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Expectation from hadron future collider

29/11/18

Guaranteed deliverables

* Study Higgs and top-quark properties and exploration of EWSB phenomena with unmatchable
precision and sensitivity

Exploration potential (New machines are build to make discoveries!)

* Mass reach enhanced by factor Vs/14TeV (5-7 at 100TeV)
* Statistics enhanced by several orders of magnitude for possible BSM seen at HL-LHC

* Benefit from both direct (large Q?) and indirect precision probes

Could provide firm answers to questions like
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* Isthe SM dynamics all there at the TeV scale?

* Is there a TeV-Scale solution the hierarchy problem?

* Is DM a thermal WIMPS?

*  Was the cosmological EW phase transition 15t order? Cross-over?
* Could baryogenesis have taken place during EW phase transition?

M.L. Mangano



The FCC-hh

FCC-hh

* Need a new 100km tunnel
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* Need 16 Telsa magnet to reach
100TeV in 100km

* Baseline Luminosity (10y)
* 5103 cm2?s? (HL-LHC) <u>200

Schematic of an
80 - 100 km
long tunnel

Higgs and EWSB @ FCC-hh

* 3010* cm?s?t <u>1000
* 2.4MW sync rad/ring x300 HL-LHC

* Ultimate luminosity (15y) \l‘

* Considering 30ab! for the study



Environment and detector requirements

@100TeV FCC-hh

* pp cross-section from 14 to 100TeV only grows by a factor 2

10 times more fluence compared with HL-LHC (x100 wrt to LHC)

* Need radiation hard detectors

The radiation level increase mostly driven by the jump in instantaneous luminosity

More forward physics -> larger acceptance

* Precision momentum spectroscopy and energy measurements up to |n|<4

* Tracking and calorimetry up to |n|<6 (at 10cm of beam line at 18m of IP)

* More energetic particles

* colored hadronic resonances up to 40TeV -> Full containment of jets up to 20TeV

* Resonances decaying to boosted objects (top, bosons) -> need very high granularity to
resolve such sub-structure
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Why measuring Higgs @FCC-hh? g
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¢ nggS preCISlon measurements ATLAS Simulation Preliminary
are part of the guaranteed E TARENAJLABOES™ & a5000 153 dm,, (MeV) 6
—YyY  (comb.) @
deliverables (o) [ 8T, / T,,(%) 1.6
(1))

. : 2 ) 3G4p / G (%) 0.68 <=
e FCC-hh provides unique and (i) =0 3
(ttH-like) | 3 39uw/ Guw (%) 0.47 s
complementary measurements  H5zz (omo) e ” ®
re- collid . %Hﬂ?ﬁiﬁ 89,4c/ 9e(%0) 0.80 @
tO e e colliaers. ((ZEEII:I}::; GgHylgHy(%) 3.8 E
* Higgs self-couplings HoWW "“@ﬁ 81,/ I (%) 8.6 :
* Top Yukawa 7 ol — 89zl 9a(%) | 0.2 &

oL —— | o 1a.. 06 —

* Rare decays (BR(U'“')I BR(ZV), : (\%EiIE% —— agH IgH o -

. . —TT -like) . B - 1.

ratios, ...) measurements will ~ Foun (come) G ] .
be statistically limited at FCC (ko) Er——— Brinvis M)gswc | <025
e statistically limited a s o S

ee Au/p




<€
>

Higgs self-coupling @ FCC-hh z I QZ;D
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* Very small cross-section due to negative
interference with box diagram HL-LHC
CMS Simulation 3000 fb' (14 TeV, PU=200)
3 o0f- My > 350 GeV +  Toycum - %
* HL-LHC projections : SA/A = 100% 3 — o
n =
: &
e
* Expect large improvement at FCC-hh: - ! ®
E Q . o]
* 0(100 TeV)/o(14 TeV) = 40 (and Lx10) RN ps
* x400 in event yields and x20 in precision 2
. . G. Heinrich et.al [1608.04798] T
* Mainly 4 channels studied: —
> bbyy (most sensitive) 1 —

