production.

the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
subprocess contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coe�cients of the various processes, we gener-
ated the relevant amplitudes using the Mathematica package FeynArts [43].
For all the cases involving only one-loop amplitudes, we computed the cross
sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
H ! V V ⇤ ! 4f), the �3-dependent parts in M1

�SM

3

have a common struc-

ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due
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receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
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For all the cases involving only one-loop amplitudes, we computed the cross
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from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due
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as obtained from pseudo-data samples randomly generated from the best fit values of the rank(M) =1 hy-
pothesis. The p-value of the data with the single-state hypothesis is (29±2)%, where the uncertainty
reflects the finite number of pseudo-data samples generated, and does not show any significant departure
from the single-state hypothesis. The p-values obtained for the individual experiments are 58% and 33%
for ATLAS and CMS, respectively. These p-values can only be considered as the results of compatib-
ility tests with the single-state hypothesis, represented by the rank(M) = 1 parameterisation described
above.

6. Constraints on Higgs boson couplings

Section 4.2 discusses the fit results from the most generic parameterisation in the context of the -
framework. This section probes more specific parameterisations with additional assumptions. In the
following, results from a few selected parameterisations, with increasingly restrictive assumptions, are
presented. The results are obtained from the combined fits to the

p
s = 7 and 8 TeV data assuming that

the coupling modifiers are the same at the two energies.

6.1. Parameterisations allowing contributions from BSM particles in loops and in decays

As discussed in Sections 2 and 3, the rates of Higgs boson production in the various decay modes are
inversely proportional to the Higgs boson width, which is sensitive to potential invisible or undetected
decay modes predicted by BSM theories. To directly measure the individual coupling modifiers, an
assumption about the Higgs boson width is necessary. Two possible scenarios are considered in this
section: the first leaves BBSM free, provided that BBSM � 0, but assumes that |W |  1 and |Z |  1
and that the signs of W and Z are the same, assumptions denoted |V |  1 in the following; the second
assumes BBSM = 0. The constraints assumed in the first scenario are compatible with a wide range
of BSM physics, which may become manifest in the loop-induced processes of gg ! H production
and H ! �� decay. These processes are particularly sensitive to loop contributions from new heavy
particles, carrying electric or colour charge, or both, and such new physics can be probed using the
e↵ective coupling modifiers g and �. Furthermore, potential deviations from the SM of the tree-level
couplings to ordinary particles are parameterised with their respective coupling modifiers. The parameters
of interest in the fits to data are thus the seven independent coupling modifiers, Z , W , t, ⌧, b, g, and
�, one for each SM particle involved in the production processes and decay modes studied, plus BBSM in
the case of the first fit. Here and in Section 6.2, the coupling modifier t is assumed to be positive, without
any loss of generality.

Figure 15 and Table 17 show the results of the two fits, assuming either |V |  1 and BBSM � 0 or BBSM =

0. In the former case, an upper limit of BBSM = 0.34 at 95% CL is obtained, compared to an expected
upper limit of 0.39. The corresponding negative log-likelihood scan is shown in Fig. 16. Appendix C
describes how the two possible sign combinations between W and Z impact the likelihood scan of BBSM
for the observed and expected results, as illustrated in Fig. 32. The p-value of the compatibility between
the data and the SM predictions is 11% with the assumption that BBSM = 0.

Another fit, motivated, for example, by BSM scenarios with new heavy particles that may contribute to
loop processes in Higgs boson production or decay, assumes that all the couplings to SM particles are the
same as in the SM, that there are no BSM decays (BBSM = 0), and that only the gluon–gluon production
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Calculation of      coefficients 

C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of
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Figure 3: Sample of �SM
3 -dependent diagrams in tt̄H production.

the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
subprocess contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coe�cients of the various processes, we gener-
ated the relevant amplitudes using the Mathematica package FeynArts [43].
For all the cases involving only one-loop amplitudes, we computed the cross
sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
H ! V V ⇤ ! 4f), the �3-dependent parts in M1

