Prospects of measuring Higgs boson decays into muon pairs at the ILC

Shin-ichi Kawada (DESY)

on behalf of ILD Concept Group

Higgs Couplings 2018 @ Tokyo, Japan

2018/November/26-30

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

Introduction

Discovery of SM-like Higgs boson at the LHC

• But, still limited knowledge about Higgs

- This talk: $h \to \mu^+ \mu^-$ at $E_{CM} = 250/500$ GeV at the ILC
 - Model-independent measurement ---> see F. Simon's talk
 - $y_f \propto m_f$
 - mass generation mechanism between 2nd/3rd leptons $(\kappa_{\mu}/\kappa_{\tau})$ and 2nd lepton/quark (κ_u/κ_c)
 - challenging: tiny branching ratio (BR($h \rightarrow \mu^+ \mu^-$) = 2.2*10-4)

The International Linear Collider (ILC)

- e^+e^- collider, $E_{CM} = 250$ GeV (upgradable to 500 GeV, 1 TeV)
- polarized beam (e^- : $\pm 80\%$, e^+ : $\pm 30\%$)
- clean environment, known initial state

ILC Running Scenario

optimized scenario with considering Higgs/Top/New physics

~20 years running with energy range [250-500] GeV, beam polarization sharing

2000 fb⁻¹ @ 250 GeV 200 fb⁻¹ @ 350 GeV 4000 fb⁻¹ @ 500 GeV

Detector Concept at the ILC

ILD (International Large Detector)

Tracker: Vertex, TPC
Calorimeter: ECAL, HCAL
3.5T magnetic field
Yoke for muon, Forward system

Requirements:

- > Impact parameter resolution $\sigma_{r\phi} < 5 \oplus \frac{10}{p\sin^{3/2}\theta} \mu \text{m}$
- > Momentum resolution $\sigma_{1/p_T} \sim 2*10^{-5} \ {\rm GeV^{-1}}$
- > Jet energy resolution $\sigma_E/E = 3 4\%$

Higgs Production & Analysis Channel

 $\sqrt{s} = 250 \text{ GeV}$

Higgs-strahlung (Zh) dominant

$$\sqrt{s} = 500 \text{ GeV}$$

WW-fusion dominant

Two channels analyzed: $e^+e^- \rightarrow q\bar{q}h$ and $e^+e^- \rightarrow \nu\bar{\nu}h$ Two beam polarization considered

 $q\bar{q}h$ channel @ 250 GeV

Brief Summary of Analysis

- MC samples are fully-simulated with Geant4
- Realistic reconstruction algorithm
- Analysis is structured in the same way for all channels
- 1. select $h \to \mu^+ \mu^-$ candidate
- 2. channel-specific analysis
- 3. multivariate analysis
- 4. modeling and toy MC with $M_{\mu^+\mu^-}$
 - extract final precision
 - ➤ Crystal Ball + Gaussian (CBG) for signal, % 1st order polynomial for background

Results

precision for
$$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$$
 L: P(e⁻, e⁺) = (-0.8, +0.3)
R: P(e⁻, e⁺) = (+0.8, -0.3)

250 GeV	$q\overline{q}h$	$\nu \overline{\nu} h$
L	36.2%	122.4%
R	38.0%	105.1%

500 GeV	$q\overline{q}h$	$ u \overline{\nu} h$
L	43.8%	37.9%
R	54.2%	108.8%

signal selection efficiency ~ 50% ILC250 combined = 24.9% ("theoretical limit" = 10.4%) ILC250+500 combined = 17.5% ("theoretical limit" = 7.1%) HL-LHC: 10-13%

Xtheoretical limit = 100% efficiency, no backgrounds, no detector effects

Impact of Momentum Resolution

 $M_{\mu^+\mu^-}$ is most important for this analysis ----> momentum resolution (σ_{1/p_T}) has a crucial role

- better resolution gives better result
- relative improvement is ~20% when resolution is factor 10 better
- relative ~40% worse when resolution is factor 10 worse

