Differential decay rates of CP even and odd Higgs bosons to massive quarks at NNLO in α_s

Long Chen

Max Planck Institute for Physics, Munich, Germany

Higgs Coupling 2018, Tokyo, November 29th

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

In collaboration with: W. Bernreuther, Z.G. Si based on JHEP 1807 (2018) 159 [arXiv:1805.06658]

Motivation and Background

• $h \rightarrow b\bar{b}$ is the most probable decay channel of the h(125), and finally observed recently at the LHC (in the VH-events)!

[→talks by D.Schaefer, A.De Wit, G.Zanderighi]

 Many BSM predict heavy scalars and pseudo-scalars coupled to heavy quarks.

[→talks by R.Santos, J.Steggemann]

• Much work done previously on neutral scalar bosons decay into quarks.

► inclusive: known up to N⁴LO for CP-even Higgs into massless quarks; [Baikov,Chetyrkin,Kuhn,06; Davies,Steinhauser,Wellmann,17; Herzog,Ruijl,Ueda,Vermaseren,Vogt,17] NNLO corrections for CP-even/odd Higgs in power expansion of m₀/m_j; [Surguladze, 94; Chetyrkin,Kwiatkowski,96; Chetyrkin,Kniehl,Steinhauser,97; Larin,Ritbergen,Vermaseren,95;Harlander,Steinhauser, 97; Chetyrkin, Harlander,Steinhauser,97,98]

differential:

CP-even Higgs decay into massless quarks at NNLO

[Anastasiou, Herzog, Lazopoulos, 2012; Duca, Duhr, Somogyi, Tramontano, Trocsanyi, 2015]

We consider the decay of a neutral Higgs boson h of arbitrary *CP* to a massive quark antiquark pair at NNLO order in perturbative QCD, i.e. $h \rightarrow Q\bar{Q}X$ (Q = t, b), at the *fully differential* level (using the *antenna subtraction method*).

- BSM heavy CP-even/odd Higgs boson decay into tt
 pair:
 inclusive decay width as a function of m_h, and M_{tt} distributions, etc
- the SM h(125) Higgs boson decay into a massive bb pair: inclusive decay width, 2-jet, 3-jet, and 4-jet decay width, and the energy distribution of the leading jet for two-jet events.

UV-renormalization and (antenna) IR subtraction

The *hybrid* UV-renormalization in *pQCD* with $n_f + 1$ quarks:

- External-fields (and their masses): on-shell scheme;
- α_s : $\overline{\text{MS}}$ -scheme;
- The Yukawa-coupling y_O : $\overline{\text{MS}}$ -scheme

UV-renormalization and (antenna) IR subtraction

The *hybrid* UV-renormalization in *pQCD* with $n_f + 1$ quarks:

- External-fields (and their masses): on-shell scheme;
- α_s : $\overline{\text{MS}}$ -scheme;
- The Yukawa-coupling y_O : $\overline{\text{MS}}$ -scheme

The general idea of IR-subtraction methods:

insert an *identity* $o = \int d\sigma^{S} - \int d\sigma^{S}$ into $\sigma_{NLO} = d\sigma^{R} + d\sigma^{V}$.

The $d\sigma^{S}$ in the antenna subtraction method are constructed according to the universal IR-factorization formulae of color-ordered partial QCD-amplitudes,

Figure: The antenna factorization of a color-ordered partial amplitude (PRD 71, 045016)

Organizations of ingredients for $h \to Q\bar{Q} + X$ (Q = t, b)

Schematically the NNLO corrections with antenna IR subtraction terms:

$$\begin{aligned} d\sigma_{\rm NNLO} &= \int_{d\Phi_4} \left(d\sigma_{\rm NNLO}^{RR} - d\sigma_{\rm NNLO}^{\rm S} \right) \\ &+ \int_{d\Phi_3} \left(d\sigma_{\rm NNLO}^{RV} - d\sigma_{\rm NNLO}^{T} \right) \\ &+ \int_{d\Phi_2} d\sigma_{\rm NNLO}^{rV} + \int_{d\Phi_3} d\sigma_{\rm NNLO}^{r} + \int_{d\Phi_4} d\sigma_{\rm NNLO}^{\rm S} \end{aligned}$$

RR: Tree-level double real radiation correction: $h \rightarrow Q\bar{Q}gg$, $Q\bar{Q}q\bar{q}$ and $Q\bar{Q}Q\bar{Q}$ ►

implicit IR-singularity removed by $d\sigma_{\rm NNLO}^S$.