�SM

3

have a common struc-

ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due
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the fermions in the final state. The same applies toH ! WW ⇤ ! 4f . In the
case of hadronic production, di↵erent partonic processes can have di↵erent
C1’s at the level of matrix elements. One example is tt̄H production, which
receives contributions from qq̄ ! tt̄H and gg ! tt̄H. Another is VBF,
where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each
subprocess contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coe�cients of the various processes, we gener-
ated the relevant amplitudes using the Mathematica package FeynArts [43].
For all the cases involving only one-loop amplitudes, we computed the cross
sections and decay rates with the help of FormCalc interfaced to Loop-

Tools [44] and we checked the partonic cross sections at specific points
in the phase space with FeynCalc [45, 46]. In processes involving massive
vector bosons in the final or in the intermediate states (VBF, HV and
H ! V V ⇤ ! 4f), the �3-dependent parts in M1

�SM
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have a common struc-

ture, see Fig. 2. In the case of the tt̄H production the sensitivity to �3 comes
from the one-loop corrections to the tt̄H vertex and from one-loop box and
pentagon diagrams. A sample of diagrams containing these �3-dependent
contributions is shown in Fig. 3.

The presence of not only triangles but also boxes and pentagons in the
case of tt̄H production provides an intuitive explanation of why the �3 con-
tributions cannot be captured by a local rescaling (t) of the type that a
standard -framework would assume for the top-Higgs coupling. Similarly,
not all the contributions given by the corrections to the HV V vertex can
be described by a scalar modification of its SM value via a V factor, due
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as obtained from pseudo-data samples randomly generated from the best fit values of the rank(M) =1 hy-
pothesis. The p-value of the data with the single-state hypothesis is (29±2)%, where the uncertainty
reflects the finite number of pseudo-data samples generated, and does not show any significant departure
from the single-state hypothesis. The p-values obtained for the individual experiments are 58% and 33%
for ATLAS and CMS, respectively. These p-values can only be considered as the results of compatib-
ility tests with the single-state hypothesis, represented by the rank(M) = 1 parameterisation described
above.

6. Constraints on Higgs boson couplings

Section 4.2 discusses the fit results from the most generic parameterisation in the context of the -
framework. This section probes more specific parameterisations with additional assumptions. In the
following, results from a few selected parameterisations, with increasingly restrictive assumptions, are
presented. The results are obtained from the combined fits to the

p
s = 7 and 8 TeV data assuming that

the coupling modifiers are the same at the two energies.

6.1. Parameterisations allowing contributions from BSM particles in loops and in decays

As discussed in Sections 2 and 3, the rates of Higgs boson production in the various decay modes are
inversely proportional to the Higgs boson width, which is sensitive to potential invisible or undetected
decay modes predicted by BSM theories. To directly measure the individual coupling modifiers, an
assumption about the Higgs boson width is necessary. Two possible scenarios are considered in this
section: the first leaves BBSM free, provided that BBSM � 0, but assumes that |W |  1 and |Z |  1
and that the signs of W and Z are the same, assumptions denoted |V |  1 in the following; the second
assumes BBSM = 0. The constraints assumed in the first scenario are compatible with a wide range
of BSM physics, which may become manifest in the loop-induced processes of gg ! H production
and H ! �� decay. These processes are particularly sensitive to loop contributions from new heavy
particles, carrying electric or colour charge, or both, and such new physics can be probed using the
e↵ective coupling modifiers g and �. Furthermore, potential deviations from the SM of the tree-level
couplings to ordinary particles are parameterised with their respective coupling modifiers. The parameters
of interest in the fits to data are thus the seven independent coupling modifiers, Z , W , t, ⌧, b, g, and
�, one for each SM particle involved in the production processes and decay modes studied, plus BBSM in
the case of the first fit. Here and in Section 6.2, the coupling modifier t is assumed to be positive, without
any loss of generality.

Figure 15 and Table 17 show the results of the two fits, assuming either |V |  1 and BBSM � 0 or BBSM =

0. In the former case, an upper limit of BBSM = 0.34 at 95% CL is obtained, compared to an expected
upper limit of 0.39. The corresponding negative log-likelihood scan is shown in Fig. 16. Appendix C
describes how the two possible sign combinations between W and Z impact the likelihood scan of BBSM
for the observed and expected results, as illustrated in Fig. 32. The p-value of the compatibility between
the data and the SM predictions is 11% with the assumption that BBSM = 0.

