

ASSOCIATED HIGGS BOSON PRODUCTION VIA FLAVOUR-TAGGING IN *NNLOJET*

Imre Majer with A. Huss, R. Gauld, A. Gehrmann–De Ridder, and E. W. N. Glover from the *NNLOJET* collaboration

Higgs Couplings, 29th November 2018

ASSOCIATED HIGGS BOSON PRODUCTION STATUS

Associated Higgs Production

Estimated 5% of Higgs production.

Clear leptonic signature.

 $H \rightarrow b\overline{b}$ main decay channel (BR = 58%)

Experiment Status

Evidence for $H \rightarrow b\overline{b}$ through the VH channel. CMS: 5.6 σ significance. [arXiv:1808.08242] ATLAS: 5.3 σ significance. [arXiv:1808.08242]

Theory Status

NNLO Production × NLO Decay [G. Ferrera, M. Grazzini, F. Tramontano, arXiv:1407.4747] NNLO Production × NNLO Decay [G. Ferrera, G. Somogyi, F. Tramontano, arXiv:1705.10304] [F. Caola, G. Luisoni, K. Melnikov, R. Röntsch, arXiv:1712.069

I. Majer (ETH Zürich)

VH Production and Flavour-tagging in NNLOJET

Associated Higgs Production

Estimated 5% of Higgs production.

Clear leptonic signature.

 $H \rightarrow b\overline{b}$ main decay channel (BR = 58%)

Experiment Status

Evidence for $H \rightarrow b\overline{b}$ through the VH channel. CMS: 5.6 σ significance. [arXiv:1808.08242] ATLAS: 5.3 σ significance. [arXiv:1808.08242]

Theory Status

NNLO Production × NLO Decay [G. Ferrera, M. Grazzini, F. Tramontano, arXiv:1407.4747] NNLO Production × NNLO Decay [G. Ferrera, G. Somogyi, F. Tramontano, arXiv:1705.10304] [F. Caola, G. Luisoni, K. Melnikov, R. Röntsch, arXiv:1712.065

I. Majer (ETH Zürich)

Associated Higgs Production

Estimated 5% of Higgs production.

Clear leptonic signature.

 $H \rightarrow b \overline{b}$ main decay channel (BR = 58%)

Experiment Status

Evidence for $H \rightarrow b\overline{b}$ through the VH channel. CMS: 5.6 σ significance. [arXiv:1808.08242]

ATLAS: 5.3σ significance. [arXiv:1808.08242]

Theory Status

NNLO Production × NLO Decay [G. Ferrera, M. Grazzini, F. Tramontano, arXiv:1407.4747]

NNLO Production × NNLO Decay [G. Ferrera, G. Somogyi, F. Tramontano, arXiv:1705.10304] [F. Caola, G. Luisoni, K. Melnikov, R. Röntsch, arXiv:1712.06954]

Validation against W⁻H total cross section of [F. Caola, G. Luisoni, K. Melnikov, R. Röntsch].

Our calculations . . .

- \rightarrow include offshell propagators.
- \rightarrow do extensive scale variations.
- → demonstrate a general flavour-tagging infrastructure

WH PROCESS SETUP: PRODUCTION imes decay

Drell-Yan-like amplitudes

Top-loop contributions

I. Majer (ETH Zürich)

VH Production and Flavour-tagging in NNLOJET

WH PROCESS SETUP: PRODUCTION imes decay

W+

$$\mathrm{d}\sigma^{\mathsf{N}^{k}\mathsf{LO}} = \sum_{i,j=0}^{k} \mathrm{d}\sigma^{(i)}_{\mathsf{W}^{+}\mathsf{H}} \times \mathrm{d}\sigma^{(j)}_{\mathsf{H}\to\mathsf{b}\overline{\mathsf{b}}}$$

 $\mathcal{O}(\alpha_{s})$ power counting: keep only $i + j \leq k$ terms.