RV: One-loop correction to $h \rightarrow Q\bar{Q}g$ ►

explicit and implicit IR-singularity removed by $d\sigma_{NNLO}^{T}$

• VV: Two-loop corrections to $h \rightarrow Q\bar{Q}$

explicit IR-poles removed by $\int_{d\Phi_2} d\sigma_{\rm NNLO}^T + \int_{d\Phi_4} d\sigma_{\rm NNLO}^S$

Long Chen (MPI)

Decay widths in terms of on-shell and $\overline{\mathrm{MS}}$ Yukawa-couplings

The differential decay width of a Higgs boson with a generic CP into unpolarized $Q\bar{Q}$:

$$d\Gamma^{Q\bar{Q}} = a_Q^2 d\Gamma_S^{Q\bar{Q}} + b_Q^2 d\Gamma_P^{Q\bar{Q}}$$

with the "*reduced*" Yukawa-couplings a_Q and b_Q as in $-y_Q h \left[a_Q \bar{Q}Q + b_Q \bar{Q}i\gamma_5 Q \right]$ (where $y_Q = \frac{m_Q}{v_{vev}}$).

Expanded to order α_s^2 :

$$d\Gamma^{Q\bar{Q}} = y_Q^2 \left[d\hat{\Gamma}_o^{Q\bar{Q}} + \frac{\alpha_s(\mu)}{\pi} d\hat{\Gamma}_1^{Q\bar{Q}} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 d\hat{\Gamma}_2^{Q\bar{Q}} \right]$$

$$\equiv y_Q^2 d\hat{\Gamma}_o^{Q\bar{Q}} \left[1 + \frac{\alpha_s(\mu)}{\pi} d\gamma_1^{Q\bar{Q}} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 d\gamma_2^{Q\bar{Q}} \right]$$
(1)

The on-shell and $\overline{\mathrm{MS}}$ Yukawa-couplings are related by

$$y_{Q}^{2} = \overline{y}_{Q}^{2}(\mu) \left[1 + r_{1}(m_{Q},\mu) \frac{\alpha_{s}(\mu)}{\pi} + r_{2}(m_{Q},\mu) \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{2} \right]$$
(2)

Inserting (2) into (1) and **re-expanding** to order α_s^2

$$d\overline{\Gamma}^{Q\bar{Q}} = \overline{y}_Q^2(\mu) d\hat{\Gamma}_0^{Q\bar{Q}} \left[1 + \frac{\alpha_s(\mu)}{\pi} \left(d\gamma_1^{Q\bar{Q}} + r_1 \right) + \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left(d\gamma_2^{Q\bar{Q}} + r_1 d\gamma_1^{Q\bar{Q}} + r_2 \right) \right] \ .$$

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

We work in 6-flavor QCD:

Standard-Model inputs

 $m_t^{on} = 173.34$ GeV, corresponding to $\overline{m}_t(\mu = m_t) = 163.46$ GeV; $\alpha_s^{(5)}(m_Z) = 0.118;$ $G_F = 1.166379 * 10^{-5} \frac{1}{\text{GeV}^2}$

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

We work in 6-flavor QCD:

Standard-Model inputs

 $m_t^{on} = 173.34$ GeV, corresponding to $\overline{m}_t(\mu = m_t) = 163.46$ GeV; $\alpha_s^{(5)}(m_Z) = 0.118;$ $\mathbf{G}_F = 1.166379 * 10^{-5} \frac{1}{\text{GeV}^2}$