3000 1

* bbzz(4)
* bbbbj (boosted) \/
° bbWW 0 A 0 i : 7 4-1 z




FCC-hh Simulation (Delphes)
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* BR=0.25%, and large QCD backgrounds (jjyy and y+jets) : ]
. . . 20001~ 4
* Main difference w.r.t LHC is the very large ttH background : ]
1500 ]
* Strategy: : E
1000 -
* exploit correlation of means in (m,,, my;) in signal : ]
500~ —
* build a parametric model in 2D -
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* perform a 2D Likelihood fit on the coupling modifier k, 9
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* 6k, / k, = 5% achievable ®
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* New channel opening at (cross-section 180ab) FCC-hh !!
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* clean channel with mostly reducible backgrounds (single Higgs)
* Simple cut and count analysis on (4e, 4 and 2e2u channels)
8k, / k, = 15-20% depending on systematics assumptions

Events/0.1 GeV

* Key element for the detector design are powerful reconstruction of low energetic electrons and =
Q
muons e
L
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* Large rate allow to look for boosted HH recoiling against a jet
(low my,, drives the sensitivity)

HH —4b+j boosted A RS2 pe

* Relies on the identification of two boosted Higgs-jets

* Fit the di-jet mass spectrum dominated by the large QCD
background

* 8k, / k, = 20-40% depending on assumed background rate
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Higgs and EW phase transition
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« Strong 15t order EWPT required to induce matter-antimatter asymmetry at EW scale
* Simple model: extension of the SM scalar sector with a single real singlet scalar

¢ Contains 2 higgs scalar, h, and h,
* Interaction of scalar potential can lead to 15t EWPT when SM-like state h; has a mass of 125GeV

* Modifications in Higgs self coupling, shift in Zh,, direct production of scalar pairs <
* Parameter space scan for this simple model extension of the SM §
Real Scalar Singlet Model ®
-------------------------- _ 1 U I L A o0
\\ 100 TeV, 30/ab — = §
100 TeV, 3/ab — : current o
100 o =N o
NTeV,3/ab U§c 0.100 e =
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S g
1 3 0001 FCC-ee
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arXiv:1605.06123 ms (GeV) arXiv:1608.06619 hhh coupling: Az/Az sm




Higgs measurements @ FCC-hh

* Expected improvements @ FCC-hh:
* 2 10'° Higgses produced
* Factor 10-50 in cross sections (and Lx10)
* Reduction of a factor 10-20 in stat. unc.
* Large statistics will allow
* for % - level precision in statistically

a(13TeV) | G(100TeV) |a(100)/a(13)
ggH (N3LO) 49 pb 803 pb 16
VBF (N2LO) 3.8pb 69 pb 16
VH (N2LO) 2.3 pb 27 pb I
ttH (N2LO) 0.5 pb 34 pb 55

limited rare channels (uy, Zy)

in systematics limited channel, to
isolate cleaner samples in regions (e.g.
@large Higgs pr) with :

higher S/B

smaller impact of systematics

108 |

108

104

108 L

N=0(Prg>Prmin) X 30 ab™!

Solid: gg—>H
Dashes: ttH

101 aa
= Dotdash: WH

1 1 1 1 1 1 1 1 1 1
1000 2000 3000
PT,min (GeV)
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Higgs as a probe for BSM: precision/reach

* For H decays, or inclusive production, p~O(v,m,)
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* Precision probes large A e.g. 50=1% = A~ 2.5 TeV &=

Tttt T T §
oo (Prm>Pyme) /30 ab i * For H production off-shell or with large momentum 5,'@;);
Solid: gg—>H | transfer Q, u~0(Q) 2 E

Dashes: ttH h 50 Q -8

&

104 —

* kinematic reach probes large A even if precision is
“low” e.g. 50=10% at Q=1.5 TeV = A~5 TeV

1 million
ol v o b v o v Uy s g0l o5 qq [0
1000 2000 3000 4000 5000

Pr,min (GeV)
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Complementarity between super-precise measurements
at ee collider and large-Q studies at 100 TeV




