Differential decay rates of CP even and odd Higgs bosons to massive quarks at NNLO in *α^s*

Long Chen

*Max Planck Institute for Physics***, Munich, Germany**

Higgs Coupling 2018, Tokyo, November 29th

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

In collaboration with: W. Bernreuther, Z.G. Si based on JHEP 1807 (2018) 159 **[**arXiv:1805.06658**]**

Motivation and Background

 $h \to b \bar b$ is the most probable decay channel of the $h({\tt i25})$, and finally observed recently at the LHC (in the *VH*-events)!

[→talks by D.Schaefer, A.De Wit, G.Zanderighi]

• Many BSM predict heavy scalars and pseudo-scalars coupled to heavy quarks.

[→talks by R.Santos, J.Steggemann]

Much work done previously on neutral scalar bosons decay into quarks.

^I *inclusive*: known up to *N*4*LO* for CP-even Higgs into massless quarks; [Baikov,Chetyrkin,Kuhn,06; Davies,Steinhauser,Wellmann,17; Herzog,Ruijl,Ueda,Vermaseren,Vogt,17] *NNLO* corrections for CP-even/odd Higgs in power expansion of *^m^Q* ; *mh* [Surguladze, 94; Chetyrkin,Kwiatkowski,96; Chetyrkin,Kniehl,Steinhauser,97; Larin,Ritbergen,Vermaseren,95;Harlander,Steinhauser, 97; Chetyrkin, Harlander,Steinhauser,97,98] · · · · · ·

^I *differential*:

CP-even Higgs decay into massless quarks at *NNLO*

[Anastasiou, Herzog, Lazopoulos, 2012; Duca, Duhr, Somogyi, Tramontano, Trocsanyi, 2015]

We consider the decay of a neutral Higgs boson *h* **of arbitrary** *CP* **to a massive quark antiquark pair at NNLO order in perturbative QCD, i.e.** $h \rightarrow Q\bar{Q}X$ ($Q = t, b$), at the *fully differential* level **(using the** *antenna subtraction method***).**

- \blacktriangleright BSM heavy CP-even/odd Higgs boson decay into $t\bar{t}$ pair: inclusive decay width as a function of m_h , and $M_{t\bar{t}}$ distributions, etc
- If the SM $h(125)$ Higgs boson decay into a massive $b\bar{b}$ pair: inclusive decay width, 2-jet, 3-jet, and 4-jet decay width, and the energy distribution of the leading jet for two-jet events.

UV-renormalization and (antenna) IR subtraction

The *hybrid* UV-renormalization in $pQCD$ with $n_f + 1$ quarks:

- External-fields (and their masses): **on-shell** scheme;
- *αs*: MS-scheme;
- The Yukawa-coupling y_Q : $\overline{\text{MS}}$ -scheme

UV-renormalization and (antenna) IR subtraction

The *hybrid* UV-renormalization in $pQCD$ with $n_f + 1$ quarks:

- External-fields (and their masses): **on-shell** scheme;
- *αs*: MS-scheme;
- The Yukawa-coupling y_O : $\overline{\text{MS}}$ -scheme

The general idea of IR-subtraction methods:

 $\int d\sigma$ ^S $- \int d\sigma$ ^S $\int d\sigma$ ^S into σ _{NLO} $= d\sigma$ ^R $+ d\sigma$ ^V.

The *dσ* S in the *antenna* subtraction method are constructed according to the *universal IR-factorization formulae* of *color-ordered* partial QCD-amplitudes,

Figure: The antenna factorization of a *color-ordered* partial amplitude (PRD 71, 045016)

Organizations of ingredients for $h \to Q\bar{Q} + X$ ($Q = t, b$)

Schematically the NNLO corrections with *antenna* IR subtraction terms:

$$
d\sigma_{\text{NNLO}} = \int_{d\Phi_4} \left(d\sigma_{\text{NNLO}}^{\text{RR}} - d\sigma_{\text{NNLO}}^{\text{S}} \right) + \int_{d\Phi_3} \left(d\sigma_{\text{NNLO}}^{\text{UV}} - d\sigma_{\text{NNLO}}^{\text{IV}} \right) + \int_{d\Phi_2} d\sigma_{\text{NNLO}}^{\text{VV}} + \int_{d\Phi_3} d\sigma_{\text{NNLO}}^{\text{UV}} + \int_{d\Phi_4} d\sigma_{\text{NNLO}}^{\text{S}}.
$$

 \triangleright RR: Tree-level double real radiation correction: $h \to Q\bar{Q}gg$, $Q\bar{Q}q\bar{q}$ and $Q\bar{Q}Q\bar{Q}$

 S_{implicit} IR-singularity removed by $d\sigma_{\text{NNLO}}^S$.