The $t\bar{t}$ inclusive decay widths at NNLO QCD, $\overline{\Gamma}_X^{t\bar{t}}$ and $\Gamma_X^{t\bar{t}}$ (X = S, P)

m_h [GeV]	$\overline{\Gamma}_{S}^{t\bar{t}}$ [GeV]	$\Gamma_S^{t\bar{t}}$ [GeV]	$\overline{\Gamma}_{P}^{t\overline{t}}$ [GeV]	$\Gamma_P^{tar{t}}$ [GeV]
500	$12.529_{-0.314}^{+0.265}$	$12.955_{-0.046}^{+0.037}$	$22.392_{-0.411}^{+0.283}$	$22.931_{-0.062}^{+0.030}$
680	$25.007_{-0.408}^{+0.285}$	$25.647^{+0.075}_{-0.101}$	$32.188^{+0.214}_{-0.397}$	$32.784_{-0.225}^{+0.185}$

These NNLO QCD results for inclusive $t\bar{t}$ -decay widths (exact in m_t) **agree** with the large m_h approximation result (to 4-th order in $(m_t/m_h)^2$) in [Harlander, Steinhauser, 1997].

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

The decay width into $t\bar{t}$ of scalars/pseudo-scalars at LO, NLO, and NNLO in α_s as a function of m_h .

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: $m_{t\bar{t}}$ distribution

Distribution $d\overline{\Gamma}_X^{t\overline{t}}/dM_{t\overline{t}}$ of the $t\overline{t}$ invariant mass with $m_h = 500$ GeV.

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

We work in a "5-flavor" QCD:

Standard-Model inputs

$m_h =$ 125.09 GeV;	$\overline{m}_b(\mu = \overline{m}_b) = 4.18 \text{ GeV};$
$\alpha_s^{(5)}(m_Z) = 0.118;$	$G_F = 1.166379 * 10^{-5} \frac{1}{\text{GeV}^2}$

From the 5-flavor QCD two-loop running-mass formula, it reads $m_b^{on} = 4.78$ GeV and $\overline{m}_b(\mu = m_h) = 2.80$ GeV, and hence $\overline{y}_b(\mu) = \frac{\overline{m}_b(\mu)}{v_{oev}} = 0.01137$.

We represent our result for inclusive decay width using \overline{MS} Yukawa-coupling \overline{y}_b :

$$\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] ,$$

where

$$\overline{\Gamma}_{LO}^{b\bar{b}} = \overline{y}_b^2(\mu) \hat{\Gamma}_0^{b\bar{b}}, \quad \mathbf{g_1} = \gamma_1^{b\bar{b}} + r_1, \quad \mathbf{g_2} = \gamma_2^{b\bar{b}} + r_1 \gamma_1^{b\bar{b}} + r_2.$$

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

For the QCD-correction coefficients g_1, g_2 defined in

$$\overline{\Gamma}_{NNLO}^{bar{b}} = \overline{\Gamma}_{LO}^{bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi}
ight)^2
ight] ,$$

	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$
g1	3.024	5.796	8.569
g ₂	3.685	37.371	86.112
$\overline{\Gamma}_{LO}^{b\overline{b}}$ [MeV]	2.153	1.910	1.717
$\overline{\Gamma}_{NLO}^{bar{b}}$ [MeV]	2.413	2.307	2.196
$\overline{\Gamma}_{NNLO}^{bar{b}}$ [MeV]	2.425	2.399	2.353

we obtain

The known results for massless *b* quarks ($\mu = m_h$):

$$g_1(m_b = 0) = 5.6666$$
 and $g_2(m_b = 0) = 29.1467$

[Gorishnii, Kataev, Larin, Surguladze, 1990; K. G. Chetyrkin, 1996]

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

For the QCD-correction coefficients $g_{\scriptscriptstyle 1},\,g_{\scriptscriptstyle 2}$ defined in

$$\overline{\Gamma}_{NNLO}^{bar{b}} = \overline{\Gamma}_{LO}^{bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi}
ight)^2
ight] ,$$

	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$
g1	3.024	5.796	8.569
g ₂	3.685	37.371	86.112
$\overline{\Gamma}_{LO}^{bar{b}}$ [MeV]	2.153	1.910	1.717
$\overline{\Gamma}_{NLO}^{bar{b}}$ [MeV]	2.413	2.307	2.196
$\overline{\Gamma}_{NNLO}^{bar{b}}$ [MeV]	2.425	2.399	2.353

we obtain

$1 + \mathbf{g_1}\alpha_s + \mathbf{g_2}\alpha_s^2 + \cdots$ total value		components		
massive (α_s^2) 1.2560		1 + 0.20789 + 0.04808		
massless (α_s^4)	1.2413	1 + 0.203242 + 0.0374917 + 0.001927 + (-0.001366)		