Another fit, motivated, for example, by BSM scenarios with new heavy particles that may contribute to
loop processes in Higgs boson production or decay, assumes that all the couplings to SM particles are the
same as in the SM, that there are no BSM decays (BBSM = 0), and that only the gluon–gluon production
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2 Loop Case : FeynArts and expansions 
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Figure 4: Diagrams contributing to the C1 coe�cient in the gluon-gluon-
fusion Higgs production. The one on the right has a multiplicity factor
2.

to the di↵erent Lorentz structure at one loop and at the tree level.
The computation of �(gg ! H), the related �(H ! gg), and of �(H !

��) is much more challenging and deserves a more detailed discussion. These
observables receive the first non-zero contributions from one-loop diagrams,
which do not feature �3, so that the computation of C1 requires the evalu-
ation of two-loop diagrams.

The two-loop EW corrections to �(gg ! H) in the SM were obtained
in Refs. [47–49]. In our computation of the C1 coe�cient we followed the
approach of Ref. [48] where the corrections have been computed via a Taylor
expansion in the parameters q2/(4m2

t ), q
2/(4m2

H) where q2 is the virtuality
of the external Higgs momentum, to be set to m2

H at the end of the com-
putation. However, at variance with Ref. [48], we computed the diagrams
contributing to C1, see Fig. 4, via an asymptotic expansion in the large top
mass up to and including O(m6

H/m
6
t ) terms. The two expansions are equiv-

alent up to the first threshold encountered in the diagrams that defines the
range of validity of the Taylor expansion. In our case, the first threshold in
the diagrams of Fig. 4 occurs at q2 = 4m2

H and both expansions are valid
for mH ' 125 GeV. The asymptotic expansion was performed following the
strategy described in Ref. [50] and the result for C1 is presented in Ap-
pendix A. We checked our asymptotic expansion against the corresponding
expression obtained by the Taylor expansion finding, as expected, very good
numerical agreement.

The computation of the EW corrections to the partial decay width of a
Higgs boson into two photons in the SM was performed in a R⇠ gauge in
Refs. [51, 52]. As mentioned above, the identification of the contributions
to the C1 coe�cient is straightforward in the unitary gauge. In this gauge,
neither unphysical scalars nor ghosts are present and the propagator of the
massive vector bosons is i(�gµ⌫ + kµk⌫/M

2
V )/(k

2 �M2
V + i✏). The unitary

gauge is a very special gauge. It can be defined as the limit when the
gauge parameter ⇠ is sent to infinity of a R⇠ gauge. When a calculation
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C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of

15

H

H

W

�

�

H

H

W

�

�

H

H W

�

�

H

H

W

�

�

H

H

W

�

�

Figure 5: Diagrams contributing to the C1 coe�cient in �(H ! ��). The
diagrams in the second row have multiplicity 2.

is performed in the unitary gauge, one is actually interchanging the order
of the operations limit ⇠ ! 1 with the integration, i.e., the limit ⇠ !
1 is performed first and then one does the integration while the correct
order is the opposite. Because some of the vertices that arise from the
gauge-fixing function contain a ⇠ factor, this exchange is not always an
allowed operation and in order to check the correctness of our approach we
recomputed1 the full two-loop EW corrections to �(H ! ��) in the unitary
gauge. The corrections were computed as in Ref. [51] via a Taylor expansion
in the parameters q2/(4m2

W ), q2/(4m2
H) up to and including O(q6/m6) terms

finding perfect agreement with the result of Ref. [51].
Once we verified that in the SM the calculation in the unitary gauge

is equivalent to the one in a R⇠ gauge, the coe�cient C1 is obtained eval-
uating the diagrams in the unitary gauge that contain one trilinear Higgs
interaction. The latter amounts to add to the contribution of the diagrams
in Fig. 4, with the gluons replaced by photons, to the contribution of the
diagrams in Fig. 5. The result is presented in Appendix A. We would like to
remark that the sum of the diagrams in Fig. 5 is finite in the unitary gauge
but it is not finite in a generic R⇠ gauge.

4 Results

In this section we discuss the numerical impact of the �3-dependent contri-
butions on the most important observables in single-Higgs production and
decay at the LHC. We begin by listing and commenting the size of the C1

1To our knowledge this is the first-ever two-loop computation of a physical observable
performed in the unitary gauge.
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in Fig. 4, with the gluons replaced by photons, to the contribution of the
diagrams in Fig. 5. The result is presented in Appendix A. We would like to
remark that the sum of the diagrams in Fig. 5 is finite in the unitary gauge
but it is not finite in a generic R⇠ gauge.