► RV: One-loop correction to $h \to Q\bar{Q}g$

explicit and implicit IR-singularity removed by $d\sigma_{\mathrm{NNLO}}^{T}$

 \triangleright VV: Two-loop corrections to $h \to Q\bar{Q}$

 ϵ explicit IR-poles removed by $\int_{d\Phi_3}d\sigma^T_{\rm NNLO}+\int_{d\Phi_4}d\sigma^S_{\rm NNLO}$

Decay widths in terms of on-shell and $\overline{\text{MS}}$ Yukawa-couplings

The *differential* decay width of a Higgs boson with a generic CP into **unpolarized** *QQ*¯ :

$$
d\Gamma^{Q\bar{Q}} = a_Q^2 d\Gamma_S^{Q\bar{Q}} + b_Q^2 d\Gamma_P^{Q\bar{Q}}
$$

with the "*reduced*" Yukawa-couplings a_Q and b_Q as in $-y_Q h$ $\big[a_Q \bar{Q}Q + b_Q \bar{Q}i\gamma_5 Q\big]$ (where $y_Q = \frac{m_Q}{v_{vev}}$).

Expanded to order α_s^2 :

$$
d\Gamma^{Q\bar{Q}} = y_Q^2 \left[d\hat{\Gamma}_0^{Q\bar{Q}} + \frac{\alpha_s(\mu)}{\pi} d\hat{\Gamma}_1^{Q\bar{Q}} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 d\hat{\Gamma}_2^{Q\bar{Q}} \right]
$$

$$
\equiv y_Q^2 d\hat{\Gamma}_0^{Q\bar{Q}} \left[1 + \frac{\alpha_s(\mu)}{\pi} d\gamma_1^{Q\bar{Q}} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 d\gamma_2^{Q\bar{Q}} \right]
$$
(1)

The on-shell and $\overline{\text{MS}}$ Yukawa-couplings are related by

$$
y_{Q}^{2} = \overline{y}_{Q}^{2}(\mu) \left[1 + r_{1}(m_{Q}, \mu) \frac{\alpha_{s}(\mu)}{\pi} + r_{2}(m_{Q}, \mu) \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{2} \right]
$$
(2)

lnserting [\(2\)](#page-6-0) into [\(1\)](#page-6-1) and **re-expanding** to order $α_s^2$

$$
d\overline{\Gamma}^{Q\bar{Q}} = \overline{y}_{Q}^{2}(\mu) d\hat{\Gamma}_{0}^{Q\bar{Q}} \left[1 + \frac{\alpha_{s}(\mu)}{\pi} \left(d\gamma_{1}^{Q\bar{Q}} + r_{1} \right) + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{2} \left(d\gamma_{2}^{Q\bar{Q}} + r_{1} d\gamma_{1}^{Q\bar{Q}} + r_{2} \right) \right]
$$

.

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

We work in 6-flavor QCD:

Standard-Model inputs

 $m_t^{on} = 173.34$ GeV, corresponding to $\overline{m}_t(\mu = m_t) = 163.46$ GeV; $\alpha_s^{(5)}(m_Z) = 0.118;$ **G**_{*F*} = 1.166379 * 10⁻⁵ $\frac{1}{\text{GeV}^2}$

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

We work in 6-flavor QCD:

Standard-Model inputs

 $m_t^{on} = 173.34$ GeV, corresponding to $\overline{m}_t(\mu = m_t) = 163.46$ GeV; $\alpha_s^{(5)}(m_Z) = 0.118;$ **G**_{*F*} = 1.166379 * 10⁻⁵ $\frac{1}{\text{GeV}^2}$

The $t\bar{t}$ inclusive decay widths at NNLO QCD, $\overline{\Gamma}^{t\bar{t}}_X$ and $\Gamma^{t\bar{t}}_X$ $(X=S,P)$

These NNLO QCD results for inclusive *t* ¯*t*-decay widths (exact in *mt*) **agree** with the large *m^h* approximation result (to 4-th order in (*mt*/*m^h*) 2) in [Harlander, Steinhauser, 1997].

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

The decay width into *t* ¯*t* of scalars/pseudo-scalars at LO, NLO, and NNLO in *α^s* as a function of *m^h* .

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: $m_{t\bar{t}}$ distribution

Distribution $d\overline{\Gamma}_{X}^{t\bar{t}}/dM_{t\bar{t}}$ of the $t\bar{t}$ invariant mass with $m_h =$ 500 GeV.

