

Higgs $\rightarrow \tau^+ \tau^-$ at ILC: coupling strength and CP properties

Daniel Jeans, KEK for the International Large Detector

concept group Higgs Couplings 2018, Tokyo

Higgs physics at ILC 250

comprehensive and precise study of Higgs sector [see F. Simon's plenary talk]

At 250 GeV, Higgs boson usually produced with a Z: "Higgs-strahlung"

Z boson and its momentum used to tag Higgs events: "recoil mass" method

D. Jeans @ HiggsCouplings'18

Higgs decays to tau leptons

as most massive lepton, tau enjoys strongest coupling to Higgs

tau lepton has somewhat short lifetime : $2.9 \times 10^{-13} \text{ s}$

decays within detector characteristic "narrow jet"

decay products displaced from interaction point

distribution of decay products \rightarrow tau spin orientation

International Large Detector

one of two detector concepts being developed for ILC

high precision detector optimised for particle flow reconstruction

D. Jeans @ HiggsCouplings'18

silicon, gaseous tracking systems $\sigma_{d0} \rightarrow 5 \ \mu m$ $\sigma_{pT}/p_T \rightarrow 2 \times 10^{-5} \ p_T$

high granularity calorimetry jet energy resolution 3-4%

test the lepton Yukawa – mass relation

Higgs boson coupling to $\tau\,\tau$

Studied using events fully simulation in ILD, all SM background processes, realistic reconstruction algorithms

final states

 $e^+ e^- \rightarrow H Z \rightarrow \tau \tau + (ee, \mu \mu, q q)$

event reconstruction and selection

isolated narrow jets,

1 or 3 charged particles total jet charge ±1 invariant mass < 2 GeV/c²

various cuts to reduce major backgrounds

colinear approximation to estimate momenta of ν from τ decay

Eur. Phys. J. C75 (2015) no.12, 617

τ-pair invariant mass colinear approximation

Higgs boson coupling to $\tau\,\tau$

Eur. Phys. J. C75 (2015) no.12, 617

final event selection and background rejection using multivariate analysis [BDT] Event counting after selection gives

expected ILC precision on σ (h) · BR (h $\rightarrow \tau \tau$): 1.2 % [ILC250 / 2 ab⁻¹] 1.0 % [+ ILC500 / 4 ab⁻¹]

This measurement then combined with

- measured total cross-section σ (h) to give BR (h \rightarrow τ τ),
- measured total decay width Γ_{H} to extract Yukawa coupling g(htt)

 δ g(htt) ~ 1.16% using full E.F.T. fit, 2 ab⁻¹ at ILC250 + HL-LHC, LEP, ...

Phys.Rev. D97 (2018) no.5, 053003

$CP in h \rightarrow \tau \tau : sensitivity$

Phys.Rev. D98 (2018) no.1, 013007

Summary

#ILCsupporters

International Linear Collider will enable comprehensive set of precision Higgs measurements, shining light on physics beyond the SM

ILC-250 stage:

 σ (h) · BR (h → ττ) with a precision of 1.2 % [1.0 % w/ ILC500] → several times more precise than current HL-LHC projections

 \rightarrow signatures of BSM physics ?

CP mixing in $h \rightarrow \tau \tau$ decays with a precision of 75 mrad

 \rightarrow Electro-Weak baryogenesis ?

backup

full **t** momentum reconstruction

optimal information on **T** momentum and spin relies on excellent detector performance: impact parameter, tracking, photon and jet measurement

NIM A810 (2016) 51

arXiv:1710.07621

D. Jeans @ HiggsCouplings'18

reconstruct Z \rightarrow (e e / μ μ / jets) + 2 × (1-prong tau jets) simple preselection

some distributions after reconstruction and pre-selection:

group events according to sensitivity to CP quality of event reconstruction background contamination longitudinal polarimeter components