4 Results

In this section we discuss the numerical impact of the �3-dependent contri-
butions on the most important observables in single-Higgs production and
decay at the LHC. We begin by listing and commenting the size of the C1

1To our knowledge this is the first-ever two-loop computation of a physical observable
performed in the unitary gauge.
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to the di↵erent Lorentz structure at one loop and at the tree level.
The computation of �(gg ! H), the related �(H ! gg), and of �(H !
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t ), q
2/(4m2

H) where q2 is the virtuality
of the external Higgs momentum, to be set to m2

H at the end of the com-
putation. However, at variance with Ref. [48], we computed the diagrams
contributing to C1, see Fig. 4, via an asymptotic expansion in the large top
mass up to and including O(m6

H/m
6
t ) terms. The two expansions are equiv-

alent up to the first threshold encountered in the diagrams that defines the
range of validity of the Taylor expansion. In our case, the first threshold in
the diagrams of Fig. 4 occurs at q2 = 4m2

H and both expansions are valid
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strategy described in Ref. [50] and the result for C1 is presented in Ap-
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expression obtained by the Taylor expansion finding, as expected, very good
numerical agreement.
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massive vector bosons is i(�gµ⌫ + kµk⌫/M

2
V )/(k

2 �M2
V + i✏). The unitary

gauge is a very special gauge. It can be defined as the limit when the
gauge parameter ⇠ is sent to infinity of a R⇠ gauge. When a calculation
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C�
1 [%] �� ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1: Values of the C1 factor in units 10�2 for the most relevant decay
modes of the Higgs boson.

C�
1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2: Same as Tab. 1 for the production modes for pp collisions at centre-
of-mass energies relevant for the LHC.

and C2 factors in Eq. (7), which parametrise the �3-dependent contributions.
The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10�5 GeV�2 , mW = 80.385 GeV , mZ = 91.1876 GeV ,
(12)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (13)

All the other fermions are treated as massless. In the production cross
sections, the renormalisation and factorisation scales are both set equal to

µ ⌘ 1

2

X

i

mi , (14)

where mi are the masses of the particle in the final state. As PDF set, we
use the PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in Eq. (8) depends upon �ZH ,
as defined in Eq. (3), and also �. With the parameter inputs used, �ZH =
�1.536 · 10�3, thus C2 can range from C2 = �1.536 · 10�3 for � = 1 up to
C2 = �9.514 · 10�4 for � = ±20.

In Tab. 1 we report the values of the C�
1 term for the most relevant Higgs

decay modes at the LHC, namely, WW , ZZ, ��, ff̄ and also gg, which
yields a non-negligible fraction of the total decay width. In the analyses of
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Figure 15: Fit results for two parameterisations allowing BSM loop couplings discussed in the text: the first one
assumes that BBSM � 0 and that |V |  1, where V denotes Z or W , and the second one assumes that there
are no additional BSM contributions to the Higgs boson width, i.e. BBSM = 0. The measured results for the
combination of ATLAS and CMS are reported together with their uncertainties, as well as the individual results
from each experiment. The hatched areas show the non-allowed regions for the t parameter, which is assumed
to be positive without loss of generality. The error bars indicate the 1� (thick lines) and 2� (thin lines) intervals.
When a parameter is constrained and reaches a boundary, namely |V | = 1 or BBSM = 0, the uncertainty is not
defined beyond this boundary. For those parameters with no sensitivity to the sign, only the absolute values are
shown.

and �� decay loops may be a↵ected by the presence of additional particles. The results of this fit, which
has only the e↵ective coupling modifiers � and g as free parameters, with all other coupling modifiers
fixed to their SM values of unity, are shown in Fig. 17. The point � = 1 and g = 1 lies within the 68%
CL region and the p-value of the compatibility between the data and the SM predictions is 82%.
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Figure 4: (a): observed and expected 95% CL upper limits on cross section times branching
fraction as a function of kl/kt. The two red bands show the theoretical cross section expecta-
tions and the corresponding uncertainties for kt = 1 and kt = 2. (b): test of kl and kt anomalous
couplings. The blue region denotes the parameters excluded at 95% CL with the observed data,
while the dashed black line and the gray regions denote the expected exclusions and the 1s
and 2s bands. The dotted gray lines indicate trajectories in the plane with equal values of cross
section times branching fraction that are displayed in the associated labels. The red marker
denotes the couplings predicted by the SM. In both figures, the couplings that are not explicitly
tested are assumed to correspond to the SM prediction.