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

We work in a "5-flavor" QCD:

Standard-Model inputs

From the 5-flavor QCD two-loop running-mass formula, it reads $m_b^{on} = 4.78$ GeV and $\overline{m}_b(\mu=m_h)=$ 2.80 GeV, and hence $\overline{y}_b(\mu)=\frac{\overline{m}_b(\mu)}{v_{vev}}=$ 0.01137.

We represent our result for inclusive decay width using MS Yukawa-coupling \overline{y}_b :

$$
\overline{\Gamma}^{b\bar{b}}_{NNLO} = \overline{\Gamma}^{b\bar{b}}_{LO} \left[1 + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] \;,
$$

where

$$
\overline{\Gamma}_{LO}^{b\bar{b}} = \overline{y}_b^2(\mu)\hat{\Gamma}_0^{b\bar{b}}, \quad \mathbf{g_1} = \gamma_1^{b\bar{b}} + r_1, \quad \mathbf{g_2} = \gamma_2^{b\bar{b}} + r_1\gamma_1^{b\bar{b}} + r_2.
$$

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

For the QCD-correction coefficients g_1 , g_2 defined in

$$
\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] ,
$$

we obtain

The known results for massless b quarks $(\mu = m_h)$:

$$
\mathbf{g_1}(m_b = \mathbf{o}) = 5.6666 \text{ and } \mathbf{g_2}(m_b = \mathbf{o}) = 29.1467
$$

[Gorishnii, Kataev, Larin, Surguladze, 1990; K. G. Chetyrkin, 1996]

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

For the QCD-correction coefficients **g1**, **g²** defined in

$$
\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] ,
$$

we obtain

 $n_f = 5$, $\mu = m_h$ [Baikov,Chetyrkin,Kuhn,06]

SM $h(125) \rightarrow b\bar{b} + X$: the x_{max} distribution

The distribution of the energy of the leading jet in two-jet events is defined w.r.t

 $x_{max} = \max(E_{j_1}/m_h, E_{j_2}/m_h)$ using *Durham jet-algorithm* with $y_{cut} = 0.05$.

Similar distributions were presented before for *massless b* quarks [Anastasiou, Herzog, Lazopoulos, 2012] (JADE, with *ycut* = 0.1) and in [Duca, Duhr, Somogyi, Tramontano, Trocsanyi, 2015] (Durham, with $y_{cut} = 0.05$.

Summary and Outlook

2 A set up is presented for calculating the fully *differential* decay width of a *scalar* and *pseudo-scalar* to a **massive** *QQ*¯ pair at NNLO in *αs*, which can be used to compute any *infrared-safe* (differential) observable in these decays.

 \varnothing The set-up is applied to the decays of heavy scalars and pseudo-scalars to $t\bar{t} + X$, and to the decay of the Standard-Model $h(\texttt{125})$ Higgs boson to massive b , \bar{b} quarks. As a check, inclusive decay rates known before are recovered.

 \boxtimes We expect that this set up should be useful for having a more precise (and consistent) theoretical description of the *α* 2 *^s* QCD corrections to the production of the Higgs boson in association with a massive vector boson at LHC, $pp \rightarrow V(W/Z) + H(b\bar{b}).$

Summary and Outlook

2 A set up is presented for calculating the fully *differential* decay width of a *scalar* and *pseudo-scalar* to a **massive** *QQ*¯ pair at NNLO in *αs*, which can be used to compute any *infrared-safe* (differential) observable in these decays.

 \varnothing The set-up is applied to the decays of heavy scalars and pseudo-scalars to $t\bar{t} + X$, and to the decay of the Standard-Model $h(\texttt{125})$ Higgs boson to massive b , \bar{b} quarks. As a check, inclusive decay rates known before are recovered.

 \boxtimes We expect that this set up should be useful for having a more precise (and α consistent) theoretical description of the α_s^2 QCD corrections to the production of the Higgs boson in association with a massive vector boson at LHC, $pp \rightarrow V(W/Z) + H(b\bar{b}).$

 $\mathscr{T} \mathscr{H} \mathscr{A}$ N \mathscr{K} . We our

THE END

T H A N K Y OU

Backup-Slides

Top-Triangle diagrams absent in massless b-quark computations

These amplitudes are ultraviolet- and infrared-finite (directly calculable in 4-dimension).

Figure: The flavor-singlet contributions to $h \to Q\overline{Q}$ and $h \to Q\overline{Q}g$, where $Q, Q' = t$, *b* and *h* denotes a scalar or pseudoscalar Higgs boson. If the quark in a triangle (a) or (b) is taken to be massless then the contribution is zero. Diagrams with reversed fermion flow in the triangles are not shown.