Summary

- Precise and model-independent measurements of Higgs boson are possible at the ILC
- Studied $h \to \mu^+ \mu^-$ channel with $E_{CM} = 250/500$ GeV at the ILC
 - Can reach 17.5% combined precision for $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$
- Studied the impact of momentum resolution; reaching ILD goal is important

BACKUP

The ILD Concept

From key requirements from physics:

• p_t resolution (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$

≈ CMS / 40

• vertexing (H \rightarrow bb/cc/TT) $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2} \theta) \mu m$

≈ CMS / 4

· jet energy resolution 3-4% (H → invisible)

≈ ATLAS / 2

• hermeticity θ_{min} = 5 mrad (H \rightarrow invis, BSM)

≈ ATLAS / 3

To key features of the **detector**:

- · low mass tracker:
 - main device: Time Projection Chamber (dE/dx!)
 - add. silicon: eg VTX: 0.15% rad. length / layer)
- high granularity calorimeters optimised for particle flow

Key Point

LHC: all measurements are $\sigma \times BR$ ILC: $\sigma \times BR$ measurements + σ measurement

Single Higgs Production

$$\sqrt{s} = 250 \text{ GeV}$$

Higgs-strahlung (Zh) dominant

$$\sqrt{s} = 500 \text{ GeV}$$

WW-fusion dominant

E _{CM}	process	beam pol.	$\int Ldt$ (fb ⁻¹)	# events
$ \begin{array}{c} $	L	1600	57.5	
	R	1600	7.9	
	a a b	L	1600	24.6
	R	1600	16.5	
$ \begin{array}{c} $	L	900	15.0	
	R	900	8.4	
	a a la	L	900	41.1
	qqn	R	900	28.1

L:
$$(e^{-}, e^{+}) = (-0.8, +0.3)$$

R:
$$(e^{-}, e^{+}) = (+0.8, -0.3)$$

Previous Studies

Everything performed at >= 1 TeV, or not realistic

Reference	E _{CM}	beam pol. $P(e^-, e^+)$	∫ Ldt	$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	comment
LC-REP-2013-006	1 TeV	(-0.8, +0.2)	500 fb ⁻¹	44%	ILC/ILD
arXiv:1306.6329 [hep-ex]	1 TeV	(-0.8, +0.2)	1000 fb ⁻¹	32%	ILC/SiD
arXiv:1603.04718 [hep-ex]	1 TeV	(-0.8, +0.2)	500 fb ⁻¹	36%	ILC/ILD used TMVA
Eur. Phys. J. C73 (2), 2290 (2013)	3 TeV	unpol.	2000 fb ⁻¹	15%	CLIC_SiD $M_h = 120 \text{ GeV}$ used TMVA
Eur. Phys. J. C75 , 515 (2015)	4.4.	unpol.	4500 (1.1	38%	CLIC ILD
	1.4 TeV	(-0.8, 0)	1500 fb ⁻¹	25%	used TMVA
arXiv:0911.0006 [physics.ins-det]	250 GeV	(-0.8, +0.3)	250 fb ⁻¹	91%	ILC/SiD $M_h = 120 \text{ GeV}$

Analysis Settings

- Geant4-based full detector simulation with ILD model
- Included all available SM backgrounds
 - (for specialist) Used DBD-world samples
 - Performed toy MC in the end to estimate the precision

E _{CM}	# total MC events
500 GeV	1.4*10 ⁷
250 GeV	7.1*10 ⁷

Impact of Momentum Resolution

- smeared MCParticle momentum of $h \to \mu^+\mu^-$ candidate
 - Gaussian-smeared with constant number
 - no momentum/angular dependencies
 - Not 100% correct, but muons will fly everywhere and rather high momentum. On average, this is still good approximation.
 - replace $M_{\mu^+\mu^-}$ to $M_{\mu^+\mu^-}^{\rm smear}$ in toy MC

Studied the impact to final number: $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$ in this study