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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and �� decay loops may be a↵ected by the presence of additional particles. The results of this fit, which
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fixed to their SM values of unity, are shown in Fig. 17. The point � = 1 and g = 1 lies within the 68%
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The leading new-physics e↵ects are usually associated with EFT operators with the112

lowest dimensionality, namely the dimension-6 ones. In the following we restrict our atten-113

tion to these operators and neglect higher-order e↵ects. To further simplify our analysis we114

also assume that the new physics is CP-preserving and flavor universal. With these restric-115

tions we are left with 10 independent operators that a↵ect Higgs physics at leading order116

and have not been tested below the % accuracy in existing precision measurements [13].2117

Before discussing our operator basis, it is important to mention that a much larger set of118

dimension-6 operators could in principle be relevant for Higgs physics. A first class of these119

operators include deformations of the SM Lagrangian involving the light SM fermions. They120

correct at tree level the Higgs processes but also a↵ect observables not involving the Higgs.121

Therefore most of them have already been tested with good precision in EW measurements.122

A second set of dimension-6 operators involve the top quark and are typically much less123

constrained. However they a↵ect Higgs physics only at loop level, thus their e↵ects are124

usually not very large. We postpone a more detailed discussion to section 2.2.125

A convenient choice for dimension-6 operators is provided by the “Higgs basis” [3, 14]126

in which the Higgs is assumed to be part of an SU(2)L doublet and operators connected127

to the LHC Higgs searches are separated from the others that can be tested in observables128

not involving the Higgs.3 The 10 e↵ective operators we will focus on can be split into three129

classes: the first one contains deformations of the Higgs couplings to the SM gauge bosons,130

parametrized by131

�cz , czz , cz⇤ , ĉz� , ĉ�� , ĉgg , (2.2)

the second class is related to deformations of the fermion Yukawa’s132

�yt , �yb , �y⌧ , (2.3)

and finally the last e↵ect is a distortion of the Higgs trilinear self-coupling133

� . (2.4)

The corresponding corrections to the Higgs interactions in the unitary gauge are given by

L � h

v

"
�cw

g2v2

2
W+

µ W�µ + �cz
(g2 + g02)v2

4
ZµZ

µ

+ cww
g2

2
W+

µ⌫W�µ⌫ + cw⇤g
2
�
W+

µ @⌫W+µ⌫ + h.c.
�
+ ĉ��

e2

4⇡2
Aµ⌫A

µ⌫

+ cz⇤g
2Zµ@⌫Z

µ⌫ + c�⇤gg
0Zµ@⌫A

µ⌫ + czz
g2 + g02

4
Zµ⌫Z

µ⌫ + ĉz�
e
p
g2 + g02

2⇡2
Zµ⌫A

µ⌫

#

+
g2s

48⇡2

✓
ĉgg

h

v
+ ĉ(2)gg

h2

2v2

◆
Gµ⌫G

µ⌫ �
X

f


mf

✓
�yf

h

v
+ �y

(2)
f

h2

2v2

◆
f̄RfL + h.c.

�

� (� � 1)�SM
3 vh3 , (2.5)

2The assumption of flavor universality is not crucial for our analysis. It is only introduced to restrict the

EFT analysis to the operators that can only be tested in Higgs physics. The same can be done in several

other flavor scenarios, as for instance minimal flavor violation and anarchic partial compositeness.
3For the relation between the independent couplings in the Higgs basis and the Wilson coe�cients of

other operator bases, see [14].