Di-higgs in VBS
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In the SM, ¢,,=c,?
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* Considering the 4b boosted final state
* ¢, measured at per mille a FCC-ee




Conclusion and outlook
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* Higgs-self coupling can be measured with 8k, (stat) = 5% precision at FCC-hh (best
achievable precision among all future facilities)

* The FCC-hh machine will produce > 10° Higgs bosons

* Such large statistics open up a whole new range of possibilities, allowing for precision in
new kinematic regimes as well as very strong probe for BSM

* Measuring ratios of couplings (or equivalently BRs), allows to cancel systematics (1%
precision on “rare” couplings within reach after absolute HZZ measurement in e*e’)

* Extremely rich Higgs program at the FCC, that goes much beyond (light yukawa, Higgs off-
shell width measurement, Higgs differentials) still to be studied ...

* FCC CDRs for sign-up https://indico.cern.ch/event/750953/
* Soon printed and published
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HEP Landscape G.F.Giudice, ICFA, Nov. 2017
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* Particle accelerators are built to answer some of the most fundamental questions about the
natural world

* Physics priorities are likely to shift swiftly, as we advance in our exploration, both
experimentally and theoretically

* There are many unknowns ahead of us that may reshuffle the cards (e.g. any discoveries of
HL-LHC)

- We need a broad and bold program capable of adapting to the swift changes in the physics
landscape that are likely to happen
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- 100TeV hadron collider — In times of uncertainty, bold exploration is the way to go
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Complementarity and synergy with high-luminosity lepton machine, FCC-ee




A 100km circular collider as “natural” next the step
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Tevatron X7 LHC X7 FCC-hh
JTey | W | oo EEEP oo M Aleksa pECFA

27km tunnel The next step: 100km tunnel <
OV WO - JOF g :

;:Qc_ee ' :;F?C'hh l Lize 8 ‘ 5,'@;);

78 e Ny |

The FCC design study is establishing the feasibility of an ambitious set of colliders after
LEP/LHC, at the cutting edge of knowledge and technology
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Both FCC-ee and FCC-hh have outstanding physics cases

We are ready to move to the next step, as soon as possible



Additional material
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D [ | | | | | | | 00
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eviations in the Higgs p. spectrum g
T z
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Point | mj, [GeV] | mg, [GeV] | A, [GeV] Ay
P 171 440 490 | 0.0026
. P, 192 1224 1220 | 0.013
o Py 226 484 532 | 0.015
~ 8 in percent level at LHC14 | P 996 484 ol ou1s
w© — M,=600 GeV, sin° 6 = 0.1
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S ©
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arXiv:1308.4771 arXiv:1312.3317



VH production at large m(VH)

* Considering anomalous couplings to gauge boson
* Treated here in the context of an effective field theory (EFT)

2o, [fb/ 25 GeV]

dBsm(%)

10-2}
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100

(&)
o O

Z boson pr (pp =+ HZ — bb¢+¢-)

B SM(qg+gg9)
B Cw=—Cuyw=-0.004
m cw =0.004

o

150 200 250
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arXiv:1512.02572

Higgs pr (pp - H W* — bb£*v)

—_——
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L e e
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Di-higgs in VBF
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* Considering the 4b boosted final state
* ¢, measured at per mille a FCC-ee




BR(H->inv) in H+X production at large p
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* Uses missing transverse

energy as a probe to higgs p; Vs=100Tev
(S/B increases with MET) g i i
:,1\: 10 e . 30ab?! | =
. . o - S - ] f
* Signal extracted using a m [ R 1 e
simultaneous fit to all control 102 T Th LFecee ] | o S
regions (Z+jets, W+jets, y+jets) - ::::: I ‘ sroml] 1 I
107° 3 1% unc. e 3 -r%
 Z->vv background constrained -+ 1% une no exp sy N
to the percent level using T :‘::H%ZZ% - 13
NNLO QCD/EW to relate to E j
measured Z->ee, W and 107 1 10  10° 1L03 100 10° [ 21 ]
uminosity (fb™)

gamma spectra




