Recent Cosmic Microwave Background Results

Probing the Cosmic Frontier with CMB

We now have a model that describes the evolution of our Universe from a hot and dense state.

The model has some unusual features

- new physics -Dark Matter, Dark Energy, and starts with a period of **Inflation**.

Most of the model has been learned from measurements of the cosmic microwave background (CMB).

Credit: wikipedia

Favored model - Slow-roll inflation: Universe's density is dominated by the potential of a scalar field with 'flattish' potential

Open question: Can you use the Higgs for this scalar field? (see last talk)

Inflation

Period of accelerating expansion in the early Universe during which the observable Universe shrinks

Credit: Albrecht

Cosmic Microwave Background

Polarization of the CMB

CMB is polarized by Thomson Scattering

The CMB is polarised (~10%)

Smith et al 2008

 Any polarisation pattern can be decomposed into "E" (grad) and "B" (curl) modes

Why use E&B?

look at what produces each

Why use E&B?

look at what produces each

Why use E&B?

look at what produces each

Measurements of CMB Power spectra

from CMB-S4 Science Book 2016

Chasing inflationary gravitational waves

"smoking gun of inflation"

The power in G. Waves is described by "r" = tensor-to-scalar ratio

Current 95% CL upper limit is r < 0.06 (BICEP/Keck + Planck)

Goal: $r < 0.002 (\sigma(r)=0.001)$

How do we get the next factor of ~30?

Basic Ingredients

- More detectors
 - Detectors have reached noise floor of photon statistics
- Both large and small angular scales
 - Large scales for IGW signal; small scales to remove lensing power
- Wide frequency coverage
 - Separating CMB and the Milky Way

Putting New wafers on the South Pole Telescope

Instrument work on right now!

Simons Observatory

Instrument overview: arxiv:1808.04493

Key adv: Allows large focal plane (2m!) for lots of detectors

Simons Observatory

Instrument overview: arxiv:1808.04493

Science overview: arxiv:1808.07445

plane (2m!) for lots of detectors

Importance of Delensing

Manzotti et al. ApJ 2017: 24% delensing on the SPTpol 100d field

SPT-3G will remove 2/3s of lensing BB power

New era: delensing crucial to IGW searches

SPT-3G will remove 2/3s of lensing BB power

also, CMB-S4 (still in flux)

More details coming soon

Technology overview: arxiv:1706.02464

Science overview: arxiv:1610.02743

Takeaway: Foreground cleaning will be crucial. Even at the best frequency, far away from the plane of the Milky Way, galactic signals are much larger than r=0.001

Current state of play

Observational constraints on Inflation Parameters

 n_s (power law index of density perturbations)

Applied to Higgs Inflation

Conclusions

- Next decade: 30-fold improvement in searches for inflationary gravitational waves
 - More detectors
 - Careful treatment of galactic foregrounds
 - Removing grav lensing noise
- Also other science: neutrinos, dark energy, dark matter, ...

Credit: The Keck Array and BICEP2 Collaborations, 2018

Takeaway: Foreground cleaning will be crucial. Even at the best frequency, far away from the plane of the Milky Way, galactic signals are much larger than r=0.001