Higgs and EWSB @ FCC-hh

Clement Helsens, CERN-EP On behalf of the FCC-hh physics group Higgs Couplings 2018, Tokyo

Expectation from hadron future collider

Guaranteed deliverables

• Study Higgs and top-quark properties and exploration of EWSB phenomena with unmatchable precision and sensitivity

Exploration potential (New machines are build to make discoveries!)

- Mass reach enhanced by factor vs/14TeV (5-7 at 100TeV)
 - Statistics enhanced by several orders of magnitude for possible BSM seen at HL-LHC
- Benefit from both direct (large Q²) and indirect precision probes

Could provide firm answers to questions like

- Is the SM dynamics all there at the TeV scale?
- Is there a TeV-Scale solution the hierarchy problem?
- Is DM a thermal WIMPS?
- Was the cosmological EW phase transition 1st order? Cross-over?
- Could baryogenesis have taken place during EW phase transition?

The FCC-hh

FCC-hh

- Need a new 100km tunnel
- Need 16 Telsa magnet to reach 100TeV in 100km
- Baseline Luminosity (10y)
 - 5 10³⁴ cm⁻² s⁻¹ (HL-LHC) <μ>200
- Ultimate luminosity (15y)
 - 30 10³⁴ cm⁻² s⁻¹ <µ>1000
- 2.4MW sync rad/ring x300 HL-LHC
- Considering 30ab⁻¹ for the study

3

Environment and detector requirements

@100TeV FCC-hh

- pp cross-section from 14 to 100TeV only grows by a factor 2
- 10 times more fluence compared with HL-LHC (x100 wrt to LHC)
 - Need radiation hard detectors
- The radiation level increase mostly driven by the jump in instantaneous luminosity
- More forward physics -> larger acceptance
 - Precision momentum spectroscopy and energy measurements up to $|\eta|$ < 4
 - Tracking and calorimetry up to $|\eta| < 6$ (at 10cm of beam line at 18m of IP)
- More energetic particles
 - colored hadronic resonances up to 40TeV -> Full containment of jets up to 20TeV
 - Resonances decaying to boosted objects (top, bosons) -> need very high granularity to resolve such sub-structure

Why measuring Higgs @FCC-hh?

- Higgs precision measurements are part of the guaranteed deliverables
- FCC-hh provides unique and complementary measurements to e⁺e⁻ colliders:
 - Higgs self-couplings
 - Top Yukawa
 - Rare decays (BR(μμ), BR(Ζγ), ratios, ...) measurements will be statistically limited at FCC-

HL-LHC

FCC-ee

δm _H (MeV)	6
δΓ _Η / Γ _Η (%)	1.6
δg _{Hb} / g _{Hb} (%)	o.68
δg _{HW} /g _{HW} (%)	0.47
δg _{Hτ} / g _{Hτ} (%)	0.80
δg _{Hγ} / g _{Hγ} (%)	3.8
δg _{Hμ} / g _{Hμ} (%)	8.6
δg _{HZ} /g _{Hz} (%)	0.22
δg _{Hc} /g _{Hc} (%)	1.2
δg _{Hg} /g _{Hg} (%)	1.0
Br _{invis} (%) _{95%CL}	< 0.25
BR _{EXO} (%) _{95%CL}	< 1.1

5

29/11/18

ee

Higgs self-coupling @ FCC-hh

- Very small cross-section due to negative interference with box diagram
- HL-LHC projections : $\delta\lambda/\lambda = 100\%$
- Expect large improvement at FCC-hh:
 - $\sigma(100 \text{ TeV}) / \sigma(14 \text{ TeV}) \approx 40 \text{ (and Lx10)}$
 - x400 in event yields and x20 in precision
- Mainly 4 channels studied:
 - bbyy (most sensitive)
 - bbZZ(4I)
 - bbbbj (boosted)
 - bbWW

HH →bbyy

- BR=0.25%, and large QCD backgrounds (jjyy and y+jets)
- Main difference w.r.t LHC is the very large ttH background
- Strategy:
 - exploit correlation of means in (m_{yy}, m_{hh}) in signal
 - build a parametric model in 2D
 - perform a 2D Likelihood fit on the coupling modifier k_{λ}
 - $\delta k_{\lambda} / k_{\lambda} = 5\%$ achievable

ake rate × 0.2

2 σ

 1σ

 $k_{\lambda} = \lambda_{obs} / \lambda_{SM}$

Fake v

 $HH \rightarrow bb\gamma\gamma$

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

√s = 100 TeV

 $L = 30 \ ab^{-1}$

29/11/18

Higgs and EWSB @ FCC-hh

8

HH →bb4l

- New channel opening at (cross-section 180ab) FCC-hh !!
- clean channel with mostly reducible backgrounds (single Higgs)
- Simple cut and count analysis on (4e, 4μ and 2e2μ channels)
- $\delta k_{\lambda} / k_{\lambda} = 15-20\%$ depending on systematics assumptions
- Key element for the detector design are powerful reconstruction of low energetic electrons and muons

HH \rightarrow 4b+j boosted

- Large rate allow to look for boosted HH recoiling against a jet (low $m_{\rm HH}$ drives the sensitivity)
- Relies on the identification of two boosted Higgs-jets
- Fit the di-jet mass spectrum dominated by the large QCD background
- $\delta k_{\lambda} / k_{\lambda} = 20-40\%$ depending on assumed background rate