– 4 –

where the parameters �cw, cww, cw⇤, c�⇤, ĉ
(2)
gg and �y

(2)
f are dependent quantities, defined

as

�cw = �cz ,

cww = czz + 2
⇡2g02

g2 + g02
ĉz� +

9⇡2g04

2(g2 + g02)2
ĉ�� ,

cw⇤ =
1

g2 � g02

h
g2cz⇤ + g02czz � e2

⇡2g02

g2 + g02
ĉ�� � (g2 � g02)

⇡2g02

g2 + g02
ĉz�

i
,

c�⇤ =
1

g2 � g02

h
2g2cz⇤ +

�
g2 + g02

�
czz � ⇡2e2ĉ�� � ⇡2

�
g2 � g02

�
ĉz�

i
,

ĉ(2)gg = ĉgg ,

�y
(2)
f = 3�yf � �cz . (2.6)

In the above expressions we denoted by g, g0, gs the SU(2)L, U(1)Y and SU(3)c gauge134

couplings respectively. The electric charge e is defined by the expression e = gg0/
p

g2 + g02.135

Notice that in the Higgs basis the distortion of the trilinear Higgs coupling is encoded in136

the parameter ��3 and denotes an additive shift in the coupling, Lself � �(�SM
3 +��3)vh3.137

In our notation � denotes instead a rescaling of the Higgs trilinear coupling, as specified in138

eq. (2.5). We use this modified notation in order to make contact with previous literature139

discussing the measurement of the Higgs self-coupling.140

In eqs. (2.5) and (2.6) we also used a non-standard normalization for the ĉgg, ĉ��141

and ĉz� parameters. The contact Higgs coupling to gluons has been normalized to the142

LO top loop prediction in the SM computed in the infinite mt limit, whereas we included143

an additional factor 1/⇡2 in the couplings ĉ�� and ĉz� . The relation with the standard144

normalization of ref. [3] is given by145

cgg =
1

12⇡2
ĉgg ' 0.00844ĉgg , c�� =

1

⇡2
ĉ�� ' 0.101ĉ�� , cz� =

1

⇡2
ĉz� ' 0.101ĉz� . (2.7)

With these normalizations values of order one for ĉgg, ĉ�� and ĉz� correspond to BSM146

contributions of the same order of the SM gluon fusion amplitude and of the H ! �� and147

H ! Z� partial widths.148

Since our analysis takes into account next-to-leading order (NLO) corrections to the149

single-Higgs production and decay rates, it is important to discuss the issue of renor-150

malizability in our EFT setup. In general, when we deform the SM Lagrangian with151

higher-dimensional operators, a careful renormalization procedure is needed when comput-152

ing e↵ects beyond the LO. However, as discussed in ref. [7], if we are only interested in NLO153

e↵ects induced by a modified Higgs trilinear self-coupling, no UV divergent contributions154

are generated. This is a consequence of the fact that the Higgs trilinear coupling does155

not enter at LO in single-Higgs observables but only starts to contribute at NLO. As far156

as the modified trilinear is concerned, our setup essentially coincides with that of ref. [7],157

so we can carry over to our framework their results. We report them in Appendix A for158

completeness.159
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38 10. Electroweak model and constraints on new physics

by Πnew
ij , we have

α̂(MZ)T ≡
Πnew

WW (0)

M2
W

−
Πnew

ZZ (0)

M2
Z

, (10.66a)

α̂(MZ)

4 ŝ 2
Z ĉ 2

Z

S ≡
Πnew

ZZ (M2
Z) − Πnew

ZZ (0)

M2
Z

−

ĉ 2
Z − ŝ 2

Z

ĉ Z ŝ Z

Πnew
Zγ (M2

Z)

M2
Z

−
Πnew

γγ (M2
Z)

M2
Z

, (10.66b)

α̂(MZ)

4 ŝ 2
Z

(S + U) ≡
Πnew

WW (M2
W ) − Πnew

WW (0)

M2
W

−

ĉ Z

ŝ Z

Πnew
Zγ (M2

Z)

M2
Z

−
Πnew

γγ (M2
Z)

M2
Z

. (10.66c)

S, T , and U are defined with a factor proportional to α̂ removed, so that they are
expected to be of order unity in the presence of new physics. In the MS scheme as defined
in Ref. 57, the last two terms in Eqs. (10.66b) and (10.66c) can be omitted (as was done
in some earlier editions of this Review). These three parameters are related to other
parameters (Si, hi, ϵ̂i) defined in Refs. [57,231,232] by

T = hV = ϵ̂1/α̂(MZ),

S = hAZ = SZ = 4 ŝ 2
Z ϵ̂3/α̂(MZ),

U = hAW − hAZ = SW − SZ = −4 ŝ 2
Z ϵ̂2/α̂(MZ). (10.67)