These contributions can **not** be consistently added in a massless computation at NNLO [Caola, Luisoni, Melnikov, Rontsch, 17].

Long Chen (MPI) **[NNLO differential decay rates of Higgs](#page-0-0)** HC 2018 HC 2018 13/13

$h \rightarrow Q\bar{Q}$ decay width in detail

To lowest order in *α^s*

$$
\hat{\Gamma}_0^{Q\bar{Q}} = N_c \frac{\beta_Q}{8\pi m_h} [a_Q^2 (m_h^2 - 4m_Q^2) + b_Q^2 m_h^2],
$$

where $\beta_Q = \sqrt{1 - 4m_Q^2/m_h^2}$ and N_c denotes the number of colors.

$$
\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[1 + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] \;,
$$

where

$$
\overline{\Gamma}_{LO}^{b\bar{b}} = \overline{y}_b^2(\mu)\hat{\Gamma}_o^{b\bar{b}}, \quad \mathbf{g_1} = \gamma_1^{b\bar{b}} + r_1, \quad \mathbf{g_2} = \gamma_2^{b\bar{b}} + r_1\gamma_1^{b\bar{b}} + r_2.
$$

 $h \rightarrow Q\bar{Q}$ decay width with $m_h = 0.5$ GeV

The QCD-correction coefficients **g1**, **g²** are defined in

$$
\overline{\Gamma}^{b\bar{b}}_{NNLO} = \overline{\Gamma}^{b\bar{b}}_{LO} \left[1 + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right].
$$

The known results for massless b quarks $(\mu = m_h)$:

$$
\mathbf{g_1}(m_b = \mathbf{o}) = 5.6666 \text{ and } \mathbf{g_2}(m_b = \mathbf{o}) = 29.1467
$$

[Gorishnii, Kataev, Larin, Surguladze, 1990; K. G. Chetyrkin, 1996]

We cannot perform the limit $m_b \rightarrow o$ analytically. Therefore we choose a value for $m_b =$ 0.5 GeV that is very small compared to m_h ($\approx \frac{1}{250}$), and excluding the top-quark **triangle loop diagrams** (which contributes $g_{2t} = 6.8\overset{\circ}{98}$, not sensitive to m_b), we obtain

$$
\mathbf{g_1}(m_b = 0.5 \text{GeV}) = 5.6685
$$
, and $\mathbf{g_2}(m_b = 0.5 \text{GeV}) = 29.187$.

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: the x_t distribution

The normalized top-quark energy $x_t = 2E_t/m_h$ (in the rest frame of the Higgs boson) $d\overline{\Gamma}_{X}^{t\overline{t}}/dx_{t}$ for a scalar/pseudo-scalar Higgs boson at LO, NLO, and NNLO QCD.

$h(\texttt{125}) \to b\bar{b} + X\text{: different jet rates}$

The *n*-jet rates can be represented, in analogy to the inclusive decay width, to order *α* 2 *^s* as follows:

$$
\overline{\Gamma}_{2\,jet}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[1 + g_1(z\,jet) \frac{\alpha_s^{(5)}}{\pi} + g_2(z\,jet) \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] \,, \tag{4}
$$

$$
\overline{\Gamma}_{3\text{jet}}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[g_1(j\text{jet}) \frac{\alpha_s^{(5)}}{\pi} + g_2(j\text{jet}) \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] \,, \tag{5}
$$

$$
\overline{\Gamma}_{4\,\text{jet}}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \times g_2(4\,\text{jet}) \left(\frac{\alpha_s^{(5)}}{\pi}\right)^2 \tag{6}
$$

Table: The coefficients $g_i(n | i \text{et})$ defined above and computed with the Durham algorithm using $y_{cut} = 0.01$ and $y_{cut} = 0.05$ for three renormalization scales μ .

	$y_{cut} = 0.01$			$y_{cut} = 0.05$		
	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$	$\mu = m_h/2$	$u = m_h$	$\mu = 2m_h$
$g_1(z$ jet)	-5.055	-2.283	0.490	0.291	3.063	5.836
g_2 (2 jet)	-56.351	-66.532	-61.658	-19.496	-0.650	33.250
g_1 (3 jet)	8.079	8.079	8.079	2.733	2.733	2.733
g_2 (3 jet)	36.873	80.741	124.609	22.256	37.096	51.937
$g_2(4$ jet)	23.163	23.163	23.163	0.926	0.926	0.926