I. Majer (ETH Zürich)

$$\sigma^{\text{NNLO}} = \int_{d\Phi_{\text{WH}+2}} \begin{bmatrix} d\sigma^{\text{RR}} & -d\sigma^{\text{S}} \end{bmatrix} \textcircled{s} \text{ Well-behaved!} \\ + \int_{d\Phi_{\text{WH}+1}} \begin{bmatrix} d\sigma^{\text{RV}} & -d\sigma^{\text{T}} \end{bmatrix} \textcircled{s} \text{ Well-behaved!} \\ + \int_{d\Phi_{\text{WH}}} \begin{bmatrix} d\sigma^{\text{RV}} & -d\sigma^{\text{T}} \end{bmatrix} \textcircled{s} \text{ Well-behaved!} \\ \begin{bmatrix} d\sigma^{\text{VV}} & -d\sigma^{\text{T}} \end{bmatrix} \textcircled{s} \text{ No poles!} \end{bmatrix} \\ \Rightarrow \int_{d\Phi_{\text{WH}}} \begin{bmatrix} d\sigma^{\text{VV}} & -d\sigma^{\text{U}} \end{bmatrix} \textcircled{s} \text{ No poles!} \end{bmatrix}$$

$$(analytic pole cancellation!) = 0 \qquad (begin{subarray}{c} \frac{\sqrt{\text{Scratch/majeri/nnlojet/maple/process/VH}}{\sqrt{\text{Form autog80g2WHxBy0g0HU.fm}}} \\ = 0; \\ \text{Poles} (d\sigma^{\text{VV}} - d\sigma^{\text{U}}) = 0 \qquad (c.54 \text{ sec out of 6.59 sec}) \end{cases}$$

NNLOJET: "A multiprocess parton level event generator." Numerically integrate each subtracted line!

Partonic flavour-tracking

• Two b-jets at leading order.

In NNLOJE1

- Any existing process.
- All flavours: e.g. TAG_FLAVOUR 5

Flavoured jet reconstruction

- Massless **b** quarks $(n_f = 5)$.
- Truth-tagging in (anti-)k_t jets:

e.g. soft **bb** splitting

Not infrared safe!

• Flavour- k_t : soft **b** \overline{b} combined first

 $\left|\#\mathbf{b} - \#\overline{\mathbf{b}}\right| \neq 0 \Leftrightarrow \mathsf{flavoured}$

Infrared safe!

[A. Banfi, G. P. Salam, G. Zanderighi, arXiv:hep-ph/0601139]

Partonic flavour-tracking

- Two b-jets at leading order.
- More emissions at higher order.

In NNLOJE1

- Any existing process.
- All flavours: e.g. TAG_FLAVOUR 5

Flavoured jet reconstruction

- Massless **b** quarks ($n_f = 5$).
- Truth-tagging in (anti-)k_t jets:

e.g. soft <mark>bb</mark> splitting

Not infrared safe!

• Flavour- k_t : soft **b** \overline{b} combined first

 $\left|\#\mathbf{b} - \#\overline{\mathbf{b}}\right| \neq 0 \Leftrightarrow \mathsf{flavoured}$

Infrared safe!

[A. Banfi, G. P. Salam, G. Zanderighi, arXiv:hep-ph/0601139]

VH Production and Flavour-tagging in NNLOJET

Partonic flavour-tracking

- Two b-jets at leading order.
- More emissions at higher order.

In NNLOJE1

- Any existing process.
- All flavours: e.g. TAG_FLAVOUR 5

Flavoured jet reconstruction

- Massless **b** quarks $(n_f = 5)$.
- Truth-tagging in (anti-)k_t jets:

e.g. soft **bb** splitting

Not infrared safe!

• Flavour-*k*_t: soft **b**b combined first

 $\left|\#\mathbf{b} - \#\overline{\mathbf{b}}\right| \neq 0 \Leftrightarrow \mathsf{flavoured}$

Infrared safe!

[A. Banfi, G. P. Salam, G. Zanderighi, arXiv:hep-ph/0601139]

Partonic flavour-tracking

- Two b-jets at leading order.
- More emissions at higher order.