 $n_f=5,\ \mu=m_h$ [Baikov,Chetyrkin,Kuhn,06]

SM $h(125) \rightarrow b\bar{b} + X$: the x_{max} distribution

The distribution of the energy of the leading jet in two-jet events is defined w.r.t

 $x_{max} = \max(E_{j_1}/m_h, E_{j_2}/m_h)$ using Durham jet-algorithm with $y_{cut} = 0.05$.

Similar distributions were presented before for *massless b* quarks [Anastasiou, Herzog, Lazopoulos, 2012] (JADE, with $y_{cut} = 0.1$) and in [Duca, Duhr, Somogyi, Tramontano, Trocsanyi, 2015] (Durham, with $y_{cut} = 0.05$).

Long Chen (MPI)

Summary and Outlook

 \square A set up is presented for calculating the fully *differential* decay width of a *scalar* and *pseudo-scalar* to a **massive** $Q\bar{Q}$ pair at NNLO in α_s , which can be used to compute any *infrared-safe* (differential) observable in these decays.

If The set-up is applied to the decays of heavy scalars and pseudo-scalars to $t\bar{t} + X$, and to the decay of the Standard-Model h(125) Higgs boson to massive b, \bar{b} quarks. As a check, inclusive decay rates known before are recovered.

■ We expect that this set up should be useful for having a more precise (and consistent) theoretical description of the α_s^2 QCD corrections to the production of the Higgs boson in association with a massive vector boson at LHC, $\mathbf{pp} \rightarrow \mathbf{V}(W/Z) + H(b\bar{b})$.

Summary and Outlook

 \square A set up is presented for calculating the fully *differential* decay width of a *scalar* and *pseudo-scalar* to a **massive** $Q\bar{Q}$ pair at NNLO in α_s , which can be used to compute any *infrared-safe* (differential) observable in these decays.

 \square The set-up is applied to the decays of heavy scalars and pseudo-scalars to $t\bar{t} + X$, and to the decay of the Standard-Model h(125) Higgs boson to massive b, \bar{b} quarks. As a check, inclusive decay rates known before are recovered.

■ We expect that this set up should be useful for having a more precise (and consistent) theoretical description of the α_s^2 QCD corrections to the production of the Higgs boson in association with a massive vector boson at LHC, $\mathbf{pp} \rightarrow \mathbf{V}(W/Z) + H(b\bar{b})$.

THANK YOU

THE END

THANK YOU

Backup-Slides

Top-Triangle diagrams absent in massless b-quark computations

These amplitudes are ultraviolet- and infrared-finite (directly calculable in 4-dimension).

Figure: The flavor-singlet contributions to $h \rightarrow QQ$ and $h \rightarrow QQg$, where Q, Q' = t, b and h denotes a scalar or pseudoscalar Higgs boson. If the quark in a triangle (a) or (b) is taken to be massless then the contribution is zero. Diagrams with reversed fermion flow in the triangles are not shown.

These contributions can **not** be consistently added in a massless computation at NNLO [Caola, Luisoni, Melnikov, Rontsch, 17].

Long Chen (MPI)

NNLO differential decay rates of Higgs

$h \to Q \bar{Q}$ decay width in detail

To lowest order in α_s

$$\hat{\Gamma}_{o}^{Q\bar{Q}} = N_c \; \frac{\beta_Q}{8\pi m_h} [a_Q^2(m_h^2 - 4m_Q^2) + b_Q^2 m_h^2] \,,$$

where $\beta_Q = \sqrt{1 - 4m_Q^2/m_h^2}$ and N_c denotes the number of colors.

$$\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[1 + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] ,$$

where

$$\overline{\Gamma}_{LO}^{b\bar{b}} = \overline{y}_b^2(\mu) \hat{\Gamma}_o^{b\bar{b}}, \quad \mathbf{g_1} = \gamma_1^{b\bar{b}} + r_1, \quad \mathbf{g_2} = \gamma_2^{b\bar{b}} + r_1 \gamma_1^{b\bar{b}} + r_2.$$