A heavy non-degenerate multiplet of fermions or scalars contributes positively to T as

ρ0 − 1 =
1

1 − α̂(MZ)T
− 1 ≃ α̂(MZ)T, (10.68)

where ρ0 − 1 is given in Eq. (10.63). The effects of non-standard Higgs representations
cannot be separated from heavy non-degenerate multiplets unless the new physics has
other consequences, such as vertex corrections. Most of the original papers defined T to
include the effects of loops only. However, we will redefine T to include all new sources
of SU(2) breaking, including non-standard Higgs, so that T and ρ0 are equivalent by
Eq. (10.68).

A multiplet of heavy degenerate chiral fermions yields

S =
C

3π

∑

i

(
t3L(i) − t3R(i)

)2
, (10.69)

where t3L,R(i) is the third component of weak isospin of the left-(right-)handed component
of fermion i and C is the number of colors. For example, a heavy degenerate ordinary
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where k̂
`

(q2) is an electroweak form factor1 (see Ref. [29]) and

ŝ2 =
1

2

8
<

:1�
"
1� 4Â2

m2

Z ⇢̂
(1 +�r̂

W

)

#
1/2

9
=

; . (6)

In our BSM scenario the modifications of the scalar potential a↵ect the
radiative parameters �r̂

W

and Y
MS

at the two-loop level while �↵̂ and

�k̂
`

(m2

Z) are going to be a↵ected only at three loops. Recalling that the

present knowledge of mW and sin2 ✓lep
e↵

in the SM includes the complete
two-loop corrections, we are going to discuss only the modifications induced
in �r̂

W

and Y
MS

. The two-loop contribution to �r̂
W

and Y
MS

can be
expressed as [28]

�r̂(2)
W

=
ReA(2)

WW (m2

W )

m2

W

� A(2)

WW (0)

m2

W

+ . . . (7)

Y (2)

MS

= Re

"
A(2)

WW (m2

W )

m2

W

� A(2)

ZZ(m
2

Z)

m2

Z

#
+ . . . (8)

where AWW (AZZ) is the term proportional to the metric tensor in the W (Z)
self energy with the superscript indicating the loop order, and the dots rep-
resent additional two-loop contributions that are not sensitive to a modifi-
cation of the scalar potential.

From the knowledge of the additional contributions induced in �r̂(2)
W

and Y (2)

MS

one can easily obtain the modification of the radiative parameters

�r and 
e

(m2

Z) of the On-Shell (OS) scheme [30]. Considering only new
contributions from the modified scalar potential one can write

�r(2) = �r̂(2)
W

� c2

s2
Y (2)

MS

, (9)

where c2 ⌘ m2

W/m2

Z , s
2 = 1 � c2 with �r being the radiative parameter

entering the mW �mZ interdependence. The e↵ective sine is related to s2

in the OS scheme via sin2 ✓lep
e↵

= 
e

(m2

Z)s
2 and for the new contributions in


e

(m2

Z) one can write

(2)
e

(m2

Z) = 1� c2

s2
Y (2)

MS

. (10)

1In our MS formulation the top contribution is not decoupled. Then k̂ is very close
to 1 and sin2 ✓lepe↵ can be safely identified with ŝ2 [29].
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5 Constrains on �3: present and future

In this section we describe the method and the results of a simplified fit we
have performed in order to estimate the limits that can be set on � with
our approach. Our analysis is based on the experimental results presented
in Tab. 8 of Ref. [5]. We also estimate the expected limits that could be
obtained at LHC Run-II at 300 fb�1 and 3000 fb�1 of luminosity.

The key aspect of our approach is that the predictions for all the avail-
able production and decay channels depend on a single parameter (�) and
therefore a global fit can be in principle very powerful in constraining the
Higgs trilinear coupling. As our aim is mostly illustrative, we want to assess
the competitiveness of our method rather than trying to obtain the best
and most robust bounds. To this purpose, we make a series of simplify-
ing approximations. For example, being usually quite small (see Fig. 7 of
Ref. [5]), we ignore correlations between the di↵erent uncertainties of a single
measurement or between the measurements of the di↵erent observables.