9

Higgs and EW phase transition

- Strong 1st order EWPT required to induce matter-antimatter asymmetry at EW scale
- Simple model: extension of the SM scalar sector with a single real singlet scalar
 - Contains 2 higgs scalar, h_1 and h_2
 - Interaction of scalar potential can lead to 1st EWPT when SM-like state h₁ has a mass of 125GeV
 - Modifications in Higgs self coupling, shift in Zh₁, direct production of scalar pairs
- Parameter space scan for this simple model extension of the SM ۲

Higgs measurements @ FCC-hh

- Expected improvements @ FCC-hh:
 - 2 10¹⁰ Higgses produced
 - Factor 10-50 in cross sections (and Lx10)
 - Reduction of a factor 10-20 in stat. unc.
- Large statistics will allow
 - for % level precision in statistically limited rare channels (μμ, Ζγ)
 - in systematics limited channel, to isolate cleaner samples in regions (e.g. @large Higgs p_T) with :
 - higher S/B
 - smaller impact of systematics

-		σ(13 TeV)	σ(100 TeV)	σ(100)/σ(13)
	ggH (N ³ LO)	49 pb	803 pb	16
	VBF (N ² LO)	3.8 pb	69 pb	16
	VH (N ² LO)	2.3 pb	27 pb	11
	ttH (N²LO)	0.5 pb	34 pb	55

Higgs as a probe for BSM: precision/reach

$$\mathcal{L}_{SM}^{(6)} = \mathcal{L}_{SM}^{(4)} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \dots$$

$$O = \left| \langle f | L | i \rangle \right|^2 = O_{SM} \left[1 + O(\mu^2 / \Lambda^2) + \cdots \right]$$

For H decays, or inclusive production, $\mu^{\sim}O(v,m_{H})$

$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2$$

- Precision probes large Λ e.g. $\delta O=1\% \Rightarrow \Lambda \simeq 2.5 \text{ TeV}$
- For H production off-shell or with large momentum transfer Q, $\mu^{\sim}O(Q)$ $\delta O \sim \left(\frac{Q}{\Lambda}\right)^2$
- kinematic reach probes large Λ even if precision is "low" e.g. δ*O*=10% at Q=1.5 TeV ⇒ Λ~5 TeV

Complementarity between super-precise measurements at ee collider and large-Q studies at 100 TeV

13

- Considering the 4b boosted final state
- c_v measured at per mille a FCC-ee

arXiv:1611.03860

Conclusion and outlook

- Higgs-self coupling can be measured with $\delta \kappa_{\lambda}(\text{stat}) \approx 5\%$ precision at FCC-hh (best achievable precision among all future facilities)
- The FCC-hh machine will produce > **10¹⁰ Higgs bosons**
- Such large statistics open up a whole new range of possibilities, allowing for precision in new kinematic regimes as well as very strong probe for BSM
- Measuring **ratios of couplings** (or equivalently BRs), allows to cancel systematics (1%) precision on "rare" couplings within reach after absolute HZZ measurement in e^+e^-)
- Extremely rich Higgs program at the FCC, that goes much beyond (light yukawa, Higgs off-shell width measurement, Higgs differentials) still to be studied ...
- FCC CDRs for sign-up https://indico.cern.ch/event/750953/
- Soon printed and published

HEP Landscape

- Particle accelerators are built to answer some of the most fundamental questions about the natural world
- Physics priorities are likely to shift swiftly, as we advance in our exploration, both experimentally and theoretically
- There are many unknowns ahead of us that may reshuffle the cards (e.g. any discoveries of HL-LHC)
- \rightarrow We need a broad and bold program capable of adapting to the swift changes in the physics landscape that are likely to happen
- ightarrow 100TeV hadron collider In times of uncertainty, bold exploration is the way to go

Complementarity and synergy with high-luminosity lepton machine, FCC-ee

Both FCC-ee and FCC-hh have outstanding physics cases We are ready to move to the next step, as soon as possible 16

Additional material

29/11/18

Deviations in the Higgs p_T spectrum

Point	$m_{\tilde{t}_1} \; [\text{GeV}]$	$m_{\tilde{t}_2} \ [\text{GeV}]$	$A_t \; [\text{GeV}]$	Δ_t
P_1	171	440	490	0.0026
P_2	192	1224	1220	0.013
P_3	226	484	532	0.015
P_4	226	484	0	0.18

Higgs and EWSB @ FCC-hh

29/11/18

18

arXiv:1308.4771

VH production at large m(VH)

- arXiv:1512.02572
- Considering anomalous couplings to gauge boson
- Treated here in the context of an effective field theory (EFT)

19

- Considering the 4b boosted final state
- c_v measured at per mille a FCC-ee

arXiv:1611.03860

BR(H->inv) in H+X production at large p_T

- Uses missing transverse energy as a probe to higgs p_T (S/B increases with MET)
- Signal extracted using a simultaneous fit to all control regions (Z+jets, W+jets, γ+jets)
- Z->vv background constrained to the percent level using NNLO QCD/EW to relate to measured Z->ee, W and gamma spectra