$v^{\overline{MS}}h$	$\mu = m_h$	$y_b^{\text{on-shell}}$	$\mu = m_h$
g1	5.796	$\left\{\gamma_1^{b\bar{b}}, r_1\right\}$	{-9.93, 15.73}
g ₂	37.371	$\left\{\gamma_2^{b\bar{b}}, r_2\right\}$	{-113.2, 306.7}
$\overline{\Gamma}_{LO}^{bb}$ [MeV]	1.910	$\Gamma^{b\bar{b}}_{LO}$ [MeV]	5.578
$\overline{\Gamma}_{NLO}^{bar{b}}$ [MeV]	2.307	$\Gamma^{bar{b}}_{NLO}$ [MeV	3.592
$\overline{\Gamma}_{NNLO}^{bar{b}}$ [MeV]	2.399	$\Gamma^{bar{b}}_{NNLO}$ [MeV	/] 2.772

Long Chen (MPI)

 $h \rightarrow Q\bar{Q}$ decay width with $m_b = 0.5 \text{ GeV}$

The QCD-correction coefficients g_1 , g_2 are defined in

$$\overline{\Gamma}_{NNLO}^{b\overline{b}} = \overline{\Gamma}_{LO}^{b\overline{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right].$$

The known results for massless *b* quarks ($\mu = m_h$):

$$g_1(m_b = o) = 5.6666$$
 and $g_2(m_b = o) = 29.1467$

[Gorishnii, Kataev, Larin, Surguladze, 1990; K. G. Chetyrkin, 1996]

We cannot perform the limit $m_b \rightarrow 0$ analytically. Therefore we choose a value for $m_b = 0.5$ GeV that is very small compared to $m_h \ (\approx \frac{1}{250})$, and excluding the **top-quark** triangle loop diagrams (which contributes $g_{2t} = 6.898$, not sensitive to m_b), we obtain

$$g_1(m_b = 0.5 \text{GeV}) = 5.6685$$
, and $g_2(m_b = 0.5 \text{GeV}) = 29.187$.

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: the x_t distribution

The normalized top-quark energy $x_t = 2E_t/m_h$ (in the rest frame of the Higgs boson) $d\overline{\Gamma}_X^{t\overline{t}}/dx_t$ for a scalar/pseudo-scalar Higgs boson at LO, NLO, and NNLO QCD.

$h(125) \rightarrow b\bar{b} + X$: different jet rates

The *n*-jet rates can be represented, in analogy to the inclusive decay width, to order α_s^2 as follows:

$$\overline{\Gamma}_{2jet}^{bb} = \overline{\Gamma}_{LO}^{bb} \left[1 + g_1(2jet) \frac{\alpha_s^{(5)}}{\pi} + g_2(2jet) \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] , \qquad (4)$$

$$\overline{\Gamma}_{3jet}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[g_1(3jet) \frac{\alpha_s^{(5)}}{\pi} + g_2(3jet) \left(\frac{\alpha_s^{(5)}}{\pi}\right)^2 \right] ,$$
(5)

$$\overline{\Gamma}_{4\,\text{jet}}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \times g_2(4\,\text{jet}) \left(\frac{\alpha_s^{(5)}}{\pi}\right)^2 \tag{6}$$

Table: The coefficients $g_i(n \text{ jet})$ defined above and computed with the Durham algorithm using $y_{cut} = 0.01$ and $y_{cut} = 0.05$ for three renormalization scales μ .

	$y_{cut} = 0.01$			1	$y_{cut} = 0.05$		
	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$	
$g_1(2 \text{ jet})$	-5.055	-2.283	0.490	0.291	3.063	5.836	
$g_2(2 \text{ jet})$	-56.351	-66.532	-61.658	-19.496	-0.650	33.250	
$g_1(3 \text{ jet})$	8.079	8.079	8.079	2.733	2.733	2.733	
$g_2(3 \text{ jet})$	36.873	80.741	124.609	22.256	37.096	51.937	
$g_2(4 \text{ jet})$	23.163	23.163	23.163	0.926	0.926	0.926	