The basic inputs of our analysis are the signal strength parameters µf
i ,

which are defined for any specific combination of production and decay chan-
nel i ! H ! f as

µf
i ⌘ µi ⇥ µf =

�(i)

�(i)SM
⇥ BR(f)

BRSM(f)
. (16)

The quantities µi and µf are the production cross section �(i) (i = ggF,
VBF, WH, ZH, tt̄H) and the BR(f) (f = ��, ZZ,WW, bb̄, ⌧⌧) normalised
to their SM values, respectively. Assuming on-shell production, the product
µi ⇥ µf is therefore the rate for the i ! H ! f process normalised to the
corresponding SM prediction.

Using Eq. (6) and Eq. (15), µi and µf , which enter the definition of µf
i

in Eq. (16), can be expressed as

µi = 1 + ���
3

(i) ,

µf = 1 + �BR�
3

(f) . (17)

By definition, µf
i = µi = µf = 1 in the SM.

In the following we denote the measured signal strengths as µ̄f
i . Given

a collection of µ̄f
i measurements {µ̄f

i }, we define as best value of � the one
that minimises the �2(�) function defined as

�2(�) ⌘
X

µ̄f
i 2{µ̄

f
i }

(µf
i (�)� µ̄f

i )
2

(�f
i (�))

2
, (18)
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to their SM values, respectively. Assuming on-shell production, the product
µi ⇥ µf is therefore the rate for the i ! H ! f process normalised to the
corresponding SM prediction.
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Figure 12: In the left and right plots, respectively �2(�) and p-value(�)
for the P1,2,3,4 scenarios with uncertainties set at 0.01.
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Figure 13: As Fig. 10 for the P4 scenario with uncertainties set to 0.01.

of the tt̄H would lead to a sizeable improvement in the fit. For example, we
find that for the scenario P4

1�� = [0.86, 1.14] , 2�� = [0.74, 1.28] , p>0.05
� = [0.28, 1.80] . (23)

Considering as before n = 10000 pseudo-measurements, the histograms anal-
ogous to those in Fig. 10 and 11 are shown in Fig. 13. Again, we find the
indication that, most-likely, in this optimistic scenario stronger bounds than
those reported in Eq. (23) could be set.

6 Conclusions

The structure and properties of the scalar sector encompassing the observed
Higgs boson are largely unexplored and their determination is one of the
major goals of the LHC and future colliders. In the standard model the
Higgs self couplings, trilinear and quartic, are fixed by the Higgs mass, yet
they could be di↵erent in scenarios featuring extended scalar sectors or new
strong dynamics. The most-beaten path to determine the trilinear coupling
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of the tt̄H would lead to a sizeable improvement in the fit. For example, we
find that for the scenario P4

1�� = [0.86, 1.14] , 2�� = [0.74, 1.28] , p>0.05
� = [0.28, 1.80] . (23)

Considering as before n = 10000 pseudo-measurements, the histograms anal-
ogous to those in Fig. 10 and 11 are shown in Fig. 13. Again, we find the
indication that, most-likely, in this optimistic scenario stronger bounds than
those reported in Eq. (23) could be set.

6 Conclusions

The structure and properties of the scalar sector encompassing the observed
Higgs boson are largely unexplored and their determination is one of the
major goals of the LHC and future colliders. In the standard model the
Higgs self couplings, trilinear and quartic, are fixed by the Higgs mass, yet
they could be di↵erent in scenarios featuring extended scalar sectors or new
strong dynamics. The most-beaten path to determine the trilinear coupling
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The ttH process strongly improves (as expected) the determination of      . 
The statistical analysis suggests also in this case the possibility of obtaining 
stronger bounds. 

of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M0 and the virtual EW amplitude
M1, besides the wave-function-renormalisation constant. The amplitude
M1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M1, which we denote as M1

�
3

, can be obtained for any process
by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�SM

3

) and then rescaling them by a factor �. In order to correctly

identify M1
�SM

3

(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3 -dependent diagrams
are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M1
�
3

and ZH are taken into account,
denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M1
�SM

3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM
NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�
3

⌘ ⌃NLO � ⌃SM
NLO

⌃LO
= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3� ↵
2) terms in the r.h.s, can be compactly written as

�⌃�
3

= (� � 1)C1 + (2� � 1)C2 , (7)
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