In NNLOJET

- Any existing process.
- All flavours: e.g. TAG_FLAVOUR 5

Flavoured jet reconstruction

- Massless **b** quarks ($n_f = 5$).
- Truth-tagging in (anti-)k_t jets:

e.g. soft <mark>bb</mark> splitting

Not infrared safe!

• Flavour- k_t : soft **b** combined first

 $\left| \# \mathbf{b} - \# \overline{\mathbf{b}} \right| \neq 0 \Leftrightarrow \mathsf{flavoured}$

Infrared safe!

[A. Banfi, G. P. Salam, G. Zanderighi, arXiv:hep-ph/0601139]

Run parameters

\sqrt{S}	13 TeV
PDF	NNPDF31_nnlo_as_0118
$\Delta R_{\rm jet}$	0.5
b-jets:	minimum 2 (flavour- <i>k_t</i>)
	$p_{\perp,{\rm b}}>25~{ m GeV}$
	$ y_{\rm b} < 2.5$
eptons:	$p_{\perp,e^+} > 15 \text{ GeV}$
	$ y_{e^+} < 2.5$
	$E_{\perp,\rm miss}>$ 15 GeV
	[arXiv:1610.07922, page 102

Scale variations

production: dynamic scale $M_{\rm WH}$

$$\mu_F = M_{\rm WH} \times \left(2, 1, \frac{1}{2}\right)$$
$$\mu_R = M_{\rm WH} \times \left(2, 1, \frac{1}{2}\right)$$

decay: fixed scale $m_{\rm H}$ $\mu_R = m_{\rm H} \times \left(2, 1, \frac{1}{2}\right)$

Run parameters

\sqrt{S}	13 TeV
PDF	NNPDF31_nnlo_as_0118
$\Delta R_{\rm jet}$	0.5
b-jets:	minimum 2 (flavour-k _t)
	$p_{\perp,{ m b}}>25~{ m GeV}$
	$ y_{\rm b} < 2.5$
eptons:	$p_{\perp,e^+} > 15 \text{ GeV}$
	$ y_{e^+} < 2.5$
	$E_{\perp,\rm miss} > 15~{\rm GeV}$
	[arXiv:1610.07922, page 10

Scale variations

production: dynamic scale M_{WH} $\mu_F = M_{WH} \times \left(2, 1, \frac{1}{2}\right)$ $\mu_R = M_{WH} \times \left(2, 1, \frac{1}{2}\right)$

> decay: fixed scale $m_{\rm H}$ $\mu_R = m_{\rm H} \times \left(2, 1, \frac{1}{2}\right)$

Fiducial cross section

$\sigma^{\rm LO} = 18.61^{+2.93}_{-2.46}~{\rm fb}$	
$\sigma^{\rm NLO} = 22.70^{+1.03}_{-1.17}~{\rm fb}$	
$\sigma^{\rm NNLO} = 22.36^{+0.47}_{-1.34}$ fb	

CROSS SECTION & DISTRIBUTIONS

Leading **b**-jet p_{\perp}

b-jet pair p_{\perp} (m_{bb} closest to m_{H})

- Overall reduction of scale uncertainties.
- Regions where new NNLO channels are important can have larger scale bands.

CROSS SECTION & DISTRIBUTIONS

b-jet pair invariant mass $(m_{\rm bb} \text{ closest to } m_{\rm H})$

b-jet pair angular separation $(m_{bb} \text{ closest to } m_{H})$

- Overall reduction of scale uncertainties.
- *m*_{bb} left shoulder dominated by decay corrections.
 *m*_{bb} right shoulder dominated by production corrections.

NNLOJET ♡ flavour-tagging

- Fixed-order Monte Carlo event generator \cdots
- ··· equipped with general-purpose flavour-tagging.
- Demonstrated $W^{+}H$ at NNLO.
- More processes: W^-H , ZH, Z + b, $W + c \cdots$
- Flavour- k_t : infrared safety, but not used in experiments.

THANK YOU!